
Definition of Gesture Interactions based on Temporal Relations

Dominik Rupprecht, Daniel Künkel, Rainer Blum and Birgit Bomsdorf
Department of Applied Computer Sciences, Fulda University of Applied Sciences, Leipzigerstraße 123, Fulda, Germany

Keywords: 3D-Gesture Interaction, Touchless Interaction, Gesture Development, Gesture Notation, UI Feedback.

Abstract: Taxonomies reported in the literature and in technical instructions define terms of gestures and gesture

interactions similarly, but hold differences in semantics that may lead to misunderstandings. However, in a

heterogeneous development team a common understanding of concepts and notions is of utmost importance.

In this paper, we present an approach to a more universal definition of gesture interactions and gesture

types, respectively. We define a notation of gesture interactions using a specific combination of the

temporal intervals of gesture execution, the user interface feedback and the system functionality to

effectively consider all three perspectives. We do not introduce a completely different approach, but extend

and combine existing work.

1 INTRODUCTION

In applications in which interactions are based on

touchless gestures, movements of the human body

are direct input to the system. A movement may be a

hand or arm gesture, a head gesture or an upper body

gesture, depending on which parts of the body

should be involved in interactions. The intended

gestures are communicated in different forms

throughout the development process. Illustrations

and demonstrations are useful in the communication

with users, e.g. in the phase of conceptual design.

Formal notations, e.g. XML-based languages, are

practical for the gesture specification aiming at their

implementation. The more different forms of

describing gesture interactions are in use, the more

important a common understanding of the term

gesture is. The study of taxonomies reported in

literature and technical instructions shows that such

a common understanding does not exist yet.

Although terms of gestures and gesture interactions

are defined similarly, there are differences in

semantics that may lead to misunderstandings during

the design process. We experienced this several

times in our own work on gesture-based

applications.

For example, in the context of Microsoft’s Visual

Gesture Builder (Microsoft, 2013) the difference

between discrete and continuous gestures is based on

the implementation of how a recognized gesture is

reported to the application program logic. If a yes-

no-indicator is used to inform the application about a

performed gesture, this gesture is named discrete

(because the indicator is discrete). A continuous

gesture is reported by an indicator whose value is

between 0 and 100, thus documenting the progress

of the gesture execution, e.g. 60% done with the

gesture. In contrary in literature, the difference

between discrete and continuous gesture is based on

system reaction (Wobbrock et al., 2009; Ruiz et al.,

2011). If it starts right after the gesture, it is called

discrete. In the case the feedback is performed

simultaneously with the gesture, it is called

continuous.

Particularly, different project participants like

user interface designers, target users and

programmers have different understandings of what

constitutes a gesture and how different types could

be classified. If they discuss gestures for a system to

be implemented they might use the same terms but

mean different types of gestures leading to

misunderstandings. Therefore, the approach to

gesture definition proposed in this paper is not only

based on existing taxonomies but also on the

different views taken by project members and aims

to support and simplify the communication between

these groups. The kernel of our concept are temporal

intervals (inspired by Allen (1983)) of gestures and

system reactions, and relations between them. A

continuous gesture interaction, for example, is

defined by temporal intervals starting and ending at

the same time. This work does not introduce a

116
Rupprecht, D., Künkel, D., Blum, R. and Bomsdorf, B.
Definition of Gesture Interactions based on Temporal Relations.
DOI: 10.5220/0006625201160123
In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2018) - Volume 2: HUCAPP, pages
116-123
ISBN: 978-989-758-288-2
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

complete different approach but extends and

combines existing work resulting in more universal

terms of gestures and basic classification. While the

different roles involved in the development process

can keep their usual taxonomies, our common terms

should raise awareness of existing differences in

notions and concepts, and facilitate the

communication between the groups.

In the next section, existing gesture taxonomies

are presented. This is followed by an overview of

the different views taken by developers and target

users involved in the development process.

Afterwards our approach of a gesture terminology is

introduced. The paper ends with possible extensions

and future work.

2 EXISTING GESTURE

TAXONOMIES

Several different gesture taxonomies exist in the

literature, intended to classify gestures for different

types of user interfaces. Gestures are classified by

means of specific criteria (also called aspects by

Hummels and Stappers (1998); or dimensions by

Ruiz et al., (2011) and by Wobbrock et al., (2009)).

Such classification schemes are referred to in studies

to support the design of gesture interactions. As

taxonomies imply a general vocabulary, they

facilitate a common understanding for all persons

involved (for example, what a gesture is).

The differences between taxonomies are quite

significant, in parts. Hummels and Stappers (1998)

work in the context of product design of virtual 3D

objects and classify gestures concerning spatial

information (i.e., selecting one or several objects by

pointing, changing the form of a 3D object by

pushing or pulling, etc.). While this classification,

dealing with a concrete use case, goes quite into

detail, Karam and Schraefel (2005) report a more

generic approach. They focus on aspects like the

application domain (desktop, gaming, entertainment,

etc.), enabling technologies (perceptual, i.e., vision,

audio, remote sensing; non-perceptual, i.e., mouse,

keyboard, tangible devices, etc.) and the system

response (visual, audio, CPU commands, etc.). This

constitutes a technically-oriented scheme that does

not pay attention to the separate aspects of the actual

interaction and their interrelations.

In the aforementioned and in further taxonomies

(Obaid et al., 2014; Pavlovic et al., 1997; Ruiz et al.,

2011; Wobbrock et al., 2009) additional central

characteristics like the manner of execution of

gestures and the feedback are included. Though the

feedback of the user interface that is tied to a gesture

is an important aspect in gesture interaction, the

system-centric view should not be disregarded.

However, the existing literature neglects the domain

of system functionalities that are not directly visible

to the user (though, of course, results become visible

via the UI). An example of such a system

functionality would be a database query or playing

an audio CD. These taxonomies are therefore

incomplete from the perspective of designers and

programmers, that have to consider these system

functionalities in combination with gestures.

Furthermore, the classification characteristics

often rely on various pre-conditions. For example, if

a user interface is not tangible, some of the

published classification aspects from Wobbrock et

al., (2009) cannot be used, e.g., the binding

dimension that describes the relationship between

touch gestures, the UI objects and the touchscreen.

Alternatively, these classification aspects would

need to be adapted to gesture studies that do not

meet the respective pre-conditions.

In summary, a lack of generalizability or

comparability, but a somewhat confusing

proliferation can be identified in the published work.

By contrast, our approach avoids these issues, as it is

designed to be more universal and less technically-

focused and avoids pre-conditions. Instead, it

focuses on aspects like the temporal relations

between gestures and UI feedback and system

functionality.

3 USAGE AND SYSTEM VIEW

The development of interactive systems implies

different views, i.e., the perspective of using the

system and the perspective of implementing the

system (Hix and Hartson, 1993). The usage view is

typically taken by designers as well as by users (see

Figure 1).

Designers develop a conceptual model of the

intended gesture execution and the according UI

behavior. Users inevitably develop their personal

mental model of how to utilize the interactive

system und how to interact with it by means of

gestures. The conceptual and the mental models

must correspond as much as possible to avoid usage

problems. Thus, as shown in Figure 1, development

aims at a single usage view, which results from a

common understanding of the system behavior by

designers and users.

Definition of Gesture Interactions based on Temporal Relations

117

Figure 1: Different views and models.

Communication throughout the development

process and between the different team roles,

however, is based on different notations and on

inconsistent gesture terminology. Furthermore, in

user-centered design target users are participating

not only in the evaluation but typically already in the

earlier phase of ascertainment of gestures (Künkel et

al., 2015). For example, in the usage view, gestures

are referenced often via demonstration of the

movements (live or pre-recorded video) and pictorial

representations, such as shown in Figure 2.

However, a common standard for describing

gestures is not available.

Figure 2: Pictorial representation of a gesture movement.

An additional aspect is how the UI responds to a

gesture. Therefore, gestures should not be described

in isolation but need to be shown in the context of

UI behavior. In the case of the gesture depicted in

Figure 2, for example, a UI element may be

highlighted as soon as the movement starts, be

enlarged until the end, and then be de-highlighted

(implementing, e.g., a zoom function). The User

Action Notation (UAN) (Hartson et al., 1990) is

well-known for specifying the usage view. The

authors also argue the necessity not only of

specifying the input device interactions in detail, but

also the observable UI behavior, timing conditions

and invocation of system functionality. In the

literature (e.g. Loke et al., 2005) some gesture

specific notations are proposed that consider these

aspects.

While the usage view omits implementation,

these are subject of the system view. Programmers

care about sensors and recognition algorithms. For

example, using Microsoft’s Kinect technology

(https://developer.microsoft.com/en-us/windows/

kinect/hardware) to recognize the movement

depicted in Figure 2 the sensor captures all the

movements of a user, whether they are meaningful

or not for the interaction. A movement is captured

by the sensor as a continuous sequence of images

(frames). Every frame is analyzed by a gesture

detector. This detector checks continuously if a user

executes one of the gestures defined beforehand. It

then provides the result to the application logic by

indicators, whether a gesture is recognized or not.

Therefore, in the system view a gesture occurs as a

value that the gesture detector indicates. So, these

values and how to process them, is important when

working with gestures. The following pseudocode

shows how to technically bind a specific gesture to

the corresponding UI behavior and the system

functionality as part of the implementation model:

while(gestureFrames){

 //check indicator

 If zoomInGesture.isDetected(){

 //invoke system funtinality

 object.zoomIn();

 //invoke UI feedback

 UI.updateView();

 }

If further gestures …

}

It is a particular challenge for the developer to

integrate this technically-driven, today often still

very sensor-specific implementation with the

required implementation of the conceptual model of

the designer.

Members of a project team plus test users, as

shown above, take different views while developing

an interactive system. The dependencies and

correlations of the respective models and

perspectives emphasize the need of common gesture

terms to facilitate the communication throughout the

development process and between the different

roles. Such a gesture notation must consider all three

aspects: the movements and positions of the human

body, the UI behavior, and the system functionality.

HUCAPP 2018 - International Conference on Human Computer Interaction Theory and Applications

118

4 GESTURE INTERACTION

In this section we propose an approach for defining

gestures in the context of both, the UI and the

system behavior. The terms extend definitions from

the literature by referring to the execution time

intervals of user’s movement, UI feedback, and

system functionality.

4.1 Gesture, Static and Dynamic

In the field of HCI, a gesture is a coordinated

movement or position of a body or parts of a body

with the intent to interact with a system (Hummels

and Stappers, 1998; Saffer, 2008). For example, a

swipe of a hand to the side is a coordinated

movement, whereas holding a hand over a button

specifies a position. The distinction between

coordinated movement and position, i.e., the

dynamic of gesture execution (form in Wobbrock et

al., (2009)) is a frequently used classification

criteria.

A static gesture is a meaningful pose or posture,

e.g. a hand and finger position, without any

movements (Nielsen et al., 2004). Holding a hand

steady towards the system for a specified time (e.g.

two seconds) is an example for a static gesture (see

Figure 3 a).

Figure 3: Example for static and for dynamic gesture

execution.

A dynamic gesture is defined by its motion

sequence (Karam and Schraefel, 2005). It is a

movement like a specific trajectory of the hand

and/or a transition between two or more postures

(Nielsen et al., 2004). Figure 3 b) shows the wave of

a hand as an example for a dynamic gesture. In

contrast to static postures, dynamic gestures have

more variance in their execution (different speeds or

kinematic impulse c.f. Ruiz et al., (2011)).

Each gesture execution possesses a start, an end,

and a duration defining its time interval. Execution

of a swipe gesture may take a few milliseconds,

while execution of a holding gesture may require a

few seconds.

Throughout this paper, the start, end, and

duration of a time interval are referenced by means

of the dot notation. The 2-second-interval of a

holding gesture, for example, is noted by

holding_gesture.duration = 2 seconds. In the

figures, a time interval is represented by an arrow

symbol (note that the length of the arrow is not

intended to represent the actual duration). A gesture

symbol () is added to the arrow in case that the

time interval of a gesture execution is to be denoted

(see Figure 4).

Figure 4: Gesture notation to denote the time interval of a

gesture execution (the included dot notation is not part of

the actual representation but serves the purpose to

introduce the graphical elements).

4.2 Discrete and Continuous Gesture
Interaction

A gesture is often defined as a meaningful physical

movement of the body or parts of the body in

combination with the UI feedback (Mitra and

Acharya, 2007; Obaid et al., 2014; Pavlovic et al.

1997; Wobbrock et al., 2005). This definition takes

into account that interactions are not only composed

of a gesture execution but also include UI feedback

(called as flow by Wobbrock et al., (2009); or

temporal by Ruiz et al., (2011)). Using the term

gesture for both, a body movement and a body

movement in conjunction with the UI feedback,

mixes these two concepts. In our gesture projects,

the developers experienced that this leads to

confusion in communication. This holds true

particularly in discussions about so-called discrete

and continuous gestures (Ruiz et al., 2011).

Therefore, we suggest to differentiate between the

definition of a gesture (as defined in section 4.1) and

a gesture interaction.

A gesture interaction is a gesture in conjunction

with the respective UI behavior triggered by the

gesture. Analogous to a gesture, the execution of a

UI feedback has a duration (time interval). The

feedback may be for example a navigation to a web

page that takes place within a few milliseconds, or a

graphical animation taking several seconds. In the

following, again for simplicity, we neglect the exact

duration since the focus of our approach lies on the

temporal relationship between gestures and UI

feedback.

The dichotomous aspects discrete and continuous

Definition of Gesture Interactions based on Temporal Relations

119

refer to the relation between the execution of a

gesture and the feedback. Both characteristics can be

defined precisely based on the term gesture

interaction.

A discrete gesture interaction is a gesture

interaction in which the UI feedback is executed

right after the end of the gesture, i.e. gesture.end =

UI.start. Figure 5 depicts this temporal relation by

means of our suggested gesture notation. The arrow

for the UI interval (containing an illustrated user

silhouette with a small arrow pointing at it)

represents feedback in arbitrary form (visual,

auditory, haptic, etc., combinations).

Figure 5: Discrete gesture interaction: Push gesture to

select an already preselected UI element. Gesture notation

(top) and exemplary pictorial representation of gesture and

UI (bottom).

Additionally, the figure shows an example of a

discrete gesture interaction: a push gesture to select

a UI element. In the situation on the left hand, the

element is highlighted and the user moves the hand

towards it (like a push). While the gesture is

performed the state of the UI remains unchanged,

but immediately after the execution of the gesture is

complete the UI element is marked to be selected

(see follow-up situation shown on the right hand).

A continuous gesture interaction is a gesture

interaction where the UI feedback is performed

simultaneously with the gesture execution, i.e.

gesture.start = UI.start && gesture.end = UI.end

(see Figure 6). In this case, in contrast to a discrete

gesture interaction, the UI feedback is triggered once

the gesture execution starts and ends when the

gesture execution is finished.

The example in Figure 6 (zooming to scale a 3D

object) illustrates a continuous gesture interaction.

The UI feedback (cube zooming) occurs

continuously while the gesture is performed and is

finished upon the completion of the gesture. In this

example, not only the cube gets bigger, but also the

zoom widget on the left is updated to show the

current zoom level.

Figure 6: Continuous gesture interaction: Grab-move

gesture to decrease or increase the size of a cube.

Discrete and continuous gesture interaction does

not necessarily affect the internal status of the

system, i.e. execution of system functionality. This

is the case particularly in graphical user interfaces:

A mouse movement on a virtual desktop, for

example, results in UI behavior such as changing the

position of the mouse cursor and highlighting an

icon once the cursor enters its space. Similarly, in

Figure 5 the user may select an element to apply an

operation afterwards (e.g., a database update); in

Figure 6 the user may enlarge an object just to have

it displayed larger on the screen.

4.3 Gesture Interaction and System
Functionality

As part of our notation, the above two types, discrete

and continuous gesture interaction, are expanded by

the aspect system functionality, resulting in four

additional variants. A third arrow that contains an

icon symbolizing system functionality (illustrated as

a gearwheel) is used in the figures to represent the

according time interval.

Figure 7: Discrete gesture interaction with discrete system

reaction: Swipe gesture to change the input media.

HUCAPP 2018 - International Conference on Human Computer Interaction Theory and Applications

120

A discrete gesture interaction with discrete

system reaction is a gesture interaction in which

both, the UI feedback and the system functionality

are executed right after the gesture, i.e. gesture.end

= UI.start = system.start (see Figure 7).

In the example illustrated by Figure 7 the user

performs a lateral wiping movement (swipe gesture).

Once swipe_gesture.end is detected, on the one

hand, the CD element in the UI is highlighted

instead of the MP3 element. The system, on the

other hand, stops playing MP3s and starts to play the

inserted CD.

A discrete gesture interaction with continuous

system reaction is a gesture interaction in which the

UI feedback is executed right after the gesture

(gesture.end = UI.start), but the system functionality

is executed simultaneously with the gesture

(gesture.start = system.start && gesture.end =

system.end) (see Figure 8).

Figure 8: A discrete gesture interaction with continuous

system reaction.

From our point of view, this makes hardly sense

from a usability perspective (therefore, we do not

provide an example here): It would violate the

principle of permanent visibility of system status as

published by Nielsen (1995).

A continuous gesture interaction with discrete

system reaction is a gesture interaction with UI

feedback executed simultaneously (gesture.start =

UI.start && gesture.end = UI.end), and with system

functionality executed right after the gesture, i.e

gesture.end = system.start (see Figure 9).

Figure 9: Continuous gesture interaction with discrete

system reaction: Move-and-hold gesture to select a UI

element.

An example is a selection interaction that is

implemented as an overlay icon surrounded by a

circle that continuously fills up over a specific

period of time (see Figure 9). The user has to hold a

hand over a UI element until the circle is completely

filled. As soon as this is the case, the system

functionality is executed (e.g. starting a CD).

A continuous gesture interaction with continuous

system reaction is a gesture interaction in which the

gesture, the UI feedback and the system

functionality are executed simultaneously, i.e.

gesture.start = UI.start = system.start &&

gesture.end = UI.end = system.end (see Figure 10).

Figure 10: Continuous gesture interaction with continuous

system reaction: Grab-move gesture to change the volume

of a media player.

An example would be a slider that is mapped to

the volume of a music player. The user can

manipulate it by performing a grab gesture in

combination with a horizontal move gesture (see

Figure 10). During the grab-move gesture the UI

updates the slider continuously showing the

currently chosen volume level. At the same time the

system changes the volume of the music

simultaneously according to the current state of the

gesture until the grab gesture has ended (e.g. by

opening the hand).

5 SIMPLIFICATIONS AND

EXTENSIONS

A simplification in the definitions given in section

4.2 and 4.3 is that the difference between static and

dynamic gestures was not taken explicitly into

account. Therefore, a gesture arrow may represent

either a static or a dynamic gesture. Considering this

difference in the notation doubles the gesture

interaction types.

In Figure 10 a dynamic gesture is involved in a

continuous gesture interaction with continuous

system reaction. Replacing the gesture by a static

one results in a static-continuous gesture interaction

with continuous system reaction. For example, such

a static gesture may be the holding hand shown in

Figure 3 a) (e.g. taking into account the constraints

of a reduced interaction space). To increase the

Definition of Gesture Interactions based on Temporal Relations

121

volume, the right hand is held up (see Figure 11),

and to lower the volume the left hand is held up.

Figure 11: Static gesture with continuous UI feedback and

continuous system functionality: Hold-up gesture (left or

right) to change the volume (decrease or increase) of a

media player.

In addition, the user may hold up the right hand

although the volume has already reached the

maximum. Thus, the application logic would have to

ignore this gesture event since it is not meaningful

for the current state of the system. In our gesture

notation, such a prolonged occurrence of a gesture

without consequences is not represented (the gesture

arrow is not depicting the extended time interval).

This is appropriate as the definition (gesture.end =

UI.end = system.end) describes this situation

correctly.

Delays, e.g. between the temporal intervals, are

not considered so far. They can be added as shown

in Figure 12. For information systems technically

caused delays (TD) are typical. Thus, for example, a

gesture.end does not equal UI.start, more precisely

(gesture.end + TD = UI.start). It can be neglected

most of the time. However, for usability reasons one

may specify a maximum for TD, e.g. gesture.end +

TD = UI.start with TD ≤ 2 seconds.

Figure 12: Delay in gesture interactions.

In addition, delays (Δt) are mechanisms to

specify conditions and constraints, e.g. for the

purpose of accessibility. For example, if users with

cognitive impairments are using applications with

gesture interaction, it could be necessary to add a

delay between the execution of a gesture and the

start of a UI feedback (gesture.end + Δt = UI.start)

(see Figure 12 a). People with cognitive impairments

might need some time to process the execution of

the gesture and therefore would be confused if the

UI feedback is executed right after the gesture. In

this case the delay Δt is to be specified according to

the degree of disability and may be subject of

personalization.

In the case of continuous interactions two delays

are introduced (see Figure 12 b). The delay Δt1

separates the beginning of a gesture and the

beginning of a UI feedback (gesture.start + Δt1 =

UI.start). The second delay Δt2 can be used to define

how long a UI feedback (e.g. an animation) is

performed after a gesture movement is finished

(gesture.end + Δt2 = UI.end).

A further case of consciously specified delay is

the usage of a reset timer. It can be illustrated by

extending the example in Figure 9 with the option to

cancel the gesture interaction. While the circle still

fills up, the user may take the hand away to

consciously abort the interaction. However, it may

also happen that a cancelation is not wanted by the

user, although he or she causes the virtual hand

cursor (who’s movements are mapped to the hand)

to exit the interactive element. For example, the user

may unconsciously turn away from the system

during the activation of the UI element in order to

talk to someone. Due to the user movement, the

virtual cursor moves away from the UI element and

the gesture interaction could be canceled. The

following possibilities are therefore conceivable:

The circle resets: gesture.end = UI.start. Or the

circle does not reset for a specific time Δt.

Subsequently, the circle resets to the initial position:

gesture.end + Δt = UI.start.

In other works from the literature, a gesture is

divided into the three phases prestroke (also called

preparation), stroke (execution) and poststroke

(retraction) (Mitra and Acharya, 2007; Obaid et al.,

2014; Pavlovic et al., 1997). For example, raising

the hand to the start position of a swipe gesture is the

prestroke, performing the swipe-movement is the

stroke, and taking down the hand to a neutral

position is the poststroke. Obaid et al., (2014)

additionally take into account a start-up phase. It

refers to the user's mental preparation process of

preparing for a gesture and thus takes place before

the prestroke. The temporal interval of a gesture of

our gesture notation refers to the execution (stroke).

However, it could be extended by adding separate

time intervals for the pre- and the poststroke-phase.

This would enable the explicit specification of

conditions and constraints related to these additional

phases.

HUCAPP 2018 - International Conference on Human Computer Interaction Theory and Applications

122

6 CONCLUSION AND FUTURE

WORK

This paper presented an approach to a more

universal definition of gesture interactions and

gesture types, respectively. Its purpose is to facilitate

communication within the development process

based on a common understanding of gesture terms.

Indeed, in our current work on gesture-based

systems, previously encountered misunderstandings

could be avoided with the help of the terms and

notation proposed in this paper. In addition, in our

university lectures the students benefited from a

resulting common understanding of the most

important aspects when designing gesture

interaction. All in all compared to the various

taxonomies from the literature, our approach appears

to us to be more practical.

In contrast to existing taxonomies our definitions

distinguish between UI reactions (feedback) and

system reactions (functionality). A further central

extension to existing gesture taxonomies is the

utilization of temporal intervals of execution of

gestures (body movements), UI feedback and system

functionality, and the relations between the intervals.

The previous section introduced and outlined

some extensions that will be investigated in more

detail in future work.

Concerning future work, the criteria shown

above are to be used in more projects and evaluated

in further studies and it should be checked if further

dependencies between single criteria can be found.

The extensions shown in this paper like further

segmentation of the gesture execution and the use of

delays seem particularly interesting. Furthermore,

the use of further criteria (e.g. gesture styles) should

be considered as another extension of our approach.

ACKNOWLEDGEMENTS

This research was financially supported by the

German Federal Ministry of Education and Research

within the program “Forschung an Fachhochschulen

– IngenieurNachwuchs” (project no. 03FH007IX5).

REFERENCES

Allen, J. F. 1983. Maintaining Knowledge about Temporal

Intervals. Communication of the ACM, November

1983. Vol. 26 Nr. 11, 832 – 843

Hartson, H. R., A. C. Siochi, and D. Hix. 1990. The UAN:

A user-oriented representation for direct manipulation

interface designs. ACM Transactions on Information

Systems (TOIS), 8(3), 181-203.

Hix, D. and H.R. Hartson. 1993. Developing User

Interfaces: Ensuring Usability Through Product and

Process. John Wiley & Sons, Inc.

Hummels, C., and P. J. Stappers. 1998. Meaningful

gestures for human computer interaction: beyond hand

postures. Third IEEE Int. Conf. Autom. Face Gesture

Recognit.

Karam, M., and M. C. Schraefel. 2005. A Taxonomy of

Gestures in Human Computer Interactions. Tech.

Report, Eletronics Comput. Sci., 1–45.

Künkel, D. , Bomsdorf, B., Röhrig, R., Ahlbrandt, J., and

M. Weigang. 2015. Participative Development of

Touchless User Interfaces: Elicitation and Evaluation

of Contactless Hand Gestures for Anesthesia.

International Conferences Interfaces and Human

Computer Interaction, 43–50.

Loke, L., Larssen, A.T. and T. Robertson. 2005.

Labanotation for design of movement-based

interaction. Proceedings of the second Australasian

conference on Interactive entertainment. Creativity &

Cognition Studios Press, Sydney, Australia, 113-120.

Microsoft. 2013. Visual Gesture Builder: A Data-Driven

Solution to Gesture Detection. [online] Available at:

http://aka.ms/k4wv2vgb [Accessed 12 Sep. 2017].

Mitra, S., and T. Acharya. 2007. Gesture recognition: A

survey. IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews),

37(3), 311-324.

Nielsen, J. 1995. 10 usability heuristics for user interface

design. Nielsen Norman Group, vol. 1, no. 1.

Nielsen, M., M. Störring, T. B. Moeslund, and E. Granum.

2004. A procedure for developing intuitive and

ergonomic gesture interfaces for HCI. Gesture-Based

Commun. Human-Computer Interact., 409–420.

Obaid, M., F. Kistler, M. Häring, R. Bühling, and E.

André. 2014. A Framework for User-Defined Body

Gestures to Control a Humanoid Robot. International

Journal of Social Robotics, 6(3), 383-396.

Pavlovic, V. I., R. Sharma, and T. S. Huang, 1997. Visual

interpretation of hand gestures for human-computer

interaction: A review. IEEE Transactions on pattern

analysis and machine intelligence, 19(7), 677-695.

Ruiz, J., Y. Li, and E. Lank. 2011. User-defined motion

gestures for mobile interaction. Annu. Conf. Hum.

factors Comput. Syst. - CHI ’11, 197–206.

Saffer, D. 2009. Designing Gestural Interfaces.

Wobbrock, J. O., H. H. Aung, B. Rothrock, and B. A.

Myers. 2005. Maximizing the guessability of symbolic

input. In CHI'05 extended abstracts on Human

Factors in Computing Systems, 1869-1872, ACM.

Wobbrock, J. O., M. R. Morris, and A. D. Wilson. 2009.

User-defined gestures for surface computing. 27th Int.

Conf. Hum. factors Comput. Syst. - CHI 09, 1083–

1092.

Definition of Gesture Interactions based on Temporal Relations

123

