Evolutionary Clustering Techniques for Expertise Mining Scenarios

Veselka Boeva¹, Milena Angelova², Niklas Lavesson¹, Oliver Rosander¹ and Elena Tsiporkova³

¹ Computer Science and Engineering Department, Blekinge Institute of Technology, Karlskrona, Sweden
² Computer Systems and Technologies Department, Technical University of Sofia Plovdiv Branch, Plovdiv, Bulgaria
³ The Collective Center for the Belgian Technological Industry, Brussels, Belgium

Keywords: Data Mining, Expert Finding, Health Science, Knowledge Management, Natural Language Processing.

Abstract: The problem addressed in this article concerns the development of evolutionary clustering techniques that can be applied to adapt the existing clustering solution to a clustering of newly collected data elements. We are interested in clustering approaches that are specially suited for adapting clustering solutions in the expertise retrieval domain. This interest is inspired by practical applications such as expertise retrieval systems where the information available in the system database is periodically updated by extracting new data. The experts available in the system database are usually partitioned into a number of disjoint subject categories. It is becoming impractical to re-cluster this large volume of available information. Therefore, the objective is to update the existing expert partitioning by the clustering produced on the newly extracted experts. Three different evolutionary clustering techniques are considered to be suitable for this scenario. The proposed techniques are initially evaluated by applying the algorithms on data extracted from the PubMed repository.

1 INTRODUCTION

Currently, organizations search for new employees not only relying on their internal information sources, but they also use data available on the Internet to locate the required experts. Thus the need for services that enable finding experts grows especially with the expansion of virtual organizations. People are more often working together by forming task-specific teams across geographic boundaries. The formation and sustainability of such virtual organizations greatly depends on their ability to quickly trace those people who have the required expertise. In response to this, research on identifying experts from online data sources (Abramowicz et al., 2011), (Balog and Rijke, 2007), (Bozzon et al., 2013), (Hristoskova et al., 2013), (Jung et al., 2007), (Stankovic et al., 2011), (Harpreet et al., 2013), (Tsiporkova and Tourwé, 2011), (Zhang et al., 2007) has been gradually gaining interest in the recent past. For instance, a Web-based biomedical expert finding system, proposed in (Harpreet et al., 2013), can be applied to identify subject experts and subjects associated with an expert. The system builds and maintains a big repository of biomedical experts by extracting the information about experts’ peer-reviewed articles that are published and indexed in PubMed. The experts stored in such big data repositories are usually partitioned into a number of subject categories in order to facilitate the further search and identification of experts with the appropriate skills and knowledge.

The problem addressed in this article concerns with the development of evolutionary clustering techniques that can be used to adjust the existing clustering solution to newly arrived data. This is motivated by practical applications such as, expertise retrieval systems discussed above, where the information available in the system database is periodically updated by collecting new data. The available data elements are usually partitioned into a number of disjoint subject categories. It is becoming impractical to re-cluster this large volume of available information. Therefore, we propose and study three different evolutionary clustering algorithms that are suited for the considered problem: Partitioning-based, PivotBi-Cluster (PBC) and Merge-Split PBC.

2 RELATED WORK

The model of incremental algorithms for data clustering is motivated by practical applications where the demand sequence is unknown in advance and a hier-
architectural clustering is required. Incremental clustering methods process one data element at a time and maintain a good solution by either adding each new element to an existing cluster or placing it in a new singleton cluster while two existing clusters are merged into one (Charikar et al., 1997).

To qualify the type of cluster structure present in data, Balcan et al. introduced the notion of clusterability (Balcan et al., 2008). It requires that every element be closer to data in its own cluster than to other points. In addition, Balcan et al. showed that the clusterings that adhere to this requirement are readily detected offline by classical batch algorithms. On the other hand, it was proven by Ackerman et al. (Ackerman and Dasgupta, 2014) that no incremental method can discover these partitions. Thus, batch algorithms are significantly stronger than incremental methods in their ability to detect cluster structure.

Incremental algorithms also bear a resemblance to one-pass clustering algorithms for data stream problems (O’Callaghan et al., 2002). For example, the algorithm in (O’Callaghan et al., 2002) is implemented as a continuous version of k-means algorithm which continues to maintain a number of cluster centers which change or merge as necessary throughout the execution of the algorithm. Although, one-pass stream clustering methods address the scalability issues of the clustering problem, they are not sensitive to the evolution of the data.

The clustering scenario discussed herein is different from the one treated by incremental clustering methods. Namely, the evolutionary clustering techniques considered in this work are supposed to provide the flexibility to compute clusters on a new portion of data collected over a defined time period and to update the existing clustering solution by the computed new one. Such an updating clustering should better reflect the current characteristics of the data by being able to examine clusters occurring in the considered time period and eventually capture interesting trends in the area.

Gionis et al. proposed an approach to clustering that is based on the concept of aggregation (Aristides et al., 2007). Clustering aggregation provides a framework for dealing with a variety of clustering problems. For instance, it can handle categorical or heterogeneous data by producing a clustering on each available attribute and then aggregating the produced clusterings into a single result. Consensus clustering algorithms deal with similar problems to those treated by clustering aggregation techniques. Namely, such algorithms try to reconcile clustering information about the same data set coming from different sources or from different runs of the same algorithm (Goder and Filkov, 2008). The both clustering techniques are not suited for our expert mining scenario, since they are used to integrate a number of clustering results generated on one and the same data set.

3 EXPERTISE RETRIEVAL

3.1 Partitioning of Experts

In the context of expertise retrieval, two interesting research tasks can be considered: how to cluster experts into groups according to the degree of their expertise (topic) similarity and how to partition topics according to their semantic relatedness.

Accurate measurement of semantic similarity between words is essential for the both tasks, since the expert expertise profiles are usually presented by lists of subject terms (keywords) extracted from the available information about the experts. Semantically related words of a particular word are listed in manually created general-purpose lexical ontologies such as WordNet (Fellbaum, 1998; Miller, 1995).

In the context of expertise retrieval the cluster hypothesis states that similar people tend to be experts on the same topics. Traditional clustering approaches assume that data objects to be clustered are independent and of identical class, and are often modelled by a fixed-length vector of feature/attribute values. The similarities among objects are assessed based on the attribute values of involved objects. However, the calculation of expertise similarity is a complicated task, since the expert expertise profiles usually consist of domain-specific keywords that describe their area of competence without any information for the best correspondence between the different keywords of two compared profiles. In addition, the degree of heterogeneity among the experts in terms of expertise could have an impact on the scalability of the applied algorithms. Consequently, the sparse and high dimensional representation of the different experts necessitate the design of specific algorithms for expert representation and processing. One such approach for clustering of experts has already been introduced in (Boeva et al., 2014b). A further refinement of the model has been proposed in (Boeva et al., 2016).

3.2 Profiling of Expertise

An expertise profiling is the task of describing of subject areas that an individual is proven to have a competence, i.e. constructing of person’s expertise profile. The data needed for constructing the expert profiles could be extracted from various Web sources, e.g.,
LinkedIn, the DBLP library, Microsoft Academic Search, Google Scholar Citation, PubMed etc.

A conceptual model of the domain of interest, such as a thesaurus, a taxonomy etc., can be available and used to attain accurate and topic relevant expert profiles. When a conceptual model is missing then, e.g., the Stanford part-of-speech tagger (Toutanova and Manning, 2000) can be used to annotate the different words in the text collected for each expert with their specific part of speech. However, an expert profile may be quite complex and can, for example, be associated with information that includes: e-mail address, affiliation, a list of publications, co-authors, but it may also include or be associated with: educational and (or) employment history, the list of LinkedIn contacts etc. All this information could be separated into two parts: expert’s personal data and information that describes the competence area of expert.

The expert’s personal data can be used to resolve the problem with ambiguity. This problem refers to the fact that multiple profiles may represent one and the same person and therefore must be merged into a single generalized expert profile, e.g., the clustering algorithm discussed in (Buelens and Putman, 2012) can be applied for this purpose. A different approach to the ambiguity problem has been proposed in (Boeva et al., 2012). Namely, the similarity between the personal data (profiles) of experts is used to resolve the problem with ambiguity.

In view of the above, an expert profile can be defined as a list of keywords, extracted from the available information about the expert in question, describing her/his subjects of expertise.

3.3 Expertise Similarity

As it was discussed above, an important task in the considered context is to establish a way to estimate the expertise similarity between experts. This task can be additionally complicated in case when weights are introduced in order to optimize expert representation.

In (Boeva et al., 2012) the similarity between two expertise profiles is measured as the strength of the relations between the semantic concepts associated with the keywords of the two compared profiles. Another possibility to measure the expertise similarity between two expert profiles is by taking into account the semantic similarities between any pair of keywords that contain in the profiles. Thus in (Boeva et al., 2017) the expertise similarity between two expert profiles is defined as the weighted mean of semantic similarities between the corresponding keywords. Without loss of generality we assume that in the considered context each expert is described by only a list of the domain-specific topics in which he/she is an expert. Assume that each expert profile \(i \) is represented by a list of \(p_i \) keywords. Then let \(s \) be a similarity measure that is suitable to estimate the semantic relatedness between any two keywords used to describe the expert profiles in the domain. Then the expertise similarity \(S_{ij} \) between two expert profiles \(i \) and \(j \) \((i \neq j)\), can be defined by the arithmetic mean of semantic similarities between the corresponding keywords, i.e. \(S_{ij} = \frac{1}{p_i p_j} \sum_{l=1}^{p_i} \sum_{m=1}^{p_j} s(k_{il}, k_{jm}) \), where \(s(k_{il}, k_{jm}) \) is the semantic similarity between keywords \(k_{il} \) and \(k_{jm} \).

4 THE PROPOSED SOLUTIONS

4.1 Description of the Framework

Let us formalize the cluster updating problem we are interested in. We assume that \(X \) is the available set of experts and each expert is represented by a non-fixed length vector of domain-specific keywords describing her/his expertise. In addition, the experts are partitioned into \(k \) groups with respect to given subject categories describing the domain of interest, i.e. \(C = \{C_1, C_2, \ldots, C_k\} \) is an existing clustering solution of \(X \) and each \(C_i \) \((i = 1, 2, \ldots, k)\) can be considered as a distinctive expert area. In addition, a new set \(X' \) of recently extracted experts is created, i.e. \(X \cap X' \) is an empty set. Each expert in \(X' \) is again modeled by a list of keywords and \(C' = \{C'_1, C'_2, \ldots, C'_k\} \) is a clustering solution of \(X' \) w.r.t. the same or different domain description. The objective is to produce a single clustering of \(X \cup X' \) by combining \(C \) and \(C' \) in such a way that the obtained clustering realistically reflects the current expertise distribution in the domain.

4.2 Cluster Centers Partitioning based Algorithm

A MapReduce approach for clustering of datasets generated in multiple-experiment settings has been introduced in (Boeva et al., 2014a). It consists of two distinctive phases. Initially, the selected clustering algorithm is applied to each experiment separately. This produces a list of different clustering solutions, one per experiment. These are further transformed by partitioning the cluster centers into a single clustering solution. The second phase of the MapReduce approach can be applied to the cluster integration problem, we are interested in this paper. Namely, in order to integrate the two clusterings \(C \) and \(C' \) into a single clustering solution, we can use the following merge schema. The cluster centers of the available clusters
represented by their expert expertise profiles are considered. Subsequently, these expert profiles can be divided into groups according to the degree of their expertise similarity by applying some clustering algorithm. Subsequently, the clusters whose centers belong to the same group are merged in order to obtain the single clustering.

4.3 Correlation Bi-clustering Algorithm

A different approach to the above problem can also be applied. For example, instead of considering the cluster centers of the clusters we can present each cluster by an expert area profile, i.e., analogously to the experts’ expertise profiles. Consequently, each cluster will be modelled by a list of domain-specific topics that describes the corresponding expert area. Then the clusters can be divided into groups according to the degree of their expert area similarity. Two clustering techniques are suitable for the considered context: correlation clustering (Bansal et al., 2004) and bipartite correlation clustering (Ailon et al., 2011). The latter algorithm seems to be better aligned to our expert clustering scenario. In Bipartite Correlation Clustering (BCC) a bipartite graph is given as input, and a set of disjoint clusters covering the graph nodes is output. Clusters may contain nodes from either side of the graph, but they may possibly contain nodes from only one side. A cluster is thought as a bi-clique connecting all the objects from its left and right counterparts. Consequently, a final clustering is a union of bi-cliques covering the input node set. We compare our evolutionary correlation clustering algorithm described in the following section with PivotBiCluster realization of the BCC algorithm (Ailon et al., 2011).

Notice that in the clustering scenario discussed herein the input graph nodes are clusters of experts and in the final clustering some clusters are obtained by merging clusters (nodes) from both side of the graph, i.e., some of existing clusters will be updated by some of the computed new ones. However, existing clusters cannot be split by the BCC algorithm even the corresponding correlations with clusters from the newly extracted experts reveal that these clusters are not homogeneous.

4.4 Evolutionary Bipartite Clustering Algorithm

We propose herein an evolutionary clustering algorithm that overcomes the above mentioned disadvantage of BCC algorithm. Namely, our algorithm is able to analyze the correlations between two clustering solutions \(C \) and \(C' \) and based on the discovered patterns it treats the existing clusters \((C') \) in different ways. Thus some clusters will be updated by merging with ones from newly constructed clustering \((C') \) while others will be transformed by splitting their elements among several new clusters. One can find some similarity between our idea and an interactive clustering model proposed in (Awasthi et al., 2017). In this model the algorithm starts with some initial clustering of the data and the user may request a certain cluster to be split if it is overclustered (intersects two or more clusters in the target clustering). The user may also request to merge two given clusters if they are underclustered (both intersect the same target cluster).

Our evolutionary clustering algorithm is based on the PivotBiCluster algorithm defined in (Ailon et al., 2011). Suppose that each cluster from the clustering solutions \(C \) and \(C' \) is presented by a list of domain-specific topics that describes its expert area. Next our input graph is \(G = (C, C', E) \), where \(C \) and \(C' \) are the sets of left and right nodes and \(E \) is subset of \(C \times C' \) that presents correlations between the nodes of two sets. A detail explanation of the proposed Merge-Split PivotBiCluster is given in Algorithm 1.

Algorithm 1: Merge-Split PivotBiCluster.

```plaintext
1: function Merge-SplitPBC(G = (C, C', E))
2: for all nodes \( c \in C \cup C' \) do
3: if \( c \) is an unreachable node then
4: Turn \( c \) into a singleton and remove it from \( G \)
5: end if
6: end for
7: while \( C \neq \emptyset \) do
8: Choose \( c_1 \) uniformly at random from \( C \)
9: if \( c_1 \) takes part in a bi-clique connecting it with several nodes from \( C' \) then
10: Split \( c_1 \) among the corresponding nodes from \( C' \)
11: else
12: Form a new cluster by merging \( c_1 \) with its neighbors from \( C' \)
13: end if
14: end while
15: return all connected components (bi-cliques) as clusters of \( C \) \( \cup \) \( C' \)
```

Initially, the proposed algorithm finds all unreachable nodes from either side of \(G \) (steps 2 to 6). These are singleton clusters in our final clustering solution. We remove these nodes from the graph. Then any other node from the the left side of \(G \) is considered in order to decide how it will be updated by the ne-
5 EXPERIMENT DESIGN

5.1 Test Data

We need test data that is tied to our specific task, namely the expert clustering. For this task, we use the test collection from a scientific conference devoted to integrative biology\(^1\). For each topic, participants (102 in total) of the corresponding conference session are regarded as experts on that topic. This is an easy way of obtaining topics and relevance judgements. A total of 8 topics (sessions) are created by the conference science committee. A list of researchers for these topics are also supplied, i.e., names that are listed in the conference program on the sessions (topics) information. These researchers are considered as relevant experts, thus, used as the ground truth to benchmark the results of the proposed clustering methods.

The data needed for constructing the expert profiles of the above 102 researchers are extracted from PubMed, which is one of the largest repositories of peer-reviewed biomedical articles published worldwide. Medical Subject Headings (MeSH) is a controlled vocabulary developed by the US National Library of Medicine for indexing research publications, articles and books. Using the MeSH terms associated with peer-reviewed articles published by the above considered researchers and indexed in the PubMed, we extract all such authors and construct their expert profiles. An expert profile is defined by a list of MeSH terms used in the PubMed articles of the author in question to describe her/his expertise areas.

In addition to the above set of 102 biomedical researchers we have extracted a set of 4343 Bulgarian authors from the PubMed repository. After resolving the problem with ambiguity the set is reduced to one containing only 3753 different researchers. Then each author is also represented by a list of all different MeSH headings used to describe the major topics of her/his PubMed articles.

5.2 Metrics

One of the most important issues in cluster analysis is the validation of clustering results. The data mining literature provides a range of different cluster validation measures, which are broadly divided into two major categories: external and internal (Jain et al., 1988). External validation measures have the benefit of providing an independent assessment of clustering quality, since they validate a clustering result by comparing it to a given external standard. However, an external standard is rarely available. Internal validation techniques, on the other hand, avoid the need for using such additional knowledge, but have the alternative problem to base their validation on the same information used to derive the clusters themselves.

In this work, we have implemented two different validation measures for estimating the quality of clusters, produced by the proposed clustering algorithms. Since we have a benchmark clustering of the set of 102 biomedical researchers, described in the foregoing section, we have used the \textit{F-measure} as an external validation measure to evaluate the accuracy of the generated clustering solutions (Larsen et al., 1999). The \textit{F-measure} is the harmonic mean of the precision and recall values for each cluster. For a perfect clustering the maximum value of the F-measure is 1. In addition, \textit{Silhouette Index} has been applied as an internal measure to assess compactness and separation properties of the clustering solutions (Rousseeuw, 1987). The values of \textit{Silhouette Index} vary from -1 to 1.

5.3 Implementation and Availability

We used the Entrez Programming Utilities (E-utilities) to download all the publications associated with authors from the considered conference and those originating from Bulgarian authors (Sayers, 2010). The E-utilities are the public API to the NCBI Entrez system and allow access to all Entrez databases including PubMed, PMC, Gene, Nuccore and Protein.

For calculation of semantic similarities between MeSH headings, we use MeSHSim which is an R package. It also supports querying the hierarchy information of a MeSH heading and information of a given document including title, abstraction and MeSH headings (Zhou and Shui, 2015). The three cluster updating algorithms used in our experiments are implemented in Python.

Supplementary information is available at GitLab (https://gitlab.com/machine_learning_vm/clustering_techniques).

5.4 Experiments

Initially, a benchmark set of 102 different expert profiles is formed as it was explained in Section 5.1. Then this set is used to generated 10 test data set couples by randomly separating the experts (researchers) in two sets. The one set (containing 70 experts) of each couple presents the available set of experts and the other one (32 experts) is the set of newly extracted experts. In that way 10 test clustering couples are created.

We have studied two different experiment scenarios. In the first scenario the experts in each test set are grouped into clusters of experts with similar expertise based on the conference session information, i.e. each set is partitioned into 8 clusters. In the second scenario for each data set the optimal number of clusters is determined by clustering the set applying k-means for different k and evaluating the obtained solutions by SI. In this way two different experiments have been conducted on 10 test data set couples. In both experiments in order to be able to calculate the correlation between any pair of clusters we describe each cluster by a vector of those MeSH terms that have a high degree of frequency in its expert profiles.

In both experiments the three evolutionary clustering algorithms considered in Section 4 are executed 10 time on each test couple (i.e., 300 executions in total for each experiment) to integrate the corresponding clusterings. The cluster centers partitioning based algorithm (shortly called Partitioning-based) has been implemented by using k-means. It has been executed on each test couple for \(k = 8 \), since we know that this is the number of clusters in the benchmark set, i.e. the optimal one. The number of clusters in the clustering solutions generated by the two BCC algorithms however, varies from 5 to 8. The number of clusters for these algorithms depends on the correlations between the currently integrated clustering solutions, i.e. it flexibly adapts to the integrated data.

The F-measure is used to assess the accuracy of the generated clustering solutions. We have also evaluated the compactness and separation properties of the obtained clustering solutions by applying SI.

6 RESULTS AND ANALYSIS

The results are depicted in Fig. 1 and Fig. 2. We can notice the three clustering algorithms have similar performance with respect to both validation measures. This is not surprising since the benchmark data set is very well separable into 8 clusters. The two BCC algorithms have produced higher F-measure and SI scores than the Partitioning-based (PB) algorithm on two-thirds of the test data sets in the first experiment and on the half of data sets in the second experiment. The corresponding average values can be seen in Table 1 and Table 2. The two BCC algorithms outperform the Partitioning-based on average w.r.t. both cluster validation measures in the first experiment (see Fig. 1). In addition, the PivotBiCluster (PBC) and Merge-Split PBC perform almost equally well, because the former one has not found many
overclustered nodes, i.e. it has not executed many cluster splitting for the considered 10 test data sets.

Figure 2: Experiment 2: F-measure and SI values generated on the clustering solutions produced by the three cluster updating algorithms on 10 test data set couples.

Table 1: Average F-measure and SI values generated on the clustering solutions of the 10 data set couples.

<table>
<thead>
<tr>
<th>Metrics</th>
<th>PB</th>
<th>PBC</th>
<th>MS PBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-measure</td>
<td>0.618</td>
<td>0.640</td>
<td>0.628</td>
</tr>
<tr>
<td>SI</td>
<td>-0.145</td>
<td>-0.139</td>
<td>-0.139</td>
</tr>
</tbody>
</table>

In the second experiment (see Fig. 2) the SI scores are not only higher in comparison to the ones generated in the first experiment, but they are also positive. Evidently, using the optimal number of clusters significantly improves the quality of the generated clustering solutions with respect to compactness and separation properties. However, the corresponding F-measure scores are lower than the ones generated in the first experiment. This is mainly due to the fact that the number of clusters in the clustering solutions produced in the second experiment can be different from the benchmark one.

We have also executed k-means clustering algorithm 10 time on the whole benchmark set of 102 experts for $k = 8$. This experiment has been conducted in order to obtain an idea of the performance of the proposed evolutionary clustering algorithms compared to a non-evolutionary one. The computed average values for F-measure and SI are 0.09 and 0.287, respectively. It is interesting to notice that the three evolutionary clustering algorithms significantly outperform k-means in all run experiments w.r.t. F-measure, but k-means performs better w.r.t. SI. The former might be due to the fact that the three evolutionary clustering algorithms are able to produce clustering solutions that are closer to "natural" partitions really present in the underlying data.

Table 2: Average F-measure and SI values generated on the clustering solutions of the 10 data set couples.

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Experiment 1</th>
<th>Experiment 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-measure</td>
<td>0.640</td>
<td>0.321</td>
</tr>
<tr>
<td>SI</td>
<td>0.139</td>
<td>0.164</td>
</tr>
</tbody>
</table>

Next we use the second built set that contains 3753 PubMed expert profiles of Bulgarian researchers. The researchers of this set are randomly separated in two sets. The one set contains 2407 experts grouped into 122 clusters by using k-means and the other one has 1346 experts separated into 112 clusters again by applying k-means. The three evolutionary clustering algorithms are then executed twice to integrate the clustering solutions of these two data sets. The generated clustering solutions are evaluated by SI and the average scores are -0.094 (PB), -0.158 (PBC) and -0.067 (MS PBC). The MS PBC algorithm outperforms the other two algorithms on this data set. We believe this is due to the fact that it adjusts better to data by being able not only to merge those clusters that are undersclustered but also to split those that are overclustered. Notice that Partitioning-based demonstrates close performance to MS PBC. This is because it has been executed for the optimal number of clusters. We have preliminarily found this number ($k = 72$) by applying k-means for different k and evaluating the obtained clustering solutions by SI.

However, the latter could become difficult if the data set is very large or is multi-dimensional. Usually in order to find a reasonable number of clusters, clustering methods must be run repeatedly with different parameters, i.e. this is impractical for real-world data sets that are often quite large.

7 CONCLUSION

This paper has compared three different evolutionary clustering approaches specially suited for expertise retrieval scenarios: a Partitioning-based and two graph-based (bipartite correlation) clustering algorithms (PivotBiCluster and Merge-Split PBC). The

3Merge-Split PBC
considered approaches have initially been evaluated by applying the algorithms on data extracted from PubMed repository. The produced clustering solutions have been validated on two different datasets by two different cluster validation measures: F-measure and Silhouette Index (SI). The two Bipartite Correlation Clustering (BCC) algorithms have slightly outperformed the Partitioning-based on average with respect to SI on the first data set. The Merge-Split PBC algorithm has also demonstrated better performance than the other two algorithms on the second data set. This algorithm is able to analyze the correlations between two clustering solutions and based on the discovered patterns it treats the clusters in different ways. In addition, in comparison to the Partitioning-based clustering algorithm the two BCC algorithms do not need prior knowledge about the optimal number of clusters in order to produce a good clustering solution. The BCC algorithms are also more suitable for the considered expertise retrieval context, because each cluster is modelled by a list of domain-specific topics, i.e. analogously to the experts’ expertise profiles.

For future work, we aim to pursue further comparison and evaluation of the three proposed clustering approaches on richer data extracted from different online sources.

REFERENCES

Boeva, V. et al. (2016). Identifying a group of subject experts using formal concept analysis. In IEEE Conf. on Intelligent Systems, pages 464–469. IEEE.

