Flash and Storm: Fast and Highly Practical Tone Mapping based on Naka-Rushton Equation

Nikola Banić and Sven Lončarić
Image Processing Group, Department of Electronic Systems and Information Processing, Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia

Keywords: HDR, Image Compression, Image Enhancement, LDR, Naka-Rushton Equation, Retinex, Tone Mapping Operator.

Abstract: Tone mapping operators (TMOs) are used to convert high dynamic range (HDR) images to their low dynamic range (LDR) versions mostly to display them on standard display devices. The problem with many TMOs that produce high-quality results is that they are too slow to be used in real-time applications. In this paper, a new TMO is proposed whose steps are primarily designed to achieve high speed and to be practically implementable. Under this constraint the secondary goal is to produce low dynamic range images of high quality. The proposed TMO is based on Naka-Rushton equation used in combination with additional improvements and it has \(O(1) \) per-pixel complexity. The presented and discussed results show that, beside being faster and more practical, the proposed TMO outperforms many state-of-the-art TMOs in terms of resulting LDR image quality. To further demonstrate its practicality, the source code written in C++, Matlab, Python, Java, and HTML+JavaScript is available at http://www.fer.unizg.hr/ipg/resources/color_constancy/.

1 INTRODUCTION

The dynamic range of an image is the ratio between its largest and smallest non-zero intensity. Even though high dynamic range (HDR) images are used ever more frequently (Reinhard et al., 2010), most display devices are currently limited to show only low dynamic range (LDR) images. To display an HDR image on such devices, its dynamic range has to be compressed in the process called tone mapping by means of methods called tone mapping operators (TMOs). Tone mapping usually processes the image luminance channel, often calculated as the \(Y \) channel of the YUV colorspace. For a pixel with a given RGB representation \(p = (R,G,B)^T \) the value of \(Y \) is (Koschan and Abidi, 2008):

\[
Y = 0.299R + 0.587G + 0.114B. \tag{1}
\]

Alternative luminance channels are found in HSV, HSL, and Lab colorspace or custom definitions (Banić and Lončarić, 2014b; Nguyen and Brown, 2017). If the luminance value \(L \) of \(p \) is tone mapped to \(L' \), then \(p \) is changed to

\[
p' = \frac{L'}{L} p = \left(\frac{L'}{L} R, \frac{L'}{L} G, \frac{L'}{L} B \right)^T. \tag{2}
\]

If a TMO processes intensities based only on their value and regardless of their location, then it is a global TMO, otherwise it is a local one. Examples of global TMOs include application of Steven’s law (Tumblin and Rushmeier, 1993; Chiu et al., 1993; Ward, 1994), imitation of human response to light (Schlick, 1995; Pattanaik et al., 2000; Drago et al., 2003; Reinhard and Devlin, 2005), histogram adjustment (Larson et al., 1997), and sigmoidal contrast enhancement (Braun and Fairchild, 1999). For local TMOs examples include application of anisotropic diffusion (Tumblin and Turk, 1999), bilateral filtering of the image base layer (Durand and Dorsey, 2002), photographic practice (Reinhard et al., 2002), luminance gradient field manipulation (Fattal et al., 2002; Mantiuk et al., 2006), Retinex theory (Meylan and Susstrunk, 2006; Banić and Lončarić, 2014a; Banić and Lončarić, 2016). Global TMOs are faster and usually simpler, but local TMOs tend to give results of higher quality (Kuang et al., 2004; Kuang et al., 2007; Urbano et al., 2010). The problem with many TMOs that produce high-quality results is that they are too slow to be used in real-time applications. In this paper a new TMO is proposed whose steps are primarily designed to achieve high speed and to be practically implementable. Under this constraint...
the secondary goal is to produce low dynamic range (LDR) images of high quality. The proposed TMO is based on Naka-Rushton equation used in combination with additional improvements and it has \(O(1)\) per-pixel complexity. The presented and discussed results show that, beside being faster and more practical, the proposed TMO outperforms many state-of-the-art TMOs in terms of resulting LDR image quality. To further demonstrate its practicality and simplify its usage by interested parties, the publicly available source code of the proposed TMO is written in several programming languages including JavaScript with an HTML interface so that it can be used even with only a browser.

The paper is structured as follows: in Section 2 the foundations for the new TMO are laid, in Sections 3 the TMO is extended to a local one, in Section 4 experimental results are presented and discussed, and Section 5 concludes the paper.

2 FLASH - STARTING GLOBALLY

2.1 Initial Tone Compression

Recently a high quality two-phase TMO called Puma with \(O(1)\) per-pixel complexity has been proposed (Banić and Lončaric, 2016). During its first phase the actual tone compression is performed globally by means of a method called Flash. It is fast and efficient since it uses a simple to calculate curve, but the resulting LDR image is crude and of low quality. The second phase consists of enhancing this image by applying Smart Light Random Memory Sprays Retinex (SLRMSR) (Banić and Lončaric, 2015; Banić and Lončaric, 2017), a brightness adjustment method, whose parameters are set to specifically chosen values for this purpose. SLRMSR produces the final high quality LDR image and it has \(O(1)\) per-pixel complexity. Despite good overall theoretical complexity, Puma is not especially fast due to a large constant number of steps per pixel used in SLRMSR. Additionally, SLRMSR has several parameters that need to be tuned for various tone mapping effects. Hence, Puma does not fully abide by the constraints laid out in the introduction. Nevertheless, if SLRMSR is left out, Flash can still be used as a good foundation for a desired new TMO because of its effectiveness, while for the enhancement of its results a more efficient method has to be found. The core of Flash is the Naka-Rushton equation (Shapley and Enroth-Cugell, 1984) given in the form

\[
L' = \frac{L}{L + a} = \frac{L}{L + aL_w} ~ (3)
\]

where \(L\) is the initial luminance, \(a\) is a scaling parameter, and \(L_w\) is the image key, which is usually approximated by calculating the geometric luminance mean (Ward, 1994; Reinhard et al., 2002)

\[
L_w = \exp\left(\frac{1}{N}\sum_i \ln(L(i) + \epsilon)\right) ~ (4)
\]

where \(N\) is the number of pixels, \(L(i)\) is the \(i\)-th pixel luminance, and \(\epsilon\) is a small value to avoid logarithm of zero. By being a special case of the perceptually based Michaelis-Menten equation (Dowling, 1987), the Naka-Rushton equation is to some degree inherently also perceptually based, which makes Flash theoretically sound and even more attractive. To obtain high quality results, Flash uses the \(V\) channel of the \(HSV\) colorspace as the luminance channel where \(V\) is calculated as \(V = \max(R,G,B)\). Flash\(_{\text{p}}\) denotes the application of Flash for a given value of \(a\).

2.2 Leap - Simple Image Enhancement

The next step is to enhance the crude results of Flash in a way that abides by the constraints laid out in the introduction. A good starting point in designing such an enhancement procedure partially motivated by (Huang and Mumford, 1999) is to look for simple properties common to many tone mapped LDR images of high quality. Once some of these properties are found, their incorporation into the results of Flash should hopefully increase their quality.

The set of high quality tone mapped LDR images needed to look for such properties was created by turning the HDR images available at (NTUST, 2015) and (Fairchild, 2015) into LDR images by using the procedure described in (Ma et al., 2015). This procedure takes an initial LDR version of a given HDR image and changes it iteratively in order to increase the value of TMQI-II (Ma et al., 2015), an adapted version of Tone Mapped Image Quality Index (TMQI) (Yeganeh and Zhou, 2013) that evaluates structural fidelity and statistical naturalness of a tone mapped image by using the initial HDR image as a reference. Although the procedure is far too slow to be used in practical real-time systems, its final results are by definition of high quality. The procedure was iteratively applied to HDR images until the TMQI-II value of an image was very close to the maximum of 1 or the number of iterations reached 500.

The analysis of different properties across all of the obtained high quality LDR images has shown that the arithmetic mean of the grayscale image values is
a stable property with a low standard deviation over the images. For the first dataset (NTUST, 2015) the mean of the images’ grayscale means was 100.57 with a standard deviation 3.85 and for the second dataset (Fairchild, 2015) these values were 100.04 and 5.12, respectively. This suggests that an appropriate mean grayscale value could also assure a higher quality. One of the simplest ways to achieve this is to multiply a given image by a scalar in order to obtain a desired mean grayscale value i.e. to jump from the initial mean grayscale to a given one. In Section 4.2 it is shown that such a procedure may indeed significantly increase the image quality of a given LDR image. For easier notation this procedure is named Leapg with g being the target mean grayscale. For some low key images their high intensity pixels may appear “burned” after increasing their brightness even further by applying Leap, but as explained in (Reinhard et al., 2002), this can actually be desirable. As a matter of fact, in (Reinhard et al., 2002) an extension of Eq. (3) has been proposed for exactly that purpose. The pseudocode for Leap is given in Algorithm 1. In the Section 4.2 it is shown that Flash combined with Leap is a fast and high quality local TMO.

After carrying out subjective assessment of a large number of LDR images obtained by applying Flash and Leap, it was concluded that round default values for a and g that already produce visually appealing results are 10 and 110, respectively.

Algorithm 1: Leap

Input: image I, target mean grayscale g, upper bound U
1: m = CalculateMeanGrayscale(I)
2: for all pixel i in I do
3: \(p = I(i) \)
4: \(p_R = \max \left(\frac{g}{p_R} \cdot RU \right) \)
5: \(p_G = \max \left(\frac{g}{p_G} \cdot GU \right) \)
6: \(p_B = \max \left(\frac{g}{p_B} \cdot BU \right) \)
7: \(R(i) = p' \)
8: end for
Output: image R

3 STORM - CONTINUING LOCALLY

3.1 Extension to a Local TMO

Global TMOs are fast, but for results of the highest quality local TMOs are used (Kuang et al., 2004; Kuang et al., 2007). Hence a natural direction of further Flash improvement is to extend it to a local version. One of the common approaches for such an extension is to perform tone mapping with pixel-based parameters, which are determined by looking only at the local area surrounding a given pixel instead of at the whole image (Reinhard et al., 2010). There is evidence that early stages of visual processing can be modelled by filtering of retinal image using filters of different scales (Wilson, 1991) and similar approaches have been used in various tone mapping and image enhancement methods (Peli, 1990; Jobson et al., 1997; Pattanaik et al., 1998). Thus the local extension of Flash proposed here does the same thing. If R and C are the number of image rows and columns, respectively, then let \(d \) be the smaller of these two i.e. \(d = \min \{R,C\} \).

For a pixel \(i \) Flash is applied to \(M \) squares of size \(s_j d \times s_j d \) with pixel \(i \) in their center where \(s_j \) is the scaling factor for the \(j \)-th square. If \(k_j \) is the \(j \)-th square and \(F(a)(i) \) the value of luminance of pixel \(i \) after applying Flash to \(k_j \), with \(i \) in its center, then the final luminance value for \(i \) is obtained as

\[
S(i) = \frac{1}{M} \sum_{j=1}^{M} F(a)(i).
\]

The main computation cost of Eq. (5) is in calculating Eq. (4) for each \(i \) and \(k_j \), which is effectively done by means of convolution over the luminance logarithms. Such an approach was motivated by the multiscale Retinex (MSR) algorithm (Jobson et al., 1997), but there are two differences. First, while MSR uses Gaussian kernels, having square kernels in Eq. (5) allows faster filtering by using a single integral image (Crow, 1984), which also brings the per-pixel complexity of Eq. (5) to \(O(M) \). Second, unlike in MSR, there are no weights in Eq. (5) for individual kernels because using them has shown no significant benefit in terms of quality. The contribution of various kernels is shown in Fig 1. Like with Flash, higher values of \(a \) for Storm give better contrast in the final image as it is shown in Fig. 2. Since the proposed local TMO applies Flash multiple times and multiple flashes often occur during storms, it is named Storm for easier notation, while its application with \(n \) specified scaling factors and value of \(a \) for the underlying Flash is denoted Storm\(_n^{(s_1,\ldots,s_n)}\). The pseudocode for Storm is given in Algorithm 2.

3.2 Properties

Fig. 1 shows how more kernels make more details visible. With well chosen kernels Storm outperforms Flash in terms of quality, but at the cost of the additional memory that is needed for the integral image.

In terms of complexity, Storm is also more complex than Flash. Firstly, Storm calculates the integral
Figure 1: Applications of Storm with different kernels followed by Leap and gamma correction: (a) Storm\(^{(1)}\), (b) Storm\(^{(1, 1)}\), (c) Storm\(^{(1, 1, 16)}\), (d) Storm\(^{(1, 1, 16, 164)}\), and (e) Storm\(^{(1, 1, 16, 1256)}\).

Figure 2: Results of application of (a) Storm\(^{(1, 1, 16)}\) and (b) Storm\(^{(1, 1, 16)}\) to the same image.

Algorithm 2: Storm.

Input: image \(I\), brightening parameter \(a\), \(M\) kernel sizes \(s_j\), upper bound \(U\)

1: for all pixel \(i\) in \(I\) do
2: \(p = I(i)\)
3: \(L = \max\{p_R, p_G, p_B\}\)
4: \(L' = 0\)
5: for \(j = 1\) to \(M\) do
6: \(L' = L' + F_a(s_j)\(p(i)\)\)
7: end for
8: \(R(i) = \frac{L'}{U}p\)
9: end for
10: \(R = U \cdot R / \max(R(:\cdot))\)

Output: image \(R\)

image in \(O(1)\) per-pixel complexity. Next, to each pixel Eq. (3) is applied \(M\) times and each time in \(O(1)\) per-pixel complexity by using the integral image. Together this gives \(O(M)\) per-pixel complexity, which seemingly violates the constraint set up in the introduction. However, \(M\) is supposed to be very small because already for \(M \in \{2, 3, 4\}\) the results are of high quality. Additionally, since \(M\) can be considered a hyperparameter, once its value is chosen, it does not change that often so it is effectively a constant. Thus, taking all this into account, Storm can also be regarded as having \(O(1)\) per-pixel complexity. Speed tests in Section 4.2 also corroborate such reasoning.

After carrying out subjective assessment of a large number of LDR images obtained by applying Storm and Leap, it was concluded that the combination with round default values that already produce visually appealing results without showing unrealistically too much details is Storm\(^{(1, 1, 16)}\) + Leap\(^{110}\).

4 EXPERIMENTAL RESULTS

4.1 Image Quality Metrics

The best way to assess the quality of tone mapped images would be to carry out subjective perceptual studies. However, such studies were omitted here because they are time-consuming, they require special environment and carefully calibrated equipment, and they are not easy to reproduce. Instead, two objective measures are used: Feature Similarity Index For Tone-Mapped images (FSITM) (Ziaei Nafchi et al., 2015) and the already mentioned TMQI. TMQI-II was not used here because while images with a high TMQI-II are usually of high quality, a lot of images with a low TMQI-II are actually of high quality as well. This is because TMQI-II is too susceptible to mean grayscale value as shown in (Banić and Lončarić, 2016). FSITM is based on local phase information of images and it was shown...
Figure 3: Pairwise comparison between the results of Reinhard’s local TMO (Reinhard et al., 2002) on the left and Storm+Leap on the right; for Reinhard’s TMO its Luminance HDR implementation with default parameter values was used.

Table 1: Mean TMQI and FSITMG obtained on images from (Ward, 2015) with cumulative execution time.

<table>
<thead>
<tr>
<th>TMO</th>
<th>TMQI</th>
<th>FSITMG</th>
<th>t (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashikhmin (Ashikhmin, 2002)</td>
<td>0.6620</td>
<td>0.7338</td>
<td>225.23</td>
</tr>
<tr>
<td>Drago (Drago et al., 2003)</td>
<td>0.7719</td>
<td>0.8158</td>
<td>30.69</td>
</tr>
<tr>
<td>Durand (Durand and Dorsey, 2002)</td>
<td>0.8354</td>
<td>0.8405</td>
<td>225.14</td>
</tr>
<tr>
<td>Fattal (Fattal et al., 2002)</td>
<td>0.7198</td>
<td>0.7810</td>
<td>64.78</td>
</tr>
<tr>
<td>Mantiuk (Mantiuk et al., 2006)</td>
<td>0.8225</td>
<td>0.8266</td>
<td>88.03</td>
</tr>
<tr>
<td>Mantiuk (Mantiuk et al., 2008)</td>
<td>0.8443</td>
<td>0.8494</td>
<td>36.20</td>
</tr>
<tr>
<td>Pattanaik (Pattanaik et al., 2000)</td>
<td>0.6813</td>
<td>0.7635</td>
<td>46.91</td>
</tr>
<tr>
<td>Reinhard (Reinhard et al., 2002)</td>
<td>0.8695</td>
<td>0.8581</td>
<td>33.41</td>
</tr>
<tr>
<td>Reinhard (Reinhard and Devlin, 2005)</td>
<td>0.6968</td>
<td>0.7679</td>
<td>30.01</td>
</tr>
<tr>
<td>Flash10</td>
<td>0.8072</td>
<td>0.8315</td>
<td>21.19</td>
</tr>
<tr>
<td>Flash110+Leap110</td>
<td>0.8755</td>
<td>0.8625</td>
<td>21.25</td>
</tr>
<tr>
<td>Storm\textsuperscript{(1+\frac{1}{a})}20</td>
<td>0.7675</td>
<td>0.8004</td>
<td>24.35</td>
</tr>
<tr>
<td>Storm\textsuperscript{(1+\frac{1}{a})}+Leap110</td>
<td>0.8782</td>
<td>0.8551</td>
<td>24.59</td>
</tr>
</tbody>
</table>

to give better results than TMQI. If combined with TMQI, it performs a better assessment than both TMQI and TMQI-II and this combination is denoted as FSITMG .TMQI where C is a color channel. In this paper the green (G) color channel is used since it was shown to give good results (Ziaei Nafchi et al., 2015). All these measures are in range [0,1] with a higher number meaning higher quality. These metrics are well established, easily reproducible, they have a sound theoretical background, their values can be calculated fast and automatically, and, all of them were shown to be well correlated with subjective measures.

4.2 Tone Mapping Quality and Speed

The quality of the results of the proposed TMO was evaluated by applying them to images in the HDR dataset given at (Ward, 2015). For TMOs with fixed parameters this dataset is challenging since it contains HDR images from different sources including artificially generated ones. Table 1 shows the obtained values of objective quality measures for the proposed and existing TMOs with default parameter values. For results of other TMOs the open source Luminance HDR software was used like in (Ma et al., 2015). This was also an opportunity to compare the proposed TMOs to easily available implementations of other well-known TMOs. The results for Flash differ from the ones given in (Banica and Lončar, 2016) because here the gamma correction was carried out after tone mapping as it is supposed to be done. The values of objective metrics are higher for Flash and Storm than for all other tested TMOs and although the differences are small, they still demonstrate the quality of the proposed TMOs. Since Reinhard’s local TMO (Reinhard et al., 2002) is considered to be among the best, in Fig. 3 its results are compared to the results of Storm. Table 1 also shows that Flash and Storm are faster than other TMOs, which makes them good candidates for real-time applications.

5 CONCLUSIONS

A new TMO has been proposed in a global and local variant under the constraints of \(O(1) \) per-pixel complexity and a practical design. Both variants were
shown to outperform state-of-the-art TMOs in terms of resulting LDR image quality even though obtaining high quality was only their secondary goal. Another important fact is that the proposed TMO was shown to be significantly faster than other TMOs. Its success demonstrates how having implementation constraints during the design phase of a TMO can nevertheless lead to fast and practical TMOs that also produce results of the highest quality. Additionally, the steps of the proposed TMO have their roots in the results of perceptual experiments. Future work will consider solutions that are less dependant on structures such as integral images in order to decrease TMO’s memory consumption and to make it more hardware-friendly.

REFERENCES

Flash and Storm: Fast and Highly Practical Tone Mapping based on Naka-Rushton Equation

