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Abstract: Gaussian Fisher Vector (GFV) encoding is an extension of the conventional Fisher Vector (FV) that effectively
discards the noisy background information by localizing the pedestrian position in the image. Nevertheless,
GFV can only provide a shallow description of the pedestrian features. In order to capture more complex
structural information, we propose in this paper a layered extension of GFV that we called LGFV. The rep-
resentation is based on two nested layers that hierarchically refine the FV encoding from one layer to the
next by integrating more spatial neighborhood information. Besides, we present in this paper a new rich
multi-level semantic pedestrian representation built simultaneously upon complementary deep hand-crafted
and deep Convolutional Neural Network (CNN) features. The deep hand-crafted feature is depicted by the
combination of GFV mid-level features and high-level LGFV ones while a deep CNN feature is obtained by
learning in a classification mode an effective embedding of the raw pedestrian pixels. The proposed deep
hand-crafted features produce competitive accuracy with respect to the deep CNN ones without needing nei-
ther pre-training nor data augmentation, and the proposed multi-level representation further boosts the re-ID
performance.

1 INTRODUCTION

Person re-identification (re-ID) (Guo et al., 2006;
Zheng et al., 2016) is a challenging task in the cam-
era surveillance field (Wali et al., 2010), since it ad-
dresses the problem of matching people across poten-
tially multiple non-overlapping cameras. Many re-ID
works (Mahmoud Mejdoub and Koubaa, 2017; Ksibi
et al., 2016b; Ksibi et al., 2016a; Ksibi et al., 2016c)
used either shallow or deep representations coupled
with supervised metric learning. Shallow methods
are built upon the low-level and the mid-level appear-
ance features. We can cite as the most successful
low-level appearance features the Local Maximal Oc-
currence (LOMO) (Liao et al., 2015), the Symmetry-
Driven Accumulation of Local Features (SDALF) and
the eSDC (Zhao et al., 2013). Concerning the mid-
level features (Mejdoub et al., 2009; Mejdoub et al.,
2009; Ben Aoun et al., 2014; Mejdoub et al., 2008)
that demonstrated their robustness in the image clas-
sification field (M. El Arbi et al., 2011; Mejdoub
et al., 2015b; Mejdoub et al., 2008), the Bag of visual
Words (BOW) model (Ksibi et al., 2012; Zheng et al.,
2015) that quantifies the low-level features into a dic-
tionary of visual words, has been presented for the
person re-ID task in (Zheng et al., 2015). Locality-

constrained linear coding (LLC) was proposed in (Li
et al., 2015) by using a soft quantization. It considers
the locality information in the feature encoding pro-
cess by taking into account only the k-nearest basis
vectors from each local feature. Fisher Vector (FV)
(Ma et al., 2012; Messelodi and Modena, 2015; Liu
et al., 2015; Wu et al., 2017; Sekma et al., 2015a;
Sekma et al., 2015b; Mejdoub and Ben Amar, 2013)
is another encoding method that learns a Gaussian
Mixture model (GMM) on the local descriptors, in
order to compute the visual words. B. Ma et al. (Ma
et al., 2012) were the first to introduce the FV encod-
ing scheme in person re-ID task. They employed a
spatial representation that divides the pedestrian im-
age into 4 × 3 fixed regions and used a simple 7-d lo-
cal descriptor. These local descriptors are turned into
FVs and these are employed to measure the similarity
between two persons using the Euclidean distance be-
tween their representations. In (Messelodi and Mod-
ena, 2015), the authors introduced a boosting method
that learns a scoring function taking into account the
likelihood between the local FVs of the same iden-
tity. Regarding the deep representations, most of the
current state-of-the-art methods used a Convolutional
Neural Network (CNN) (M. El Arbi et al., 2006;
Bouchrika et al., 2014) verification model. This infers
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positive image pairs and negative ones as input to the
CNN, owing to the lack of training data (Boughrara
et al., 2017; Othmani et al., 2010) per pedestrian
identity. However, the recognition accuracy is gen-
erally badly influenced by the absence of the intra-
class similarity and inter-class dissimilarity informa-
tion. To tackle this problem, the ID-discriminative
Embedding (IDE) deep CNN feature was presented
in (Zhong et al., 2017; Zheng et al., 2016) to learn an
embedded feature space in a classification mode. It
was stated in (Wu et al., 2016a) that IDE performs
better than the previously used verification model.
Pedestrian matching is then operated in the learned
feature space. Wu et al. presented another classifi-
cation CNN model (Wu et al., 2017). They built a
hybrid network by moving the input FVs on the fully
connected layers and enforcing the linear discrimina-
tive analysis (LDA) as an objective function to pro-
duce embeddings that have low intra-class variance
and high inter-class variance. In (Wu et al., 2016b;
Xiong et al., 2014) low-level hand-crafted features are
combined with high-level CNN features. Afterwards,
metric learning is applied to the obtained combina-
tion. The good re-ID results obtained by the concate-
nation between low-level hand-crafted features and
CNN ones provide support on their complementary
nature. To enhance the discriminative ability of the
appearance features, supervised metric learning, such
as the Keep It Simple and Straightforward MEtric
learning (KISSME) (Köstinger et al., 2012), the lo-
cally adaptive decision functions (LADF) (Li et al.,
2013), the Null Space (NS) metric learning (Zhang
et al., 2016), and the Cross-view Quadratic Discrim-
inant Analysis (XQDA) (Liao et al., 2015) are often
applied upon the generated features in order to learn
an optimal distance allowing to increase the intra-
similarity and decrease the inter-similarity. Among
them, XQDA achieves good re-ID results (Zheng
et al., 2016). This is mainly due to the fact that XQDA
has the ability to simultaneously learn a discrimina-
tive subspace as well as a distance in the low dimen-
sional subspace. Indeed, in this paper, we propose
to encode the appearance features throughout a rich
histogram representation well adapted to the person
re-ID field. In this sense, an extension of the tra-
ditional FV encoding method is introduced, namely
the Gaussian weighted FV (GFV). This consists in
weighting the histogram encoding process (Dammak
et al., 2014b; Mejdoub et al., 2015a; Dammak et al.,
2014c; Mejdoub et al., 2015b; Dammak et al., 2015;
Dammak et al., 2014a) via the pedestrian Gaussian
template. This latter fosters the locations that lie
nearby the pedestrian in the image. GFV provides
a shallow representation of the pedestrian. To fur-

ther describe the complex spatial structural informa-
tion that can be present in a pedestrian image, we pro-
pose in this paper a layered version of GFV called
layered GFV (LGFV). This latter is based on two
nested layers that hierarchically refine the FV encod-
ing from one layer to the next by integrating more
spatial neighborhood information. We separately ap-
ply LGFV on three low-level local appearance fea-
tures (Color Name (CN), Color Histogram (CHS) and
15-d descriptors). In the first layer, we densely sample
a set of spatial sub-windows on the pedestrian image.
We then perform a local FV encoding within every
sub-window on the low-level features describing the
sub-window patches. Thus we obtain for each sub-
window a local FV that depicts the rich spatial struc-
tural information. The second layer applies GFV on
the set of the local FVs, within the whole image. After
that, by combining the GFV and the LGFV global im-
age signatures, we obtain a deep hand-crafted feature
per pedestrian image. The latter is further combined
with the deep CNN feature (IDE) to provide a rich
multi-level representation. Consequently, we obtain
seven pedestrian global histograms (see Figure 1). Fi-
nally, the pedestrian are matched by combining the
XQDA distance learned upon these seven histograms.
It is worth mentioning that all images are pre-treated
with Retinex transform (Liao et al., 2015), to reduce
the illumination variation before the application of the
encoding methods. Besides, both GFV and LGFV are
applied upon a stripe representational scheme in order
to consider the spatial alignment information between
pedestrian parts. Our main contributions in this work
are:

• We propose a new deep hand-crafted feature
based on the combination of the GFV and LGVF
representations. LGFV explores how the perfor-
mance of the shallow hand-crafted features can
be improved with increased structural spatial in-
formation depth. The experimental results have
shown that the proposed deep hand-crafted fea-
ture can produce competitive results with the deep
CNN feature: IDE (Zhong et al., 2017; Zheng
et al., 2016), without needing neither pre-training
nor data augmentation.

• We propose to combine the deep hand-crafted fea-
tures with the well performing IDE deep CNN
features. The resulting multi-level representation
is semantically rich since it exploits the comple-
mentary power between the spatial structural in-
formation generated by the two deep representa-
tions.
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Figure 1: Overview of the proposed method pipeline. (a) Image pre-processing by Retinex Transform to deal with illumination
variation. (b) Low-level feature extraction: CN, CHS and 15-d descriptors. (c) Extraction of the Gaussian template weights.
(d) Gaussian weighted FV (GFV) Encoding. (e) Layered Gaussian weighted FV (LGFV) Encoding. (f) GFV and LGFV are
calculated separately on each given low-level color feature (CN, CHS and 15-d), at each stripe. (g) The generated histograms
are concatenated over the stripes producing the final GFV and LGFV representations (one histogram per low-level feature).
(h) Extraction of the deep CNN feature: IDE. (i) Computation of the XQDA distance learned separately on the IDE features
and each kind of the previously generated histograms. (j) Dissimilarity computation: combination of the XQDA distances
learned from the seven histograms.

2 THE PROPOSED METHOD

2.1 Dealing with Illumination
Variations

We apply in this paper the Multi-scale Retinex trans-
form with Color Restoration (MSRCR) (Jobson et al.,
1997) to handle illumination variations. Single Scale
Retinex algorithm (SSR) is the basic Retinex algo-
rithm which uses a single scale. The original image
is processed in the logarithmic space in order to high-
light the relative details. Besides, a 2D convolution
operation with Gaussian surround function is applied
to smooth the image. Afterwards, the smooth part
is subtracted from the image to obtain the final en-
hanced image. SSR can either provide dynamic range
compression (small scale), or tonal rendition (large
scale), but not both simultaneously. The MSRCR al-
gorithm bridges the gap between color images and the

human observation by combining effectively the dy-
namic range compression of the small-scale Retinex
and the tonal rendition of the large scale with a color
restoration function. In the experiments, we used two
scales of the Gaussian surround function ( σ = 5 and
σ = 20).

2.2 Low-level Feature Extraction

In this work, the pedestrian image is sampled with
dense patches, using a size of 4 × 4, and a stride of
4 pixels, respectively. For each patch three kinds of
color low-level descriptors are extracted (CN, CHS
and 15-d). The latter are chosen underlying their good
compromise between efficiency and re-ID accuracy
(Zheng et al., 2015; Ma et al., 2012). Indeed, their
small dimensionality as compared to other state of the
art descriptors such as the global LOMO descriptor
(Liao et al., 2015) and the local dColorSift one (Zhao
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et al., 2013) makes them well adapted to the efficiency
factor required by the person re-ID task.

2.2.1 Color Names (CN)

Authors in (Kuo et al., 2013) have demonstrates that
the color description based on color names ensures a
good robustness against the photometric variance. In
this paper, as was done in (Kuo et al., 2013), we use
the 11 basic color terms of the English language, i.e.
black, blue, brown, gray, green, orange, pink, purple,
red, white, and yellow. First, the CN feature vector
of each pixel is calculated by making a mapping from
HSV pixel values to an 11 dimensional CN vector.
Afterwards, we apply a sum pooling on the CN pixel
features related to each patch. Finally, the resulting
histogram undergoes a square rooting operation fol-
lowed by l1 normalization. The size of the generated
CN descriptor is then equal to 11.

2.2.2 Color Histogram (CHS)

For each patch, a 16-bin color histogram is computed
in each HSV color space channel. For each color
channel, the patch color histogram is square-rooted
and subsequently l1 normalized. The three obtained
histograms are then concatenated, generating a color
descriptor of size 16 × 3.

2.2.3 15-d Descriptor

Inspired by (Ma et al., 2012), we design a simple 15-
d descriptor. First the pedestrian image is split into 3
color channels (HSV). For each channel C, each pixel
is converted into a 5-d local feature, which contains
the pixel intensity, the first-order and second-order
derivative of this pixel. The description is on the fol-
lowing equation:

f (x,y,C) = (C(x,y),Cx(x,y),Cy(x,y),Cxx(x,y),Cyy(x,y))
(1)

where C(x,y) is the raw pixel intensity at position
(x,y), Cx and Cy are the first-order derivatives with re-
spect to pixel coordinates x and y, and Cxx, Cyy are the
second-order derivatives. Then, we apply, for each
color channel, a sum-pooling operation over the 15-
d descriptors of the pixels located within each patch.
Each of the three obtained patch descriptors under-
goes a square root operation followed by l1 normal-
ization. Afterwards, we horizontally concatenate the
three normalized descriptors into one single signature.

2.3 Extraction of the Gaussian
Template Weights

In (Farenzena et al., 2010), the authors proposed to
separate the foreground from the background of the
pedestrian image, and that by using segmentation.
However, it was difficult to obtain an aligned bound-
ing box, and an accurate segmentation, especially in
the presence of cluttered backgrounds. This makes
the extraction of reliable features describing the per-
son of interest hard. We propose in this paper a sim-
ple solution by employing a 2-D Gaussian template
on the pedestrian image, in order to remove the noisy
background. Consider pw,h the patch whose spatial
center is located at the w-th row and h-th column
in the image, I =

{
ph,w,h = 1 . . .H,w = 1 . . .W

}
of

width W and height H. Inspired by (Farenzena et al.,
2010; Zheng et al., 2015), the Gaussian function is
defined by N(µxσ), where µx is the mean value of the
horizontal coordinates, and σ is the standard devia-
tion. We set µx to the image center (µx = W/2), and
σ = W/4. This method uses a prior knowledge on
the person position, which assumes that the pedestrian
lies in the image center. Therefore, the Gaussian tem-
plate works by weighting the locations near the verti-
cal image center with higher probabilities. This per-
mits to discard the noise surrounding the person’s sil-
houette, and thus to keep meaningful parts of the im-
ages and eliminate needless ones. Explicitly, we en-
dow each patch ph,w with a Gaussian weight G(ph,w),
given by:

G(ph,w) = exp(−(w−µx)
2/2σ2) (2)

2.4 Proposed Gaussian Weighted Fisher
Vector (GFV) Encoding Method

We propose in this paper a rich extension of the tra-
ditional FV encoding method. It consists in the in-
corporation of the Gaussian weight in the encoding
process of the latter. The proposed encoding opera-
tion is made within three steps. Indeed, as operated
in the traditional FV, the first step consists in learning
a Gaussian Mixture model (GMM) represented by K
components, on the local descriptors extracted from
all training pedestrian images. Then, the second step
implies the computation the mixture weights, means,
as well as the diagonal covariance of the GMM, which
are respectively denoted as πk,µk,σk. For concise
clarity, we omit hereinafter the patch index (h,w)
used in the previously notation (subsection 2.3), and
we replace it by i. Thus, the Gaussian weight of
the image patch pi is noted G(pi). Consider M lo-
cal descriptors di corresponding to the M patches pi
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of an image I. The proposed encoding incorporates
the Gaussian weight in the traditional FV encoding,
as given by the following Equation:

uk =
1

M
√

2πk

M

∑
i=1

G(pi)×αk(di)

(
di−µk

σk

)
(3)

vk =
1

M
√

2πk

M

∑
i=1

G(pi)×αk(di)

(
(di−µk)

2

σ2
k

−1
)

(4)
where, αk(di) is the soft assignment weight of the i-
th descriptor di to the k-th Gaussian G(pi) that rep-
resents the Gaussian weight. For each GMM com-
ponent, the sum-pooling operation aggregates the M
descriptors in the image, into a single encoded feature
vector, given by the concatenation of uk and vk for all
K components:

FV = [u1 . . .uK ,v1 . . .vK ] (5)

Finally, we apply power normalization to each FV
component before normalizing them jointly. Such
normalization demonstrates a good performance in
previous works (Sapienza et al., 2014). We note that
the proposed GFV encoding is applied separately to
the three proposed low-level descriptors: CN, CHS
and 15-d descriptor.

2.5 Proposed Deep Hand-crafted
Feature

The deep hand-crafted feature is obtained by combin-
ing the shallow GFV with its layered extension. The
process is described hereinafter:

2.5.1 Proposed Layered GFV (LGFV)
Representation

The proposed shallow GFV robustly encodes the lo-
cal features of a pedestrian, aggregating them by
performing a sum-pooling operation over the en-
tire pedestrian image. The obtained representation
achieves the encoding directly from the flat local fea-
ture space, without considering the complex spatial
structure that can be present in a pedestrian image. In
order to incorporate the spatial information in GFV
encoding, we propose to design a LGFV represen-
tation that describes the pedestrian with higher level
structures extracted from the spatial pedestrian neigh-
borhood. This idea is an adaptation of the layered FV
encoding presented in the context of image and action
recognition (Sekma et al., 2015a; Peng et al., 2014;
Simonyan et al., 2013) to the person re-ID case. The
layered encoding is performed over two layers (see
Figure 2 ).

First Layer: In the first layer, we perform local FV
encoding within each sub-window. Toward this end,
we first perform the FV encoding (M = 1 in Eqs.
3, 4 without accounting the weighting) on each im-
age local feature using the same GMM codebook pre-
learned in GFV. This produces for each local feature
a tiny high dimensional FV. After the generation of
these tiny FVs, we aggregate them by applying sum-
pooling within every sub-window. This is compara-
ble to the traditional FV. The difference is that the
encoding is achieved in the sub-window rather than
the whole image. The sub-windows are obtained by
scanning in a dense way the image using a stride of
4 pixels (the size of a patch). Each sub-window cor-
responds to the spatial neighborhood constituted by
3× 3 patches. The obtained local FVs related to the
sub-windows are subsequently power-l2 normalized.
As a result, instead of a unique FV, representing the
whole image, the latter is described by a set of dense
local FVs, each of which reflects the local spatial
information among spatially adjacent local features.
Therefore, the generated representation can reflect a
rich image structural information.

Second Layer: Since the local FVs are too high-
dimensional to be straightly used as the inputs of the
second encoding layer, we adopt XQDA to reduce
the local FVs in a discriminative supervised manner.
As the only provided annotation is the identity label,
we exploit this information by (1) averaging the lo-
cal FVs over the whole image, (2) applying XQDA
to the resulting intermediate vectors, and (3) project-
ing each local FV on the learned XQDA projection
matrix. This gives a good compromise between ac-
curacy and efficiency, and de-correlates the local FVs
in order to make them suitable to their further FV en-
coding (Sekma et al., 2015a). After learning a GMM
on the set of the reduced local FVs, we perform GFV
encoding upon them. The weight used in GFV for
each reduced local FV is given by the weight of its
corresponding sub-window. The latter is computed
by averaging the weights of each individual patch in
the sub-window. The output vector is subsequently
power-l2 normalized to form the final LGFV of the
image.

2.5.2 Final Deep Representation

The tiny FVs obtained in the first layer can be further
exploited to form a global pedestrian FV by perform-
ing a weighted sum-pooling over the entire pedestrian
image. This is then equivalent to the GFV represen-
tation. Therefore, both global GFV and LGFV his-
tograms are combined to constitute the outputs of the
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Figure 2: Comparison between the proposed LGFV and GFV methods. Top: The pipeline of the proposed LGFV with two
layers. Bottom: pipeline of GFV. The image representation in LGFV is constructed based on sub-windows of size of 3× 3
patches.

proposed hand-crafted deep representation.

2.6 Histogram Computation based on
Pedestrian Image Partition

In order to take benefit of the spatial alignment infor-
mation among the different body parts in the persons
images, appearance modeling typically exploits the
spatial pyramidal model (Zheng et al., 2015; Sekma
et al., 2014) to treat the appearance of different body
parts independently. Inspired by these works, we pro-
pose to sub-divide the pedestrian into a set of stripes.
Since, the spatial information of the horizontal y-axis
exhibits greater intra-class variance than the verti-
cal x-axis due to viewpoint and pose variations, we
choose to divide the silhouette according to the y-axis.
Indeed, the image is split into NS = 8 stripes as it has
shown a good compromise between accuracy and ef-
ficiency in (Zheng et al., 2015). The proposed GFV
method is applied separately in every single stripe
rather than the whole pedestrian image. Afterwards,
histograms corresponding to each stripe are l2 nor-
malized separately prior to stacking. Since we use,
in this paper, three low-level descriptors (CN, CHS
and 15-d) for GFV and LGFV, we obtain six global
histograms. Finally, every global histogram is further

l2 normalized to ensure the linear separability of the
data.

2.7 Deep CNN Feature: IDE

In this paper, the IDE feature introduced in (Zhong
et al., 2017) is employed since it has been shown to
outperform many other deep CNN models. Specif-
ically, we use CaffeNet (Krizhevsky et al., 2012) to
train the CNN in a classification mode. In the train-
ing phase, images are resized to 227×227 pixels, and
they are passed to the CNN model, along with their
respective identities. The CaffeNet network contains
five convolutional layers with the same original ar-
chitecture, and two globally connected layers each
with 1,024 neurons. The number of neurons in the
final fully connected layer is defined by the number
of training identities in each dataset. In the testing
phase, 1024 dimensional CNN features are extracted,
for each pedestrian image, throughout the 7-th layer
of CaffeNet. The CNN features are then subsequently
l2 normalized.

2.8 Dissimilarity Computation

After the generation of the six global histograms ba-
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ed on GFV and LGFV, as well as the IDE feature,
we separately learn on each of them an XQDA (Liao
et al., 2015) distance in a supervised way. XQDA
learns a reduced subspace from the original training
data, and at the same time learns a distance function in
the resulting subspace for the dissimilarity measure.
Once the distances are learned, they are summed-up
to derive the final dissimilarity function. Given a
probe, dissimilarity scores are assigned to all gallery
items. The gallery set is then ranked according to the
dissimilarity to the probe. It is worth mentioning that,
as performed in (Liao et al., 2015), we select as sub-
space components the eigenvectors corresponding to
the eigenvalues of S−1

w Sb that are larger than 1, where
Sw and Sb refer to the within and the between scatter
matrices, respectively.

2.9 Multiple Queries

When each identity has multiple queries (MultiQ) in
a single camera, we could merge them into a single
query to reformulate the MultiQ problem to one query
(OneQ) one. In this way, the intra-class variation is
taken into account, and the method will be more ro-
bust to the pedestrian variations over the gallery im-
ages. We apply an average pooling on the GFV and
LGFV related histograms over the multiple queries.
As for the IDE feature, we use max pooling since
the latter has shown better re-ID results than average
pooling in (Zheng et al., 2016). The resulting pooled
vectors are then used to perform the matching process
with the probe set.

3 EXPERIMENTS

3.1 Datasets

CUHK03 (Li et al., 2014). contains 13,164 De-
formable Part Model (DPM) (Arandjelovic and Zis-
serman, 2012) bounding boxes, of 1,467 different
identities of the training set. Each single identity
is observed through two different cameras and there
are on average 4.8 images, for each view and each
identity. We follow the experimentation protocol pro-
ceeded in (Zheng et al., 2015). Indeed, we select 100
persons randomly and for each person, all the DPM
bounding boxes are taken as queries in turns. Af-
ter that, a cross camera search is performed. This
test process is repeated 20 times and statistics are re-
ported next. Note that the dataset comes with manual
(Labelled) and algorithmically (Detected) pedestrian
bounding boxes.

Market-1501 (Zheng et al., 2015). contains
32,643 fully annotated boxes of 1501 pedestrians,
making it one of the largest person re-ID image
datasets. This dataset is captured with 6 different
cameras placed in front of a supermarket, and con-
tains 32,643 bounding boxes of 1501 different iden-
tities. Actually, each single identity is captured by at
most 6 cameras and at least 2. Each identity may have
multiple images under each camera, and even if im-
ages of same identity are captured by the same cam-
era, they are totally distinct and different. Market-
1501 is randomly divided into training and testing
sets, containing respectively 750 and 751 identities.
In the testing phase, for each single identity, there is
one query image selected in each camera. The search
is processed in a cross-camera mode, i.e. we dis-
card from the re-ID process images that belong to the
same camera as the query. Note that there are 3,368
queries in the gallery, 19,732 images used for testing
and 12,936 images for training. We use the provided
fixed training and test set, under both OneQ and Mul-
tiQ evaluation settings.

3.2 Experimental Settings

In this paper, we use a codebook of 256 GMM com-
ponents for GFV and LGFV since it yields a good
compromise between accuracy and efficiency. Unless
otherwise stated, all results generated by our proposed
method are given for the supervision case obtained by
XQDA and the one query setting. We also note that
the Cosine distance is used for the unsupervised case.

3.3 Evaluation Metrics

In this paper, we use the Cumulative Matching Char-
acteristics (CMC) curve in the but of evaluating per-
formances of the proposed methods and comparing
with the re-ID state-of-art ones, on all datasets. Ev-
ery probe image is matched with every gallery one,
and ranks of the correct matches are obtained. In-
deed, the rank-k recognition rate is the expectation of
a correct match at the rank-k, and the cumulative val-
ues of recognition rates at all ranks, are recorded as
one-trial CMC result. We also use the mean average
precision (mAP) to evaluate the performances of the
proposed methods. In fact, for each query, we calcu-
late the area under the Precision-Recall curve, called
average precision (AP). After that, the mean value of
the APs (mAP) of all queries is calculated by taking
into account both precision and recall, and thus pro-
vides a more comprehensive evaluation.
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Table 1: Impact of the GFV, LGFV and IDE combination. Results (rank-1 matching rate and on mAP) are reported on
CUHK03 and Market-1501 datasets for the different encoding methods.

Methods CUHK03 Market-1501
r=1 mAP r=1 mAP

FV 36.43 37.86 52.12 23.38
GFV 43.61 45.08 58.85 31.88

LGFV 51.15 55.71 65.46 40.16
GFV + LGFV 58.97 64.75 71.92 46.45

IDE(C) 58.91 64.92 57.72 35.95
GFV + LGFV + IDE(C) 63.60 69.51 75.18 53.88

Table 2: Comparison of the proposed unsupervised (GFV U+LGFV U) method with the state-of-the-art methods in the case
of unsupervised (first table part), and the proposed supervised GFV, (GFV+LGFV) and (GFV+LGFV+IDE(C)) methods with
the supervised methods (second table part), on the Market-1501 dataset. Note that (+MultiQ) and (+re) refer to the Multi
Query setting and the re-ranking method, respectively. ’-’ means that corresponding results are not available.

Methods OneQ MultiQ
r=1 mAP r=1 mAP

SDALF (Farenzena et al., 2010) 20.53 8.20 - -
eSDC (Zhao et al., 2013) 33.54 13.54 - -
BOW (Zheng et al., 2015) 34.40 14.10 42.14 19.20

Ours(GFV U+LGFV U+IDE(C) U) 65.11 40.08 71.86 46.19
LOMO (Liao et al., 2015) 26.07 7.75 - -

PersonNet (Wu et al., 2016a) 37.21 18.57 - -
KISSME(BOW) (Zheng et al., 2015) 44.42 20.76 - -
KISSME(LOMO) (Liao et al., 2015) 40.50 19.02 - -
XQDA(LOMO) (Liao et al., 2015) 43.79 22.22 54.13 28.41
kLDFA(LOMO) (Liao et al., 2015) 51.37 24.43 52.67 27.36

FVdeepLDA (Wu et al., 2017) 48.15 29.94 - -
SCSP (Chen et al., 2016) 51.90 26.35 - -

NS(LOMO) (Zhang et al., 2016) 55.43 29.87 67.96 41.89
NS(fusion) (Zhang et al., 2016) 61.02 35.68 71.56 46.03

NS-CNN (Li et al., 2016) 59.56 34.44 69.95 44.82
XQDA(IDE (C)) (Zhong et al., 2017) 57.72 35.95 - -

XQDA(IDE(C))+re (Zhong et al., 2017) 61.25 46.79 - -
SCNN (Varior et al., 2016) 65.88 39.55 76.04 48.45

Ours(GFV) 58.85 29.78 66.49 41.63
Ours(LGFV) 65.46 40.16 72.78 49.12

Ours(GFV+LGFV) 71.92 46.45 78.90 56.26
Ours(GFV+LGFV+IDE(C)) 75.18 53.88 82.72 60.46

Ours(GFV+LGFV+IDE(C)) + re 77.42 63.54 84.92 70.52

3.4 Empirical Analysis of the Proposed
Method

3.4.1 Impact of the Gaussian Weight

As can be shown by Table 1, weighting the tradi-
tional FV via the Gaussian weight (GFV) consider-
ably increase the matching rates in all datasets. In-
deed, when applying the Gaussian template, we elim-
inate the background noise located around the pedes-
trian and its harmful effects on the re-ID accuracy.

3.4.2 Impact of the GFV, LGFV and IDE
Combination

We propose in this paper a rich multi-level represen-
tation, issued of the combination of the deep hand-
crafted (GFV + LGFV) and the deep CNN (IDE) fea-
tures. We start by studying the impact of the GFV and
LGFV combination (GFV+LGFV). Results in Table 1
show good improvements in accuracy in both datasets
when combining the shallow GFV with the layered
LGFV. This achievement proves the complementary
of the shallow description (GFV), and the layered one
(LGFV) that integrates richer structural information.
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Table 3: Comparison of the proposed unsupervised methods (GFV U + LGFV U) with the state-of-the-art methods in the case
of unsupervised (first table part), and the proposed supervised methods GFV, (GFV + LGFV) and (GFV + LGFV + IDE(C))
with the supervised methods (second table part), on CUHK03 dataset, on the labelled and detected cases.

Methods CUHK03 (detected) CUHK03 (manual)
r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20

SDALF(Farenzena et al., 2010) 4.87 - - - 5.60 23.45 36.09 51.96
eSDC (Zhao et al., 2013) 7.68 - - - 8.76 24.07 38.28 53.44
BOW (Zheng et al., 2015) 22.95 - - - 24.33 58.42 71.28 84.91
Ours (GFV U+LGFV U) 48.58 79.51 88.92 94.73 54.43 84.65 93.76 96.82
ITML (Davis et al., 2007) 5.14 - - - 5.53 18.89 39.96 44.20

LMNN (Sun and Chen, 2011) - - - - 7.29 21.00 32.06 48.94
KISSME (Köstinger et al., 2012) 11.70 - - - 14.17 41.12 54.89 70.09

DeepReid (Li et al., 2014) 19.89 50.00 64.00 78.50 20.65 51.50 66.50 80.00
Improved Deep (Ahmed et al., 2015) 44.96 76.01 83.47 93.15 54.74 86.50 93.88 98.10
XQDA(LOMO) (Liao et al., 2015) 46.25 78.90 88.55 94.25 52.20 82.23 92.14 96.25
NS(LOMO) (Zhang et al., 2016) 53.70 83.05 93.00 94.80 58.90 85.60 92.45 96.30
NS(fusion) (Zhang et al., 2016) 54.70 84.75 94.80 95.20 62.55 90.05 94.80 98.10

Metric Ens.(Paisitkriangkrai et al., 2015) - - - - 62.10 87.81 92.30 97.20
FVdeepLDA (Wu et al., 2017) - - - - 62.23 89.95 92.73 97.55
PersonNet (Wu et al., 2016a) - - - - 64.80 89.40 94.92 98.20

IDE(C)+XQDA (Zhong et al., 2017) 58.90 - - - 61.70 - - -
IDE(C)+XQDA+re (Zhong et al., 2017) 58.50 - - - 61.60 - - -

Ours (GFV+LGFV) 58.97 88.08 94.26 98.84 62.38 91.82 96.95 99.88
Ours (GFV+LGFV+IDE(C)) 63.60 91.59 96.71 99.73 67.77 95.05 99.78 100

Ours (GFV+LGFV+IDE(C))+re 65.88 94.78 99.61 100 69.97 98.05 100 100

Besides, while comparing the deep hand-crafted rep-
resentation (GFV + LGFV) with the high-level deep
CNN descriptors IDE(C) we notably notice that the
propsed deep hand-crafted features achieve better re-
sults than the deep CNN ones. Finally, when combin-
ing the deep hand-crafted and the CNN features, the
accuracy increasingly rises proving thus the comple-
mentarity of these latter features. Indeed, the combi-
nation provide two different views of the re-ID pro-
cess since they exploit the structural arrangements
among the hand-crafted features and the raw pixels,
respectively.

3.4.3 Comparison with the State-of-the-art
Methods on Market-1501 Dataset

First, we find out in Table 2 that the proposed unsuper-
vised GFV U+ LGFV U method outperforms all the
recent state-of-the-art unsupervised methods (Faren-
zena et al., 2010; Zheng et al., 2015; Zhao et al., 2013)
in the literature, thus proving thus the forcefulness of
the proposed multi-level representation. Moreover,
the proposed supervised GFV method gives a better
result than (Wu et al., 2016a; Liao et al., 2015; Zheng
et al., 2015; Chen et al., 2016; Zhong et al., 2017;
Zhang et al., 2016) in the Market-1501 dataset. For
example, GFV obviously outperforms the deep Per-
sonNet method (Wu et al., 2016a) ( r1=58.85% and

mAP=9.78% versus r1=37.21% and mAP=18.57%
). This can be due to the verification model em-
ployed in (Wu et al., 2016a) that does not take into
consideration the similarity context i.e. ignores the
intra-similarity and inter-similarity among the differ-
ent identities. GFV also outperforms the FVdeepLDA
(Wu et al., 2017) which passes on the FVs as in-
puts to a deep LDA metric learning and SCSP (Chen
et al., 2016) which imposes spatial constraints on the
pedestrian image. This proves the importance of the
localization of the pedestrian position in the image.
Otherwise, the proposed deep hand-crafted represen-
tation (GFV+LGFV) achieves a rank-1= 71.92% and
mAP=46.45%. It considerably surpass the shallow
representation methods NS(LOMO) and NS(fusion)
(Zhang et al., 2016). Besides, (GFV+LGFV) gives
better rank-1 matching rates than the method pro-
posed in (Zhong et al., 2017) that uses the IDE deep
CNN feature, the XQDA and the re-ranking tech-
nique, but the latter slightly achieves a higher mAP
(46.79%). Indeed, the re-ranking scheme has also
brought a considerable improvement to the mAP ob-
tained by the proposed method. Moreover, (GFV +
LGFV) notably surpasses NS-CNN (Li et al., 2016)
which consists in the fusion of deep CNN features
and low-level features (LBP, HOG, CN and LOMO)
and achieves comparable results with the SCNN (Var-
ior et al., 2016) which uses deep CNN features.
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This proves that deep hand-crafted features can be a
good alternative to the deep learning without need-
ing neither pre-training neither data augmentation, at
a lower training computational cost. When combin-
ing to the hand-crafted (GFV+ LGFV) with the deep
CNN features (IDE(C)), we considerably outperform
all state-of-the-art methods on Market-1501 dataset
(rank-1=75.18% and mAP= 53.88%). This proves the
complementarity of these two representations.

3.4.4 Comparison with the State-of-the-art
Methods on CUHK03 Dataset

As shown in Table 3, the proposed unsupervised
GFV U + LGFV U is compared with the unsu-
pervised state-of-the-art methods (Farenzena et al.,
2010; Zhao et al., 2013; Zheng et al., 2015) on
CUHK03. Also, the proposed supervised (GFV +
LGFV) method achieves better results than the super-
vised state-of-the-art methods (Sun and Chen, 2011;
Davis et al., 2007; Köstinger et al., 2012; Li et al.,
2014; Ahmed et al., 2015; Liao et al., 2015; Zhang
et al., 2016). This good performance is due to
the effectiveness of the proposed deep hand-crafted
features. We remark that the proposed (GFV +
LGFV) achieves competitive results with NS(fusion)
(Zhang et al., 2016), Metric Ensembles (Paisitkri-
angkrai et al., 2015), FVdeepLDA (Wu et al., 2017)
and PersonNet (Wu et al., 2016a). This can be ex-
plained by the small number of training data provided
in this dataset, which can have a bad effect on the
GMM learning process. In revenge, the proposed
multi-level representation (GFV + LGFV + IDE(C))
achieves higher re-ID accuracy (in all ranks for the
Labelled and Detected dataset, respectively) with re-
spect to all the state-of-art methods, and specifically
outperforms the re-ranking (IDE(C) + XQDA + re)
method (Zhong et al., 2017). This proves the com-
plementarity power of both the deep hand-crafted and
deep CNN features.

4 CONCLUSION

In this paper, we proposed a new deep hand-crafted
feature that exploit the richness of the spatial struc-
tural information The proposed deep hand-crafted
feature is competitive with the deep CNN features
without needing neither pre-training nor data aug-
mentation. Moreover, we designed a multi-level
feature representation built upon the complementary
deep hand-crafted and deep CNN features. The ex-
perimental results in the two benchmarking image
datasets (Market-1501 and CUHK03), have shown

the good performances of the proposed methods. In
feature research, we will investigate more sophisti-
cated deep CNN architectures.
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