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Abstract: Since the beginning of Neural Networks, different mechanisms have been required to provide a sufficient
number of examples to avoid overfitting. Data augmentation, the most common one, is focused on the gen-
eration of new instances performing different distortions in the real samples. Usually, these transformations
are problem-dependent, and they result in a synthetic set of, likely, unseen examples. In this work, we have
studied a generative model, based on the paradigm of encoder-decoder, that works directly in the data space,
that is, with images. This model encodes the input in a latent space where different transformations will be
applied. After completing this, we can reconstruct the latent vectors to get new samples. We have analysed
various procedures according to the distortions that we could carry out, as well as the effectiveness of this
process to improve the accuracy of different classification systems. To do this, we could use both the latent
space and the original space after reconstructing the altered version of these vectors. Our results have shown
that using this pipeline (encoding-altering-decoding) helps the generalisation of the classifiers that have been
selected.

1 INTRODUCTION

Several of the successful applications of machine
learning techniques are based on the amount of data
available nowadays, such as millions of images, days
of speech records and so on. Regarding this, one way
of obtaining it is applying several transformations to
these inputs to create new training instances. This
process is usually called data augmentation and it is
based on performing controlled distortions that do not
modify the true nature of the sample.

In particular, these transformations are appealing
to models that require a large number of instances,
such as Deep Neural Networks. By using this kind of
distorted inputs, they can provide more robust models
that learn possible variations in the original data, for
instance, translations or rotations in images. These
improvements are quantified in the outstanding re-
sults in computer vision tasks such as object recog-
nition (He et al., 2016). Therefore, when modifica-
tions over training instances make sense, it is worth
to consider them.

Unfortunately, there are several problems where
data is limited and performing these modifications is
not always feasible, and even when it is, it is hard to
know which ones could help the learning process and

which others could harm the model’s generalisation.
Currently, one of the most critical issues is finding a
way of making the most of the tons of instances that
are unlabeled and, using just a few labelled examples,
being able to obtain useful classifiers. For these rea-
sons, there is an increasing interest in studying au-
tomatic mechanisms to generate new instances using
the available data. The main focus is to be able to
create new data in a way that allows the training algo-
rithm to learn a proper classifier.

Recently, generative models are gaining impor-
tance in this kind of tasks where a more significant
number of samples are needed. Since the evaluation
of models and the quality of produced instances re-
main unclear, the results are promising, being able to
generate coherent and detailed images (Ledig et al.,
2016). However, the samples provided by these mod-
els are similar to which have been seen in the training
phase or a combination of them. In conclusion, the
lack of a silver bullet metric that measures the effec-
tiveness and quality of these models has become an
essential issue among researchers.

In the present paper, we propose an empirical eval-
uation regarding the use of a generative model to pro-
duce new artificial that could be helpful for training
different models.Consequently, the benefits that this
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approach could provide will be measured by the im-
provement of classification accuracy. Using a Neu-
ral Network which is based on the encoder-decoder
paradigm, data is projected into a manifold, obtain-
ing feature vectors, where modifications will be per-
formed, allowing us to explore different strategies
to create new examples. Regarding these latest in-
stances, they could come from this feature space or
the original data space, through the reconstruction
provided by the decoder.

2 PREVIOUS WORK

For years, data augmentation has been used when
the problem involves images. Applying this process
is relatively straightforward under these conditions,
since transformations which are used typically in this
context are feasible in the real world, such as scale,
rotate an image or simulate different positions of the
camera. Therefore, using this technique would be
advantageous if the number of original images were
scarce or to improve the generalisation, making the
classifier more robust when these modifications are
uncontrolled, very usual in natural images. Exam-
ples of the application of these methods are shown
in one of the first successful Convolutional Neural
Network (CNN) (LeCun et al., 1998) or the more re-
cent breakthrough in machine learning starred by the
Alexnet model (Krizhevsky et al., 2012). Addition-
ally, this kind of procedures is applied in problems
that are not images, for instance including Gaussian
noise in speech (Schlüter and Grill, 2015). However,
the modifications to create these synthetic sets are
usually handcrafted and problem-dependent. Even for
images, it is difficult to determine what kind of trans-
formation is better.

On the other hand, the class imbalance scenario
was one of the precursors of these techniques. Due
to this disproportion, training an unbiased classifier
could be complicated. To solve this situation, there
was proposed a Synthetic Minority Over-Sampling
Technique (SMOTE) (Chawla et al., 2002). This ap-
proach is based on the idea of performing modifica-
tions in the feature space, that is, the sub-space that
is learned by the classifier, i.e.: the space that accom-
modates the projection after a hidden layer in a Neural
Network. When data is projected into this space, the
process generates new instances of the least frequent
class using oversampling, using different schemes,
such as interpolating or applying noise.

In (Wong et al., 2016) authors studied the bene-
fits from using synthetically created data in order to
train different classifiers. In their work, they used the

following strategy: limiting the available samples to a
certain number and then they compared the addition
of the remaining data, simulating the acquisition of
unseen real data with the addition of the generated
samples. They distinguished among data, original,
and feature space as in SMOTE. Their results showed
that it is better to perform distortions in the original
space, if they are known, rather than in the feature
space. The authors also exposed that improvement
is bounded by the accuracy obtained when the same
amount of real unseen data is included.

Another approach that follows this idea could be
seen in (DeVries and Taylor, 2017), where it is pro-
posed a method, inspired by SMOTE as well, to per-
form modifications in the feature space. The idea
behind this is being able to deal with any problem
once the data is projected into this space. There-
fore, this could be used with every task as it does
not depend on the input of the system. In this case,
they are coping with the limited availability of la-
belled data. Accordingly, their approach is based on
an encoder that performs the projection into the fea-
ture space and then a decoder that retrieves these vec-
tors. During this encoding-decoding procedure, they
create new instances by using different techniques
such as interpolation, extrapolation and noise addi-
tion. After decoding the feature vectors, they can
either get new instances in the original space or use
the distorted version in the feature space. Regarding
the model that they used, it is based on a Sequence
AutoEncoder (Srivastava et al., 2015) implemented
as a stacked LSTM (Li and Wu, 2015). Concerning
datasets, they conducted experiments with sequential
data, i.e.: a sequence of strokes, a sequence of vectors,
etc., but they also performed experiments with images
that were treated as a sequence of row-vectors. After
this process, they found that performing extrapolation
in feature space and then classify, gets better results
than applying affine transformations in the original
space, projecting them into the feature space and then
classifying the final vectors. In addition, they carried
out experiments using the reconstruction provided by
the decoder but results reflected that in this case in-
cluding extrapolated and reconstructed samples de-
crease the performance.

In this work, we want to provide a study concern-
ing the capacity of a generative model for creating ex-
amples that can improve the generalisation of differ-
ent classifiers. To do that, we have used a generative
network with the encoder/decoder architecture that
provides a manifold that comprises the feature space.
Regarding the generated samples, they will be the re-
sult of a process of controlled distortion in this feature
space. Additionally, we want to evaluate two possi-
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ble scenarios: performing distortions in the feature
space and then conducting the training pipeline from
there, or reconstructing the distorted vectors gener-
ating new images, and training with them as usual.
Unlike SMOTE, we are not pursuing a class balance
but creating more training data that helps the classifier
generalise better. As we mentioned before, we want
to use a CNN structure to deal with images naturally,
in contrast, with (DeVries and Taylor, 2017) where
the input images are treated as a sequence of vectors.
In general, a CNN is less complicated and faster to
train than LSTM, and it is important to note that we
do not use any extension beyond the basic CNN.

3 METHODOLOGY

The dataset augmentation technique that we want to
evaluate is the following: Firstly, we train a model
that learns a mapping between the data space, x ∈Rd ,
and the feature space, z ∈ Rk. In addition, this model
has to be able to reconstruct or decode this latent vec-
tor again into the original space, providing a vector
x̂ ∈ Rd .

Secondly, once this model is trained, we want to
explore different modifications in the learned mani-
fold or feature space, such as adding noise, to cre-
ate new instances in this space. We could reconstruct
these samples to obtain vectors in the original space as
well, observing these perturbations in the data space,
that is, getting images.

After that, as a measure of the quality of these new
examples, we have decided to train a classifier with
and without adding this subset of synthetically gen-
erated samples. If the accuracy improves, we could
conclude intuitively that the generative model would
be producing instances that enhance the robustness
of the classifier. In conclusion, the generative model
would have learned a meaningful feature space where
transformations are mapped as well.

Regarding generative models that are based
on Neural Networks, two techniques are domi-
nating the field, Generative Adversarial Networks
(GAN) (Goodfellow et al., 2014) and Autoencoders
(AE) (Rumelhart et al., 1985). Concerning GAN
models, the fundamental approach is based on the
mixture of Game Theory and Machine Learning,
where two networks are competing in a game where
one wants to fool the other. In the literature, they
are known as the generative network and the discrim-
inative network, respectively. Nowadays there are
several variations of this approach, and this kind of
models are gaining popularity among the researchers’
community.

On the other hand, AE models are based on the
principle of encoding-decoding. Under this scenario,
the model has to learn an internal representation or
manifold where data will be projected (encoded) and
then reconstructed (decoded) to get the original input
again. Regarding the training of these models, it is
based on a measure of dissimilarity between the ini-
tial input and the reconstruction that has to be min-
imised during training, such as the mean squared er-
ror. Similarly to GAN, some extensions are focused
on different aspects of this procedure, for instance, the
properties of the feature space.

To study our problem, we have chosen AE as the
generative model that will provide the feature space.
This choice is based on the ease that AE offers ac-
cording to the encoding of real data. Since this trans-
formation is provided naturally as a consequence of
the model’s mechanism, we can encode and decode
information using the same model, differently from
GAN where an external procedure to encode inputs is
required.

3.1 Variational Autoencoder

Among the variety of models based on the AE ar-
chitecture, we have selected the Variational Autoen-
coder(VAE) (Kingma and Welling, 2014). Referring
to the differences between this model and the rest,
VAE is based on constraining the feature space to fol-
low a simple distribution, such as a Gaussian distribu-
tion. However, the reconstruction term is maintained,
and this last measure is added to the loss objective
function that we want to minimise during training.

Formally, in this kind of models, we want to learn
the data distribution pθ(X), according to a particular
set of points X = {x(1), . . . ,x(N)}. Typically, this dis-
tribution is decomposed as follows:

pθ(X) =
N

∏
i=1

pθ(x(i)) (1)

To solve numerical issues log is applied, obtain-
ing:

log
N

∏
i=1

pθ(x(i)) =
N

∑
i=1

log pθ(x(i)) (2)

Considering that for each data point there is an
unobserved variable z, known as the latent variable,
that explains the generative process, we can rewrite
Eq. 1 for a single point as:

pθ(x) =
∫

pθ(x,z)dz =
∫

pθ(z)pθ(x|z)dz (3)
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The generation procedure consists of various
steps. Firstly, a value z is drawn following the prior
probability pθ∗(z). Secondly, a value x is generated
accordingly to the posterior probability pθ∗(x|z). Un-
fortunately, we do not know anything about the like-
lihood pθ∗(x|z) or the prior pθ∗(z). To estimate this,
we need to know pθ(z|x) = pθ(x|z)pθ(z)

pθ(x)
. Therefore, the

inference is intractable, and we have to use an approx-
imation of this function represented by q φ(z|x), with
another set of parameters φ.

Since we are not able of sampling this distribution
directly, we want to approximate log pθ(x(i)). To do
this, we can use the Kullback-Leibler divergence in
combination with the variational lower bound:

log pθ(x) = DKL(q φ(z|x)||pθ(z|x))+L(θ, φ;x) (4)
Since we are evaluating the divergence between

the approximate q φ(z|x) and the true posterior
pθ(z|x), considering that this difference is ≥ 0, the
term L(θ, φ;x) acts as a lower bound of the log-
likelihood:

log pθ(x)≥ L(θ, φ;x)
= Eq φ(z|x)

[
− logq φ(z|x)+ log pθ(x,z)

] (5)

That could be written as:

L(θ, φ;x) =
−DKL(q φ(z|x)||pθ(z))+Eq φ(z|x) [log pθ(x|z)]

(6)

Where the term related to the KL-divergence con-
strains the function q φ(z|x) to the shape of pθ(z)
(something easy to sample such as a Gaussian distri-
bution) while the second term wants to be able to re-
construct the input with a given z that follows pθ(x|z).

With this objective loss function, we can
parametrise the model as follows:

q φ(z|x) = q(z; f (x, φ))
pθ(x|z) = p(x;g(z,θ))

(7)

Where f and g are Neural Networks with the set of
parameters φ and θ, respectively. Several details are
explained in the original paper (Kingma and Welling,
2014), regarding the process of re-parametrise the
generation of the vector z to be feasible by the back-
propagation algorithm.

The main advantage of using this model is that
we can train it in an unsupervised way with several
samples and then encode images in the latent space
without any effort. Once the samples are encoded, we
can perform modifications in this space and then re-
construct or decode the altered vector to get an image
again. A summary of this process is represented in
Figure 1.

z1

z2 zt+1zt

Figure 1: From left to right: the encoder encodes the image
into the latent space, providing a vector zt . Then, perform-
ing some perturbation over this vector, we get the altered
version zt+1. Finally, we decode the last vector into a new
image, that would be a modified version of the original in-
put.

3.2 Generation Methods

Regarding the modifications that will be carried out
in the feature vectors, we want to evaluate the same
methods as (DeVries and Taylor, 2017): adding noise,
interpolation and extrapolation.

To add noise to the latent vectors, we have used
the following formula:

ẑ(i) = z(i)+αX ,X v N {0,σ2
i } (8)

Where z(i) is the latent vector and ẑ(i) is the per-
turbed version. We used a 0 mean Gaussian distri-
bution with a standard deviation computed across the
projected dataset. There is an α parameter that con-
trols the influence of this noise.

Another perturbation that we have evaluated is
the linear interpolation. To do this, we have cho-
sen the three nearest neighbours (kNN with k = 3) in
the feature space, and then we have computed trans-
formations as follows: we have applied for each k
neighbours the following formula, with the parame-
ter α ∈ {0,1} measuring the contribution:

ẑ(i) = (z(k)− z(i))α+ z(i) (9)

Finally, we have performed extrapolations using
the same nearest neighbours procedure as follows:

ẑ(i) = (z(i)− z(k))α+ z(i) (10)

According to the authors, we have selected an
α = 0.5 in every case, even though in the extrapola-
tion scheme this is unbounded. As regards the param-
eter k in kNN algorithm, we have chosen k = 3 for all
the experiments. This process implies the generation
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of a large number of samples that will be used to train
the classifier.

4 EXPERIMENTS AND RESULTS

We have selected two different datasets: MNIST and
UJIPEN. These sets are handwritten digits captured
and preprocessed, and it could provide us with an idea
of how this approach could help the creation of data
augmentation in computer vision problems.

For the subsequent experiments, we have used the
following algorithms:

• Support Vector Machines (SVM-RBF kernel)

• Nearest Neighbours (kNN)

• Multi-Layer Perceptron (MLP)

Regarding the structure of the MLP, we have used
five layers with 1024 units each one, with DropOut
and Batch Normalization. We have selected these
models as the baseline because of their simplicity, in
contrast with the more advanced ones based on Neu-
ral Networks with dozens of complicated layers, to
evaluate if these basic models could take advantage
of this synthetic data.

According to the generation process, we have
trained a CNN VAE with the following structure, in
the encoder part: 2 Convolutional layers with a kernel
of 5x5 and a stride of 2 with 16 and 8 channels, re-
spectively. After this, there is a fully connected layer
with 1024 hidden units and finally the last fully con-
nected with Z hidden units that will conform the la-
tent space. We have mirrored this configuration with
the decoder part. Regarding the dimension of the
latent space, we have evaluated Z ∈ [10,20,50,100]
to check how this is compressed and how many di-
mensions are required for each problem. We have
trained the model using the validation set for each
task, stopping the process when the reconstruction
loss increased in validation. The Figure 2 shows some
examples from the ground truth and the reconstructed
digits from the validation set.

4.1 MNIST

One of the most common character dataset,
MNIST (LeCun et al., 1998) is a database of
digits from 0 to 9 which contains 70000 handwritten
images with 28x28 pixels. Even though the error
rate is under 0.5% (Goodfellow et al., 2013) and it
is considered a solved task, this dataset is used as a
sanity check to evaluate new techniques. We have
used this dataset following these configurations:

Figure 2: Top: Digits from the validation set, Bottom: After
projecting these digits, the reconstruction using the decoder.

• Full dataset: Training the generative model in an
unsupervised way and generating new instances
with the 55k labelled examples, using 5k as vali-
dation and testing with 10k.

• Restricted dataset: Training the generative model
in an unsupervised way with 55k and generating
new ones only with 1k labelled examples, using
5k as validation and testing with 10k.

With this set up we want to evaluate, firstly, the
convergence of the model training with the whole
dataset, and secondly, the improvement simulating
the scarcity of instances, limiting the amount of la-
belled data that will be used to generate new samples.
An example of the interpolation that the model can
produce is shown in Figure 3. This example is illus-
trating that even between different classes, the model
can infer and preserve some characteristics of the two

Figure 3: Example of linear interpolation between two
points in the latent space, corresponding to the numbers 2
and 6, and the reconstruction of the computed points in be-
tween.
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numbers that are involved in the interpolation.
The results of the previous experiments are com-

piled in Table 1 and Table 2, regarding accuracy over
the test partition, considering different dimensions in
the latent space and performing the three methods of
generation. We have not included the results training
with the feature vectors because of the poor accuracy
that they have provided with these classifiers. Con-
sidering this, we have continued the experimentation
using just the reconstruction of the feature vectors af-
ter distorting them.

4.2 UJIPEN

The UJI pen character database (Llorens et al., 2008)
is a set of handwritten characters that consists of
grayscale images with a resolution of 70x70 pixels.
It is provided with the information at stroke level, but
they are not used in this work. Some examples of this
dataset could be seen in the Figure 4.

Figure 4: Characters from UJIPEN dataset.

This dataset has two versions, one consisting of
a set of 26 ASCII letters (lower and uppercase) and
10 digits (from 0 to 9). It was created using 11 writ-
ers from Universitat Jaume I (UJI). There is a second
version that adds 49 writers from UJI and Universitat
Politècnica de València (UPV).

The whole dataset comprises the following char-
acters:

• 52 ASCII letters (lower and uppercase).

• 14 Spanish non-ASCII letters: ñ, Ñ, vowels with
acute accent, ü and Ü.

• Digits from 0 to 9.

• Punctuation and other symbols, such as: . , ; : ? !
’ ’ ( ) % - @ <>$.

The choice of this dataset is based on the limited
number of per-class instances. It has 97 classes with

120 samples per label, 11640 in total. We have di-
vided the dataset on 50% for training, 5% for valida-
tion and 45% for testing.

The results of these experiments are shown in Ta-
ble 3. Different examples are shown in Figure 5 and
Figure 6 that illustrate the model’s capacity to inter-
polate between different classes. It is important to re-
mark that the samples generated are a mix between
the source characters, providing the desired variabil-
ity.

Figure 5: Example of linear interpolation between pairs of
characters: “@”, “9” and “a”.

Figure 6: Example of linear interpolation between the char-
acter “e” and “E”.

In the Figure 7 we have included examples of the
generation process using the different methods with
MNIST and UJIPEN.

5 DISCUSSION

We have evaluated the effectiveness of training a gen-
erative model using unlabelled data and then gener-
ate new instances in various models. According to
this, we have validated that the proposed procedure
can help the generalisation of these models, regarding
accuracy’s improvement.

As regards which space is the most appropriate,
we have concluded that when we trained the classi-
fiers using the reconstructed generated instances, we
obtained better results than using feature vectors. This
conclusion differs from (DeVries and Taylor, 2017)
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Table 1: Full MNIST results.

Generation methods
Classifier Baseline # of dims. Noise Interpolation Extrapolation

SVM 96.76 100 97.06 96.94 97.43
50 97.08 96.97 97.31
20 96.94 97.18 97.49
10 96,77 97.22 97,56

KNN 96.88 100 95.90 97.28 95.50
50 96.20 97.35 95.49
20 96.06 97.32 96.20
10 95,59 97,31 96,76

MLP 98.39 100 98.12 98.32 97.97
50 98.29 98.18 98.09
20 97.88 98.40 98.29
10 97.62 97.90 98.11

Table 2: Restricted MNIST results.

Generation methods
Classifier Baseline # of dims. Noise Interpolation Extrapolation

SVM 90.00 100 90.64 91.46 91.16
50 90.76 91.44 91.06
20 90.53 91.64 92.27
10 90.83 91.87 91.95

KNN 87.57 100 88.28 91.61 84.51
50 87.83 91.26 83.44
20 87.39 91.53 85.83
10 88.08 91.42 86.95

MLP 90.01 100 87.53 91.49 90.21
50 89.47 91.42 87.26
20 89.73 91.86 89.15
10 89.74 91.61 89.21

Table 3: UJIPEN results.

Generation methods
Classifier Baseline # of dims. Noise Interpolation Extrapolation

SVM 54.79 100 60.18 63.00 63.99
50 59.11 64.68 64.20
20 59.09 63.48 63.19

KNN 31.86 100 41.42 51.34 43.26
50 41.24 50.94 44.44
20 39.29 53.15 46.74

MLP 63.99 100 60.25 61.84 62.62
50 59.41 64.30 60.90
20 57.20 65.60 64.09

where the projected version of the input provided bet-
ter accuracy. These differences could be related to
the use of another kind of generative network, in this
case an LSTM instead of a CNN. The fact that we got
better results reconstructing the distorted versions as
if we were modifying the image agrees with the con-
clusions provided in (Wong et al., 2016), where they
found that the accuracy is improved when performing
variations in the original space rather than in the latent

space.

Differently from (DeVries and Taylor, 2017) we
have found extrapolation useful after reconstructing
the feature vector under certain classifiers, such as
SVM or MLP. We have concluded that the room for
improvement is higher in the classifiers that are not
based on Neural Networks, such as SVM and kNN. In
these cases, the differences were always significant.
Regarding MLP, we have obtained an improvement
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Figure 7: Examples generated with MNIST (top) and with UJIPEN (bottom ) using (from left to right) noise addition, inter-
polation and extrapolation.

but not as remarkable as in the other classifiers.
In absolute terms, adding noise has provided the

worst results, while interpolation and extrapolation
had similar figures when we used SVM. When the
classifier was an MLP with a problem composed of
a significant number of classes, as UJIPEN, the dif-
ferences are remarkable, being interpolation the best
method. In the case of MNIST, the improvement
is limited. Visually, interpolation provides examples
with certain fidelity to the real ones while extrapo-
lation generates samples that are different from real
instances. Intuitively, obtaining samples that are far
from the ones in the dataset would have a conse-
quence concerning the accuracy, but according to our
experiments, interpolation has resulted in the best op-
tion.

6 CONCLUSIONS

In this paper, we have evaluated the use of synthetic
data generated by a Neural Network, particularly a
Convolutional VAE, to improve the performance of
different classifiers. After projecting the instances in
the latent space learned, we have considered various
ways of generating new instances, such as interpolat-
ing, extrapolating or adding noise to these projected
examples. Once these samples have been modified,
we have evaluated the performance of decoding the
latent vector or using them directly. We have found
that the best improvement is achieved when the latent
projection is reconstructed.

According to the use of only the original data with
or without the synthetic set, our experiments have
shown that the accuracy improves when this data is
included, paving the way for using this kind of tech-
niques to increase the number of instances when they
are limited.

As a future work, we are considering the use of
these methods in datasets that are not based on im-
ages, such as word embeddings or vectors composed

of features with different nature, where performing
data augmentation manually could be complicated.
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