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Abstract: Connected vehicles, combined with embedded smart computation capabilities, will certainly lead to a new
generation of services and opportunities for drivers, car manufacturers, insurance and service companies. One
of the main challenges remaining in this field is how to detect key triggering events. One of these crucial
moments is a car accident, for which not only smart connected vehicles can improve drivers’ safety as car
accidents are still one of the main causes of fatalities worldwide, but also help them during minor, but very
stressful moments. In this paper, we present Crashzam which is an innovative way to detect any type car
accidents based on sound produced by car impact, while, so far, crash detection is only a prerogative of
accelerometer sensor time series analysis, or its proxy: activation of the airbag. We describe the system
design, the sound detection model, and the results based on a dataset with in-car cabin sounds of real crashes.
We have beforehand built such dataset with real car accident sounds. Classification is built upon features
extracted from the time and frequency domain of the audio signal and from its spectrogram image. Results
show that the proposed model is able to easily identify crash sounds from other sounds reproduced in-car
cabins. Moreover, considering that Crashzam can run on smartphones, it is a low cost and energy solution,
contributing to the spreading of such a car safety feature and reducing delays in providing assistance when an
accident occurs.

1 INTRODUCTION

Although the effort in launching road safety pro-
grams in many countries, road traffic death figures
remain stable worldwide at nearly 1.2 million since
2004 (World Health Organization, 2015). Causes of
such a plague are diverse: speed, drink-driving, drug-
driving, unused safety belt, bad weather and road con-
ditions, and bad car break and wheel conditions. It
results essential to notify a crash as fast as possible
for first aid as a correlation between delaying emer-
gency medical care and mortality rate has been pro-
ved (Evanco, 1996).

Some car manufacturers offer for their high-end
products an automatic collision notification which
mainly monitors the airbag deployment to detect a
severe collision and calling assistance with the em-
bedded cellular radios. The BMW’s Automatic Crash
Notification System and the GM’s OnStar are just two
examples. These products remain mostly restricted as
option to luxury market sectors and a large part of the
circulating vehicles do not embed an OEM automatic
accident detection and notification system.

Relatively cheaper third party solutions foreseen
the installation of boxes under the hood, wind-screen
boxes or OBDII dongles which embed an acceleration
sensor as along as a proprietary algorithm to detect
shocks. In fact, state of the art solutions employ acce-
lerometer data to detect more or less severe impacts
triggered by the sudden variation of acceleration on
one or more axes (White et al., 2011; Thompson et al.,
2010; Zaldivar et al., 2011; Punetha et al., 2012; Lahn
et al., 2015; Aloul et al., 2015). Although the use of
accelerometer sensors leads to a precise impact iden-
tification both for angle and severity, dedicated har-
dware must be professionally installed to achieve the
maximum accuracy.

The most cost effective and practical solution,
instead, relies on acceleration time series recorded
on drivers’ smartphones. On these bases, some mo-
bile applications are already available on the mar-
ket (Zendrive, 2017; Sosmartapp, 2017; TrueMotion,
2017). Nevertheless, smartphone data is hard to ana-
lyze due to calibration, noise and rotation issues. In
addition, it is not clear the optimal frequency for acce-
leration samples and the time window width to record.
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Also, in many situations, relying only on acceleration
data may lead to false predictions: street bumps, holes
and bad street conditions trigger false positives, whe-
reas collisions coming from the back while standing
still may be classified as normal accelerations.

As a trendy solution, social networks and micro-
blogs provide a global source where to share what we
experience and see around us. Car accidents usually
attract people curiosity, who might post tweets and
photos of the event (Schulz et al., 2013). Although
this provides a zero-cost solution, many cons affect
it: accidents could not be immediately advertised, pe-
ople might provide confused or misleading informa-
tion, necessary third party people identification comes
with privacy issues. Finally, the use of smartphones
during driving is a source of accident itself.

As electric lamps were not invented by impro-
ving candles, the goal of this work is not to im-
prove accelerometer-based car crashing detection al-
gorithms, but to detect crashes by sound.

Crashzam is an innovative way to detect car cras-
hes based on sound recognition techniques. It does
not suffer from neither calibration and sensor confi-
guration problems nor the delay and subjectiveness
of human notifications. Being in continuous listening
specifically for crash sounds, our solution is able to
detect whatever a car impact occurred. It can take ad-
vantage of the presence of microphones inside car ca-
bins: hands free car kits, Bluetooth kits, car audio sy-
stems with voice command, wind-screen SOS boxes,
dash cameras and smartphones are some hardware
equipments embedding microphones, which are usu-
ally present in a car.

It does not matter where and with which angle re-
spect to the horizon these devices are placed in the car
cabin, since the received sound will not be affected by
calibration issues. The only assumption is that a crash
produces a sound.

Despite some works based on crash sound de-
tection which are mainly designed for road surveil-
lance purposes (Rabaoui et al., 2008; Carletti et al.,
2013; Foggia et al., 2016a; Clavel and Ehrette, 2008;
Valenzise et al., 2007), this work focuses on drivers’
safety by detecting crash sound from inside the car
cabin.

But in order to perform, Crashzam must take into
account the presence of environmental noise and any
other overlapping sound which could happen in a car
cabin (engine rotation, car horn, radio music, etc.).

The advantage for drivers is to have a low cost in-
stantaneous crash detection rid of accelerometer sen-
sor discrepancies.Other actors involved in road safety,
like medical assistance services and insurance compa-
nies, can take advantage of this solution for first noti-
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Figure 1: Crashzam high level system design: while dri-
ving, the smartphone microphone records a sliding buffer
of PCM samples which are analyzed if an acceleration event
occurs (e.g., acceleration norm is over a certain threshold).
Accelerometer is used as a mere trigger. If Crashzam de-
tects a crash, the driver is solicited and assistance is alerted
in case of no answer from the driver.

fication of loss (FNOL) and fast first aid.
The main contribution of this paper is the design

of a low cost, smartphone-based car crash detection
system through a new crash sound detection model. It
can detect crash sounds and distinguish other sounds
generated inside the car cabin. To this aim, we col-
lect a novel dataset of crash sounds recorded from
inside the car cabin. Then, we create and select a
set of features computed from the time and frequency
sound signal domain and from the sound spectrogram
image. Finally we propose a combination of ma-
chine learning models for the automatic classification
of sounds reproduced inside vehicles.

This manuscript is structured as follows: in
Section 2 we provide a top-down description of
Crashzam, while in Sections 3 and 4 we explore in
detail the model to detect crashes from audio clips.
In Section 5 we present the dataset that we have built
and that we have used to train and test our model. In
Sections 6 and 7 we discuss about the obtained re-
sults and the performances in according to the model
parameters. Finally, we give our conclusions and per-
spectives in Section 8.

2 SYSTEM DESIGN

Considering Crashzam running on a smartphone ap-
plication, we show in Figure 1 the high level sy-
stem design. Android and iOS operating systems pro-
vide an activity recognition mechanism which starts
at time t0 the recording of a PCM samples buffer si-
multaneously to the detection of driving activity. The
sliding buffer has a duration of Tb seconds. In our
proof of concept we set Tb = 5 seconds, with PCM
sampled at 16kHz and quantized at 16 bits at least. At
t0, also the location service (GPS) and the accelero-
meter sensor are activated. We use the accelerometer
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as a mere trigger: if at time tx the norm of the three
acceleration axes exceeds 2.5g, then we continue re-
cording for Tb/2 seconds before analyzing data. In
this way we use half of the buffer to record what hap-
pened before a probable impact event and the other
half to record what happened after it. In fact, a typi-
cal crash event includes tire skidding or horn sounds
before the crash and human screams before or after it,
although the crash itself will present the maximum
signal amplitude. Thus, in the following we train
our models to distinguish between car impact sounds
which are high energy, percussive sounds and other
sounds which are likely to be produced during a crash
but not necessarily like car horn or harsh deceleration
sounds. It is worth to note that Crashzam can also
work in combination with a traditional accelerometer-
based car crash detection.

At time tx +Tb/2, the array of PCM is compres-
sed and transmitted to the server as along as the last
GPS position, as a JSON object to a server dedicated
to analyze the recorded sound. Data is independently
analyzed by two models detailed in Sections 3 and 4.
Finally, both results are combined by a weighted vo-
ting classifier. The first model focuses on time and
frequency aspects of the sound. It mainly detects high
energy, abrupt changing sounds. But since car horn or
engine starting are such kind of sound too, we include
a second model based on spectrogram image analysis
calibrated on the detection of percussive, high energy,
hollow sounds, which correspond to crashes.

A side effect feature of having two independent
models, is that the system is modular and the first
model can be reused in other application fields (e.g.,
glass breaking detection).

The result of the classification ŷ is based on the
probability output of the two models j ∈ 1,2 in accor-
ding to the relation:

ŷ = argmaxi

2

∑
j=1

w j pi j, (1)

where i ∈ 0,1 represents the sound class (“Other” or
“Crash” sound).

At the end of the classification pipeline, if a crash
is detected, the driver is solicited for an interaction
(e.g., pushing a safe button or answering to a call),
otherwise assistance is alerted.

We have monitored the battery usage on a Nexus
5 smartphone when activating motion sensors (acce-
lerometer, gyroscope, and magnetometer), and recor-
ding audio signals. Nexus 5 is equipped with a 2300
mAh, 3.8 V battery and an Android Nougat OS. Fi-
gure 2 shows that the natural discharging from 100%
to 5% lasts four hours when all not vital service but
the screen are switched off. Activating motion sen-

Figure 2: Nexus 5 battery discharging when activating or
not motion sensors and microphone.

sors only, battery life is 30 minutes shorter, while ad-
ding audio recording and motion sensors it becomes
50 minutes shorter. Knowing that the battery used for
the test can provide at most 2300 mA in an hour, we
conclude that the microphone consumed about 80 mA
per hour which corresponds to 3.5% of the battery ca-
pacity.

3 FIRST MODEL: TIME AND
FREQUENCY ANALYSIS

A large set of metrics and features can be extracted
from audio signals (Peeters and Rodet, 2004). For
the first model, we have selected here some time and
frequency-based features largely adopted in the litera-
ture for tasks of audio event detection or music genre
classification.

3.1 Time Domain Features

Let us consider x(t) a discrete audio signal of N sam-
ples.

• Zero-Crossing Rate (ZCR). The rate a dis-
crete signal x(t) changes sign during its dura-
tion N is a key feature to recognize percussive
sounds (Gouyon et al., 2000b; Gouyon et al.,
2000a).

ZCRx =
1

2N

N−2

∑
t=0
|sgn(x(t +1))− sgn(x(t))|, (2)

where sgn(x(t)) =

{
1, if x(t)≥ 0,
−1, if x(t)< 0.

• Signal Power. It is the sum of squares of the sig-
nal values normalized by the signal length.

Px =
1
N

N−1

∑
t=0
|x(t)|2 (3)

We expect crash sounds to show high power.
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• Entropy. Entropy of a discrete random variable
X with possible values x1, ...,xn and probability
function P(X) is usually defined as:

H(x) =−
n

∑
i=1

P(xi) logb P(xi). (4)

We consider P(xi) = e j =
E f rame j

Ex
, where Ex =

∑
N−1
t=0 |x(t)|2 is the signal energy and E f rame j is the

energy of the jth of K fix-sized sub-frames the sig-
nal is split into. Thus, our entropy becomes:

H(x) =−
K

∑
j=1

e j log2(e j). (5)

Entropy is usually interpreted as a measure of
abrupt changes in energy (Pikrakis et al., 2008;
Giannakopoulos et al., 2007). We expect crash
sounds having high entropy.

3.2 Frequency Domain Features

It is often useful to analyze discrete signals in the fre-
quency domain through a Discrete Fourier Transform
(DFT). The original signal is split in fixed-size smal-
ler frames, and the DFT is applied on each frame re-
turning an array of coefficients having the same length
of the number of samples in the frame. Let us consi-
der Xi(k),k = 1, . . . ,M, the magnitude of DFT coeffi-
cients of the ith frame. We compute average and stan-
dard deviation over all frames.

• Spectral Centroid (SC). For the ith frame, SC is
the average of frequencies present in the signal,
weighted by their amplitudes:

SCi =
∑

M
k=1 kXi(k)

∑
M
k=1 Xi(k)

, (6)

The SC represents the barycenter of the spectrum
and higher values correspond to brighter
sounds (Grey and Gordon, 1978). Crash sounds
have a low SC.

• Spectral Spread (SS). It represents the deviation
from the SC:

SSi =

√
∑

M
k=1(k−SCi)2Xi(k)

∑
M
k=1 Xi(k)

(7)

Low values of SS correspond to signals whose
spectrum is concentrated around the spectral cen-
troid. Usually crash sounds present a high SS va-
lue.

• Spectral Flux (SF). SF represents the spectral
change by comparing the power spectrum of two
consecutive frames:

SFi,i−1 =
M

∑
k=2

(
Xi(k)

∑
M
l=1 Xi(l)

− Xi−1(k)

∑
M
l=1 Xi−1(l)

)2 (8)

SF is mainly used for onset detection, thus appli-
cable to crash detection too (Dixon, 2006).

• Spectral Rolloff (SR). The SR is the frequency
below which 90% of the magnitude distribution of
the spectrum is concentrated. SR is the frequency
which satisfies the following relation:

SR

∑
k=1

Xi(k) = 0.9
M

∑
k=1

Xi(k). (9)

It is useful to discriminate sounds like human
voice signals whose energy is concentrated under
4 kHz and music.

• Spectral Entropy (SE). Similarly to the entropy
in the time domain, let us consider the spectrum
divided in k fixed-size frequency sub-bands, SE
is:

SE =−
k

∑
i=1

Pi log2(Pi), (10)

where Pi =
Ei

∑
k
i=1 Ei

and Ei is the energy in the ith

sub-band. In crash sounds, SE should have low
values as the energy is spread on all the sub-bands.

• Chroma Vector (CV). With the Chroma Vector
we group all the DFT coefficients into 12 bins cor-
responding to the 12 pitches of an equal tempered
scale. Each element of the vector is the mean of
DFT coefficients:

vk = ∑
f∈Fk

Xi( f )
|Fk|

, k ∈ [1−12], (11)

where Fk is the set of frequencies included in
the same bin. CV is widely used for audio ma-
tching (Kurth and Müller, 2008; Mueller et al.,
2005).

• Mel-Frequency Cepstral Coefficients
(MFCCs). MFCCs are 13 coefficients forming
a cepstral representation where the frequencies
are distributed according to the mel scale. The
mapping between the mel and frequency scale
using k triangular overlapping windows is the
following:
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Mel( f ) = 2595log10(1+
f

100
). (12)

Then, MFCCs are computed as the discrete cosine
transform (DCT) of cepstrum powers at each mel
frequency:

c(k) = DCF log |DFT m(n)|. (13)

MFCC are useful to analyze abrupt changes in
the spectrum and widely employed in human
speech domain where they are particularly ef-
fective (Gonzalez, 2013; Sengupta et al., 2016;
Ganchev et al., 2005; Müller, 2007).

4 SECOND MODEL:
SPECTROGRAM IMAGE
ANALYSIS

The second model is based on spectrogram image fea-
tures and it is specifically designed to discern between
percussive and sustained sounds. The former have
high amplitude values distributed on all the frequen-
cies at a certain time, while the latter present high va-
lues of amplitude at certain frequencies for long time.
The intuition behind this model is that a crash is a per-
cussive sound, while many other sounds reproduced
in car like car horn, harsh acceleration or tire skidding
are sustained sounds.

4.1 Specific Spectrogram Image
Features

Starting from a spectrogram images like the ones in
Figure 3, we extract the amplitude matrix and we se-
lect a constellation of peaks, which are points, located
in time and frequency, exceeding a certain amplitude
threshold Ath. Such peaks are local maxima, meaning
that in a region with radius R = 2 ∗D+ 1, where D
is the maximum Manhattan distance from the center
of the region, they show the maximum value. If more
points in a region are candidate to be a peak (i.e., they
have the same amplitude), all of them are selected.
Thus, we convert the amplitude matrix to a matrix P
which localizes a constellation of peaks p f t and we
analyze the patterns created by such peaks. P is a
F × T binary, sparse matrix, where f ∈ F denotes a
frequency in the range [0, sampling rate

2 ] and t ∈ T de-
notes a small time bin the original signal is split into
to compute the DFT.

A considerable advantage considering peaks ex-
tracted from the spectrogram is that we filter out noise
and background sounds.

• Peaks Vertical Alignment. Given the matrix of
peaks, we get the mean µV and standard deviation
σV from the distribution of frequency gaps among
peaks in the same time bin.

µV =
1

Nv
∑
t∈T

|I|−1

∑
j=1

(I j+1− I j), (14)

where I = {i ∈ F |pit 6= 0 and ∑i pit > 1} ∀t,
and Nv = ∑t∈T [(∑ f∈F p f t)−1].

σV =

√√√√ 1
Nv

∑
t∈T

|I|−1

∑
j=1

[(I j+1− I j)−µV ]2. (15)

Being a percussive sound, a crash will show peaks
stacked on the same time bin along all the fre-
quency range as shown in Figure 3(a). Thus, we
expect low average and standard deviation values.

• Peaks Horizontal Alignment. Given the matrix
of peaks, we get the mean µH and standard de-
viation σH from the distribution of time delays
among peaks at the same frequency.

µH =
1

Nh
∑
f∈F

|J|−1

∑
i=1

(Ji+1− Ji), (16)

where J = { j ∈ T |p f j 6= 0 and ∑ j p f j >
1} ∀ f , and Nh = ∑ f∈F [(∑t∈T p f t)−1].

σH =

√√√√ 1
Nh

∑
f∈F

|J|−1

∑
i=1

[(Ji+1− Ji)−µH ]2. (17)

Sounds such as car horn, tire skidding, and harsh
acceleration are sustained sounds and thus they
will present horizontal stripes of peaks on the
spectrogram as shown in Figures 3(c) and 3(e).

• Peak Entropy. Entropy of the peak constellation
is computed similarly to the entropy in the time
and the frequency domain. We split the spectro-
gram in k time bins and for the ith bin, we compute
the ratio between peaks included in that bin and all
the peaks in the constellation: ep =

∑ peaksi
∑ peaks .

PE =−
k

∑
i=1

ep log2(ep). (18)

5 DATASET

In Spring 2016, AXA Winterthur has set the annual
crash test campaign in Switzerland. During this oc-
casion, the AXA Data Innovation Lab collected about
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(a) Crash

(b) Car alarm (c) Tire skidding (d) Engine starting

(e) Car horn (f) Radio Music (g) Harsh acceleration
Figure 3: Example of spectrograms with constellation of peaks.

6.2 GB of data, including audio files recording cras-
hes from inside the car cabins. This original dataset
is composed by 46 signals of crash and, to the best of
our knowledge, it is the only dataset collecting crash
sounds from inside the car cabin1. Moreover, each
test was controlled in impact speed and angle, thus
such dataset has been essential to study crash dyna-
mics.

Therefore, to extend the set of controlled positive
samples, we extracted sounds recorded by dash ca-
meras published on the “Car Crash Time” Youtube
channel which provides several hours of crash recor-
dings (Car Crash Time, 2017). With respect to the
controlled dataset, such sounds are very realistic and
genuine, including background noises like rain, hail
or screams before the impacts. Overall, we collected
410 crash sounds recorded inside the cabin of cars in-
volved in the shock. Most of them (87%) come from
“Car Crash Time” and the rest from the AXA Wintert-
hur crash test campaign. We kept 100 samples aside
as test set.

As negative samples, we choose to include in
the dataset any sound which might be generated or
listened to inside a car cabin like radio music, pe-
ople talking, engine starting, car door opening or clo-
sing. We also included sounds that are often lin-
ked to car shocks like car horn, harsh decelerations,
and tire skidding to control the false positive rate.
Such sounds have been mostly imported from Free-
Sound (FreeSound, 2017) and Urban Sound Data-
set (Urban Sound Dataset, 2017). Although gathering

1There exist a dataset of sounds provided by the MI-
VIA Computer Science department of Università di Salerno
(Italy) for research purposes which includes crash sounds
recorded only from outside the car cabin (Foggia et al.,
2016b). Thus, such sounds were not eligible to include in
our dataset. Nevertheless it also contains tire skidding and
scream sounds.

Table 1: Dataset distribution in classes and sub-classes.

Class Sound type %

Crash AXA Winterthur crash campaign 13
Car Crash Time 87

Other

Harsh acceleration or deceleration 10
Car horn 10
Car door opening and closing 8
Radio music 11
People talking 14
Tire skidding 10
Car alarm 5
Rain, hail, strong wind 10
Engine during driving 22

Figure 4: PDF for samples duration in the dataset.

negative sounds is a simpler task compared to the po-
sitive samples, we collected an equal number of sam-
ples in order to have a balanced dataset. Table 1 sum-
marize the dataset distribution into categories “Crash”
and “Other” and sub-categories.

All audio clips are sampled at 16 KHz, quantized
at 16 bits and all amplitudes are normalized. They
represent a mix of collision types: vehicle to barrier,
vehicle to vehicle, frontal impact, side impact, and at
different speeds.

A crash can occur between two or more cars, thus
it can last more or less time. Figure 4 shows the dis-
tribution of sample durations. The vast majority of
crashes involve only two cars and last five seconds,
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while the longest crash can last also the double. We
selected negative samples in order to follow the same
distribution as crash sounds.

6 EVALUATION

Both time-frequency domain and spectrogram image
classifiers are random forest classifiers trained with
cross validation using the Python scikit-learn library.
Number of trees are 200 and 100 respectively while
all the other parameters are left unchanged.

Figures 5 shows ROC and precision-recall cur-
ves for classification done by the two models in-
dependently and by combining their result proba-
bilities together. The time and frequency based
classifier (Model 1) performs in line with other
models presented in the literature on sound de-
tection like gun shots or human screams for surveil-
lance purposes (Crocco et al., 2016). Its accuracy
( ∑(True Positive)+∑(True Negative)

∑Samples ) is equal to 0.875.
Nevertheless, it is wrong for some specific sub-types
of sounds with abrupt changes and high energy like
car horn or tire skidding.

As the spectrogram based classifier (Model 2) is
specifically designed to discern between sustained
and percussive sounds, it is able to help the first mo-
dels in such ambiguous situations. Although in ab-
solute terms Model 2 performs worse than Model 1,
the combination of the two (Model 3) in according to
Equation 1 brings the overall accuracy to 0.9. Models
weights in Equation 1 are set to w1 = 0.6 and w2 = 0.4
respectively. They come from an exhaustive research
to obtain the best results.

Most of the final misclassifications correspond to
slammed door sounds.

7 DISCUSSION

Creating the constellation of peaks is highly depen-
dent from the spectrogram image in background.
Spectrogram is created spitting the time series of
PCM in small windows having a certain overlap and
computing the Fourier transform in each window.
Being samples also quantized at 16 bits, the constel-
lation of peaks will be depended by the number of
samples per window (NFFT) and by the overlap be-
tween consecutive windows. A short window will
tend to produce many peaks at the same frequency
since the same sound amplitude will be replicated for
many windows. Having a large overlap will have the
same impact. On the other hand, a large window will

(a) ROC curve.

(b) Precision-recall curve.
Figure 5: Comparison of accuracy, precision and recall
among singular models (Model 1 and 2) and the combina-
tion of such models in according to Equation 1 (Model 3).

Figure 6: Effects on classification tuning the number of data
points used in each block for the Fast Fourier Transform
(NFFT) to create the spectrogram and the number of over-
lapped points.

increment horizontal peak gaps, but will tend to re-
duce vertical frequency gaps among peaks. Figure 6
shows how the accuracy on the testing dataset chan-
ges, varying both NFFT and the overlap, where the
overlap is at most equal to NFFT. The impact of such
parameters is quite important since the accuracy scale
is in the range [0.65-0.82]. Intermediate values for
NFFT, 256 or 512, introduce the least offset and they
are more independent to the overlap, thus we choose
NFFT = 512 and overlap = 354. Once the NFFT
and overlap set, the accuracy varies a little changing
the threshold and the distance to find the local peaks.
We have set a threshold Ath = 50 dB and a minimum
distance D = 3.
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8 CONCLUSION AND
PERSPECTIVES

This manuscript introduces Crashzam, an innovative
way to detect car accidents with sound recorded by
smartphones or any other microphone-equipped smart
device installed in cars. The goal is to enhance dri-
vers’ safety with a low cost solution, capable to pro-
pose domain specific services like medical assistance
calling, first notification of loss (FNOL) or advice and
coordination during a minor event.

Sounds are analyzed by two models and the fi-
nal detection result reflects a combination of both of
them. The first model analyses the signal in time
and frequency, computing well-known features in the
sound recognition literature. The second one is based
on the analysis of spectrogram images and the disco-
very of patterns among a constellation of amplitude
peaks.

As no dataset of crash sounds recorded inside the
car cabin existed, we built one. Crash samples come
from both controlled experiments and real, genuine
conditions.

Detection results show a pretty accurate classifi-
cation between crash sounds and other sounds likely
to be reproduced in car. Also, combining models ana-
lyzing specific aspects of sound signals (time series,
frequency, spectrogram) helps the system to be more
accurate and reliable when the environment is noisy.

A wide range of perspectives are possible. We
proposed Crashzam in the context of driving safety
and connected car, but the same concept could be app-
lied to other domains such as the connected home and
the connected health. For instance, Minut, a Scan-
dinavian startup, is specialized on sound-based home
surveillance (Minut, 2017). Their devices are able to
detect alarm or glass breaking. Remaining in a the te-
lematics context, the detection of repetitive car horn
sounds gives an insight on the drivers’ driving style.

As regards the system design, the tendency is to
embed models into devices. For instance, one of
the most advertised novelty in the 2017 Google I/O
was the possibility to embed TensorFlow models in-
side smartphones (Android and iOS) (Google I/O ’17,
2017). In the safe driving context, having an auto-
nomous system that gets rid of server calling would
mean a full time detection availability.

Deep learning has gained more and more estima-
tion on image and audio classification tasks. Spectro-
gram image processing may be tested with Convolu-
tional Neural Networks to discover patterns. Nevert-
heless, in some working domains like insurance, it is
essential to know how to explain the results.
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