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Abstract: An anomalous facial expression is a facial expression which scarcely occurs in daily life and coveys cues
about an anomalous physical or mental condition. In this paper, we propose a one-class transfer learning
method for detecting the anomalous facial expressions. In facial expression detection, most articles propose
generic models which predict the classes of the samples for all persons. However, people vary in facial
morphology, e.g., thick versus thin eyebrows, and such individual differences often cause prediction errors.
While a possible solution would be to learn a single-task classifier from samples of the target person only, it
will often overfit due to the small sample size of the target person in real applications. To handle individual
differences in anomaly detection, we extend Selective Transfer Machine (STM) (Chu et al., 2013), which
learns a personalized multi-class classifier by re-weighting samples based on their proximity to the target
samples. In contrast to related methods for personalized models on facial expressions, including STM, our
method learns a one-class classifier which requires only one-class target and source samples, i.e., normal
samples, and thus there is no need to collect anomalous samples which scarcely occur. Experiments on a
public dataset show that our method outperforms generic and single-task models using one-class SVM, and a
state-of-the-art multi-task learning method.

1 INTRODUCTION

Human interaction is carried out through not only
verbal but also nonverbal communication such as fa-
cial expressions, gaze, gestures and body postures
(Sangineto et al., 2014). Especially facial expres-
sions provide cues about emotion, intention, alert-
ness, pain and personality, regulate interpersonal be-
havior, and communicate psychiatric and biomedical
status among other functions (Chu et al., 2013). An
anomalous facial expression is defined, in this paper,
as a facial expression which scarcely occurs in daily
life. Such a facial expression conveys cues about
an anomalous physical or mental condition. For ex-
ample, a painful facial expression scarcely occurs in
daily life, and conveys cues about an anomalous phys-
ical condition, e.g., pain. Detecting anomalous condi-
tions is of crucial importance for human monitoring
and in human-computer interaction.

In facial expression recognition, many of the cru-
cial sources of error are individual differences in per-
sons (Zeng et al., 2015). Age, gender and personality
strongly influence the intensity and the way in which
emotions are exhibited (Zeng et al., 2009). While a

possible solution for handling individual differences
would be to learn a single-task classifier from sam-
ples of the target person only, it will often overfit due
to the small sample size of the target person in real
applications. To handle these issues, several articles
applied Transfer Learning (TL) methods which train
personalized models from samples of the target and
source persons (Chen et al., 2013; Chu et al., 2013;
Sangineto et al., 2014; Chen and Liu, 2014; Mo-
hammadian et al., 2016). Unlike single-task learning
on only target samples, TL and Multi-task Learning
(ML) models avoid overfitting using knowledge ac-
quired from other domains or tasks.

Depending on the type of available labels on the
source and target domains, samples for TL meth-
ods can be categorized into two types, multi-class
or one-class samples. In the case when the multi-
class samples are available for the source or target
domain(s), several TL methods for facial expressions
have been proposed (Chen et al., 2013; Chu et al.,
2013; Sangineto et al., 2014; Chen and Liu, 2014;
Mohammadian et al., 2016). Although they can clas-
sify facial expressions accurately using the informa-
tion of their labels, collecting and annotating all class
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samples are time-consuming. Especially in anomaly
detection, it is difficult to collect anomalous samples
because they scarcely occur. Therefore, for a wide
range of applications including anomalous facial ex-
pression detection, it is important to develop a one-
class TL method which can work with only one-class
samples, i.e., normal samples. Since it is difficult to
estimate an accurate boundary between the normal
and anomalous samples from only one-class samples,
developing a highly accurate one-class TL method is
an open problem.

He et al. proposed a one-class ML method which
requires only one-class samples in both the source and
target domains (He et al., 2014). They conducted ex-
periments on artificial toy data and textured images
for detecting anomalous samples. Their approach
detects anomalous samples by combining a generic
model for all tasks and a single-task model. How-
ever, the generic model in (He et al., 2014) handles
the source samples equally and thus does not handle
the differences between the tasks. In fact, we found
by experiments that the accuracy of their ML method
is close to that of a conventional one-class method on
the target person only.

To handle individual differences appropriately in
one-class TL, we explore the idea of extending a
generic model to a personalized model in a one-
class classifier. Inspired by Selective Transfer Ma-
chine (STM) (Chu et al., 2013) which was pro-
posed for multi-class TL, we propose a novel method
named One-Class Selective Transfer Machine (OC-
STM). OCSTM learns a personalized model from the
one-class target and source samples by re-weighting
the samples based on their proximity to the target
samples. By handling the source samples unequally,
OCSTM can handle the individual differences more
appropriately than the conventional one-class ML
method.

In summary, the main contributions of our work
are as follows.

• We extend a multi-class selective transfer learn-
ing method (STM) to a one-class transfer learning
method (OCSTM) for anomaly detection.

• We show the effectiveness of OCSTM compared
to ordinary one-class methods and a one-class ML
method by experiments on anomalous facial ex-
pression detection.

• Since the selection of feature extraction methods
highly influences the performance of one-class
methods, we compare them for anomalous facial
expression detection by experiments.

2 RELATED WORK

In facial expression recognition, most articles focused
on multi-class recognition which classifies face im-
ages into pre-defined classes, e.g., six basic expres-
sions, namely happiness, sadness, anger, feat, surprise
and disgust (Shan et al., 2009). Recognition of fa-
cial Action Units (AUs) (Ekman and Friesen, 1978),
which represent changes in facial expression in terms
of visually observable movements of the facial mus-
cles (Mohammadian et al., 2016), is also focused on
analyzing information afforded by facial expression
(Zeng et al., 2015). On the other hand, one-class
facial expression classification, which distinguishes
one-class facial expressions from the other ones, were
reported in few articles. Zeng et al. proposed a
method for distinguishing emotional facial expres-
sions from non-emotional ones (Zeng et al., 2006).
They formalized emotional facial expression detec-
tion as a one-class classification problem, and the
classifier was learnt from emotional facial expressions
of the target person only. The classifier discriminates
the emotional facial expressions from the rest of the
facial expressions. Since the emotional facial expres-
sion samples are often scarce in real applications, the
one-class classifier learnt from emotional expressions
of a single person may suffer from overfitting. Be-
yond a single-task method, He et al. proposed a ML
method for one-class classification (He et al., 2014).
However, as we explained in Sec. 1, their method
handles the source samples equally and thus does not
handle the differences between the tasks.

Chen and Liu proposed a TL method which uses
binary-class (pain/normal) source samples and one-
class (normal) target samples for pain recognition
(Chen and Liu, 2014). They predicted the class dis-
tribution of the target person using the relationship
between the class distributions of the persons in the
source domain. Unlike (Chen and Liu, 2014), we pro-
pose a one-class transfer learning method which re-
quires no anomalous samples in both the source and
target domains.

In multi-class TL methods, several articles pro-
posed to re-use source samples which are close to the
target samples to handle individual differences. For
instance, Chen et al. proposed a TL method which
re-weights source samples so that distribution mis-
match between the source and target domains is min-
imized (Chen et al., 2013). Chu et al. argued that re-
weighting after predicting the densities is not practical
and increases the estimation error (Chu et al., 2013).
They proposed a TL method which re-weights the
source samples without computing the source and tar-
get densities. In their method, a Support Vector Ma-
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chine (SVM) based classifier is used for multi-class
(binary-class) classification. Our approach is an ex-
tension of the method (Chu et al., 2013) to one-class
classification based on One-Class Support Vector Ma-
chine (OCSVM) with non-linear kernel (Schölkopf
et al., 2001). In (Sangineto et al., 2014; Zen et al.,
2016), person-specific linear SVM classifiers for per-
sons in the source domain were learnt, and knowl-
edge about parameters of the classifiers was trans-
formed to the target domain. However, since as we
will see in Sec. 3.1 parameters of the separating hy-
perplane in nonlinear SVM are not computed explic-
itly, these methods cannot be directly applied to non-
linear OCSVM.

3 ONE-CLASS SELECTIVE
TRANSFER MACHINE

In this section, we introduce our OCSTM for learning
a personalized model from the target and source sam-
ples by re-weighting the samples based on their prox-
imity to the target samples. Unlike multi-class trans-
fer learning methods (Chen et al., 2013; Chu et al.,
2013; Sangineto et al., 2014; Chen and Liu, 2014),
OCSTM requires only one-class samples in both the
source and target domains.

3.1 Overview of Our Method

Suppose we have the source samples Xsc = {xsc
i }nsc

i=1,
and the target samples Xtar = {xtar

i }ntar
i=1, where

xsc
i , xtar

i ∈ Rd , and nsc and ntar respectively represent
the numbers of the samples of the source and target
domains. Our goal is to learn a classifier f (xtar) which
discriminates normal samples from anomalous sam-
ples in the target domain. The classifier f (·) returns
the value +1 if the input sample is predicted as nor-
mal, otherwise returns -1.

We use OCSVM (Schölkopf et al., 2001) because
it is one of the most popular anomaly detection al-
gorithms. The classifier of OCSVM is given by
f (xtar) = sign(wTφ(xtar)−ρ), where φ(·) is the non-
linear feature mapping associated with a kernel func-
tion k(x,y) = φ(x)Tφ(y), and w, ρ are parameters of
a hyperplane. In most of the kernel functions such as
Gaussian kernel, the mapped example φ(x) cannot be
calculated explicitly (Amari and Wu, 1999) and thus
we cannot obtain the hyperplane parameter w explic-
itly. Instead, we obtain the inner products between
the hyperplane parameter w and the mapped samples
φ(x) by the kernel function.

The objective function of OCSTM for learning the
classifier is extended from that of STM (Chu et al.,

2013) which uses SVM as the classifier. In STM, it is
assumed that the labels of the target samples are not
available. Thus, the target samples are used only for
obtaining the weights for the source samples, and the
classifier was learnt from the re-weighted source sam-
ples and their class labels. Since OCSVM is a one-
class classifier, it requires no class label for learning.
Therefore, the target samples can be used for classifier
learning, as well as the re-weighted source samples.
We formulate OCSTM as:

(w,s) = arg min
w,s

Rw(Xsc,Xtar,s)+λΩssc(X
sc,Xtar),

(1)

where Rw(Xsc,Xtar,s) is the empirical risk (details
are given in Sec. 3.1.1) defined on the source and
target samples Xsc,Xtar with each instance xsc and
xtar weighted by ssc ∈ Rnsc and star ∈ Rntar , respec-
tively. Each element ssc

i and star
i corresponds to a non-

negative weight for the sample xsc
i and xtar

i , respec-
tively. We denote s as the vertical concatenation of ssc

and star by s = (ssc
1 , ...,s

sc
nsc ,s

tar
1 , ...,star

ntar)
T. The second

term Ωssc(Xsc,Xtar) measures the distribution discrep-
ancy between the source and target distributions as a
function of ssc (details are given in Sec. 3.1.2). The
lower the value of Ωssc(Xsc,Xtar), the more similar
the source and target distributions are. A parameter λ
(≥ 0) balances the empirical risk term and the distri-
bution discrepancy term.

3.1.1 Empirical Risk

The first term in Eq. (1), Rw(Xsc,Xtar,s), is the
empirical risk of OCSTM, where each instance is
weighted by its proximity to the samples in the target
domain. In OCSVM, the samples are mapped into the
feature space associated with a kernel function, and
are separated from the origin with maximum margin
(Schölkopf et al., 2001). We introduce an error limit
parameter ν ∈ (0,1), which, in OCSVM, corresponds
to an upper bound on the fraction of anomaly samples
on the source and target samples and a lower bound of
the fraction of the support vectors (Schölkopf et al.,
2001). We extend the objective function of OCSVM
so that each training instance is weighted by si in the
empirical risk of OCSTM. The empirical risk is de-
fined by:

Rw(Xsc,Xtar,s) =
1
2
‖w‖2 +

1
νnall

nall

∑
i=1

siξi−ρ,

s.t. wTφ(xi)≥ ρ−ξi, ξi ≥ 0, (2)

where nall = nsc+ntar, {xi}nall
i=1 =Xsc∪Xtar, and ξi is a

slack variable for training sample xi. If ξi is zero, the
corresponding sample resides beyond the hyperplane,
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otherwise below the hyperplane. In the second term,
small weight si is given to the slack variable ξi of the
sample which is far from the target samples and thus
such a sample is hardly considered.

3.1.2 Domain Discrepancy

The second term in Eq. (1), Ωssc(Xsc,Xtar), is the do-
main discrepancy, which is used to find a re-weighting
function for minimizing the discrepancy between the
source and target domains. Following (Chu et al.,
2013), we adopt the Kernel Mean Matching (KMM)
(Gretton et al., 2009) to minimize the discrepancy be-
tween the means of the source and target distributions
in the Reproducing Kernel Hilbert Space (RKHS) H .
The difference between STM and OCSTM in the do-
main discrepancy is just the notation of the symbols1.
KMM computes the instance-wise weights ssc that
minimizes

Ωssc(Xsc,Xtar)

=

∥∥∥∥∥
1

nsc

nsc

∑
i=1

ssc
i φ(xsc

i )−
1

ntar

ntar

∑
j=1

φ(xtar
j )

∥∥∥∥∥

2

H

, (3)

where ‖ · ‖2
H is L2-norm in RKHS. We introduce

κi := nsc
ntar

∑ntar
j=1 k(xsc

i ,xtar
j ), i = 1, ...,nsc, which cap-

tures the proximity between the source and each tar-
get sample in H , and two constraints ssc

i ∈ [0,B],∣∣∣ 1
nsc

∑nsc
i=1 ssc

i −1
∣∣∣≤ ε. B in the former constraint limits

the scope of the discrepancy between the source and
target distributions and guarantees robustness by lim-
iting the influence of each sample xsc

i . For B→ 1, we
obtain the unweighted solution. ε in the latter con-
straint is for guaranteeing that the weighted source
distribution is close to a probability distribution (Gret-
ton et al., 2009). As in (Chu et al., 2013), the problem
of finding suitable weights ssc in Eq. (3) can be writ-
ten as a quadratic programming (QP):

min
ssc

1
2
(ssc)TKscssc−κκκTssc,

s.t. ssc
i ∈ [0,B],

∣∣∣∣∣
nsc

∑
i=1

ssc
i −nsc

∣∣∣∣∣≤ nscε, (4)

where Ksc
i j := k(xsc

i ,xsc
j ), i, j = 1, ...,nsc and κκκ =

(κ1, ...,κnsc)
T. A large value of κi indicates large im-

portance of xsc
i and is likely to lead to large ssc

i .

3.2 Optimization

To minimize the objective function in Eq. (1), we
adopt the Alternate Convex Search (ACS) method

1In (Chu et al., 2013), the source and target domains are
respectively called the training and target domains.

(Gorski et al., 2007), which solves alternately two
convex subproblems over hyperplane parameter w
and selective instance-wise weights ssc. We assume
that all target samples are equally important and thus
we fix star to a constant value. In this case, the objec-
tive function in Eq. (1) is biconvex, i.e., it is convex
in w when ssc is fixed, and is convex in ssc when w
is fixed. Under these conditions, the ACS approach
is guaranteed to monotonically decrease the objective
function.

Note that the way of optimizing w is different
from that of STM. STM trains a nonlinear SVM in
the primal problem using the representer theorem2

(Chapelle, 2007) due to its simplicity and efficiency.
However, since the empirical risk of OCSTM also
contains the hyperplane parameter ρ, OCSTM can
not train OCSVM in the primal. Therefore, OCSTM
trains OCSVM in the dual problem with Lagrange
multiplier. In the following sections, we show that
the subproblems are convex and how we optimize the
subproblems.

3.2.1 Optimization on w

When s is fixed, the subproblem over w corre-
sponds to the minimization of the empirical risk
Rw(Xsc,Xtar,s) because Ωssc(Xsc,Xtar) does not de-
pend on w. Eq. (2) can be minimized with Lagrange
multipliers αi,βi ≥ 0. The Lagrangian of Eq. (2) is
given by:

L(w,ξξξ,ρ,ααα,βββ)

=
1
2
‖w‖2 +

1
νnall

nall

∑
i=1

siξi−ρ

−
nall

∑
i=1

αi(wTφ(xi)−ρ+ξi)−
nall

∑
i=1

βiξi. (5)

The partial derivatives of the Lagrangian are set to
zero, which leads to the following equations:

w =
nall

∑
i=1

αiφ(xi),

αi =
si

νnall
−βi,

nall

∑
i=1

αi = 1. (6)

2The representer theorem proves that the optimal solu-
tion can be written as a linear combination of kernel func-
tions evaluated at the training samples for the optimiza-
tion problem on a loss function added a regularization term
λ‖w‖2 (Chapelle, 2007).
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The dual problem is obtained from Eqs. (5) and (6):

min
ααα

1
2

αααTKallααα,

s.t. 0≤ αi ≤
si

νnall
,

nall

∑
i=1

αi = 1, (7)

where Kall
i j := k(xi,x j), i, j = 1, ...,nall. The sub-

problem is convex because Kall � 0. For any sam-
ple xi whose corresponding αi and βi are nonzero
at the optimum, i.e., 0 < αi < si/(νnall), two in-
equality constraints in Eq.(2) become equalities, i.e.,
wTφ(xi)−ρ+ ξi = 0 and ξi = 0. From any such xi,
we can recover ρ by the following equation:

ρ = wTφ(xi) =
nall

∑
j=1

α jk(x j,xi). (8)

We also recover the slack variables ξξξ =
(ξsc

1 , ...,ξ
sc
nsc ,ξ

tar
1 , ...,ξtar

ntar)
T in Eq. (2) by consid-

ering two cases of αi. If αi = 0 and βi 6= 0, the
second inequality constraint in Eq. (2) becomes
equality, i.e., ξi = 0. Therefore, the first inequality
constraint in Eq. (2) becomes wTφ(xi) ≥ ρ. If
0 < αi ≤ si/(νnall), the first inequality constraint
in Eq. (2) becomes equality, i.e., ξi = ρ−wTφ(xi).
Finally, we can obtain ξξξ by the following equation,
ξi = max(0,ρ−wTφ(xi)), i = 1, ...,nall. Using w
in Eq. (6), the classifier of OCSTM is obtained as
follows:

f (x) = sign(wTφ(x)−ρ)

= sign

(
nall

∑
i=1

αik(xi,x)−ρ

)
. (9)

3.2.2 Optimization on ssc

When w is fixed, we obtain the subproblem over ssc

from Eqs. (2) and (4), which corresponds to the fol-
lowing QP:

min
ssc

1
2
(ssc)TKscssc +

(
1

λνnall
ξξξsc−κκκ

)T

ssc,

s.t. 0≤ ssc
i ≤ B, nsc(1− ε)≤

nsc

∑
i=1

ssc
i ≤ nsc(1+ ε),

(10)

where ξξξsc
=(ξsc

1 , ...,ξ
sc
nsc)

T. The subproblem is convex
because Ksc � 0. As in STM (Chu et al., 2013), the
procedure here is different from the original KMM. In
each iteration, the weights will be refined through the
slack variables ξξξsc. The source samples which have
large ξsc

i lead to small ssc
i to keep the objective small,

hence this difference reduces the weights for samples

which are close to anomalous samples. Different from
STM, the slack variable of a source sample is com-
puted without the class label. Therefore, the discrim-
inative property between the normal and anomalous
samples would highly depend on feature extraction
methods, which we will address in Sec.4.2.

Algorithm 1: One-class selective transfer machine.

Input: Samples Xsc,Xtar, parameters σ,ν,λ,B,ε
Output: Hyperplane parameters w,ρ and instance-

wise weights s
Initialize ξξξ← 0
while not converged do

Obtain the instance-wise weights ssc by solving
the QP in Eq. (10)
if first loop then

star←max(ssc)1
end if
Obtain the hyperplane parameters w, ρ by solv-
ing Eqs. (7) and (8)

end while

Algorithm 1 summarizes the OCSTM algorithm3.
While the instance-wise weights ssc for the samples
in the source domain are given in Eq. (10), such
weights are not given to the samples in the target do-
main. When the classifier is learnt from the source
and target samples, target samples need to be given
instance-wise weights star. To give target samples
large instance-wise weights, the elements of star are
set to the maximum value of ssc after the first opti-
mization of ssc.

4 EXPERIMENTS

We conducted four kinds of experiments for evaluat-
ing the proposed OCSTM regarding the following as-
pects: comparison with related methods, dependency
on the feature extraction methods, performance with
respect to the number of the training samples in the
target domain, and dependency on the parameter λ.

4.1 Dataset

The UNBC-McMaster Shoulder Pain Expression
Archive (UNBC-MSPEA) database (Lucey et al.,
2011) is composed of 200 video sequences contain-
ing spontaneous pain facial expressions. It depicts

3We denote the bandwidth of the Gaussian kernel by σ,
a zero-value vector whose length is nall by 0, a one-value
vector whose length is ntar by 1, and the function that finds
the maximum element of an input vector by max(·).
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Figure 1: Sample in the UNBC-MSPEA database: A white
or red point represents a landmark for landmark-based fea-
tures and a white or blue point represents a landmark for
SIFTD.

Table 1: Pairs of landmarks for computing DFL.

# Pairs of landmarks
1 inner corners of right and left brows
2 right inner brow corner and nasal spine
3 left inner brow corner and nasal spine
4 right upper lid and lower lid
5 left upper lid and lower lid
6 right outer lid corner and right outer lip corner
7 left outer lid corner and left outer lip corner

25 patients performing a series of active and pas-
sive range-of-motion tests to their affected and un-
affected limbs. All images in this dataset were an-
notated by Active Appearance Model (AMM) land-
marks (Matthews and Baker, 2004) and the Prkachin
and Solomon pain intensity (PSPI) metric (Prkachin
and Solomon, 2008). A sample image and AAM
landmarks are shown in Fig. 1. We used images of
10 subjects who exposed high intensity painful facial
expressions (PSPI > 6). Low intensity painful facial
expression images (0 < PSPI≤ 6) were not used. The
number of used images were 19,429 including 383
painful facial expression images.

4.2 Feature Extraction

Since OCSTM is a one-class method, the following
requirements for features are necessary: (1) normal
and anomalous samples in the target domain are sep-
arated in the feature space, (2) there are at least a few
source samples which are close to the target normal
samples. If (1) is not satisfied, the algorithm of OC-
STM gives large weights to the samples which are
close to the anomalous samples. If (2) is not satisfied,
all source samples are far from the target samples, and
the source samples do not help to predict the classes
of the target samples.

To investigate features suitable for the one-class
methods, we applied two ordinary appearance-based
extraction methods, Scale-Invariant Feature Trans-

form Descriptors (SIFTDs) (Sangineto et al., 2014)
and Local Binary Pattern Histograms feature (LBPH)
(Ahonen et al., 2006) as well as simple landmark-
based features, i.e., distances between pairs of land-
marks (Fig. 1). For detecting face and facial points in
the three feature extraction methods and for extracting
the landmark-based features, AMM landmarks anno-
tated to all images were employed.

SIFTD is a local feature, and is thus suitable for
anomalous facial expressions analysis. This is be-
cause an anomalous facial expression is related to
AUs which are localized to specific face regions.
Firstly the face was detected, aligned, and resized to a
200×200 pixel window. Then descriptors were com-
puted within 36× 36 pixel regions around predeter-
mined 16 facial landmarks (Fig. 1). The length of the
descriptor is 128 for each region and thus the length
of the feature is 128×16 = 2,048 for each image.

LBPH is also a local feature and thus suitable
for anomalous facial expression analysis. Firstly, the
face was detected, aligned, and resized to a 128×128
pixel window. Then the resized face image was di-
vided to 8× 8 blocks and the LBP histograms were
extracted from the blocks. We apply uni f orm LBPu2

8,1
to each block, where u2 means ”uniform”, and (8,1)
represents 8 sampling points on a circle of radius 1.
From each block, a 59-dimensional feature was ex-
tracted and thus the length of the LBP histogram is
59×8×8 = 3,776.

Face landmarks is one of the most applied fea-
tures for facial expression analyses. Typically, high-
dimensional features contain more noise than low-
dimensional ones. Thus we use simple features, i.e.,
landmark distances, which are related to painful fa-
cial expressions. In (Lucey et al., 2011), PSPI was
decided based on AUs, brow lowering (AU4), cheek
raising (AU6), eyelid tightening (AU7), nose wrin-
kling (AU9), upper-lip raising (AU10) and eye clos-
ing (AU 43). We selected seven distances related to
the AUs in Table 1. The distances were computed
based on normalized coordinates. Here x and y co-
ordinates are respectively normalized by the distance
between the inner corners of the eyes and the distance
between the middle of the eyes and the nasal spine
for each image. We refer to these Distances of Face
Landmarks as DFL and the length of the feature is 7.

4.3 Evaluation Protocol and Parameter
Setting

Since images in which a painful facial expression is
exposed are scarce (1.97%), we used them as anoma-
lous samples and normal samples as the rest. Follow-
ing other articles, experiments were conducted using
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Table 2: Comparison with relevant methods on DFL features (ntar = 500). Each row shows the result when the each subject
was used for the test subject and the last row shows their average.

F1 score AUC

subject
T-

OCSVM
ST-

OCSVM
ML-

OCSVM OCSTM
T-

OCSVM
ST-

OCSVM
ML-

OCSVM OCSTM
1 0.11 0.27 0.12 0.21 0.99 1.00 1.00 0.99
2 0.31 0 0.29 0.54 0.99 0.67 1.00 1.00
3 0.88 0.93 0.85 0.90 1.00 1.00 1.00 1.00
4 0.60 0 0.54 0.61 0.89 0.53 0.90 0.85
5 0 0 0 0 0.50 0.76 0.46 0.77
6 0.15 0.23 0.14 0.21 0.96 0.96 0.93 0.97
7 0.34 0.67 0.40 0.56 1.00 1.00 1.00 1.00
8 0.75 0.49 0.75 0.73 0.95 0.76 0.94 0.91
9 0.67 0 0.69 0.82 0.99 0.24 1.00 1.00

10 0 0 0 0 0.48 0.52 0.41 0.72
average 0.38 0.26 0.38 0.46 0.88 0.74 0.86 0.92

a leave-one-subject-out evaluation scheme in which
one subject in turn was chosen as the target and the
others as the source. Each image was treated inde-
pendently, i.e., no temporal information was used.
The ntar target samples were randomly selected from
the target subject, and the rest of the target samples
were used for the test. The Area Under the ROC
Curve (AUC) and F1 score were used for evaluation,
where F1 = 2·Precision·Recall

Precision+Recall . We define F1 = 0 when
the number of anomalous samples which the classi-
fier predicts as anomalous is zero4. We repeated the
experiments five times (except in Sec. 4.7 one time)
on each person for each method, and the averages of
AUC and F1 scores were reported.

We used Gaussian kernel with a bandwidth equal
to the mean distance between the target training sam-
ples. We set the parameter ν, which implies an up-
per bound on the fraction of anomaly samples on the
source and target samples, as ν = 0.0001 since we
used only normal samples for training OCSTM.

Furthermore, we set three parameters differently
from STM. Firstly, we set ε as follows. The first and
second constraints in Eq. (7) together derive the fol-
lowing requirement for s, 1 ≤ 1

νnall
∑nall

i=1 si. To ensure
this inequality through the second constraint in Eq.
(10), we set ε = 1−νnall/nsc.

Secondly, we set the parameter B, i.e., the upper
bound of si in Eq. (10), based on the ratio of the
source samples. In (Chu et al., 2013), B was set to
a large value. We observed that under such a set-
ting, only a small number of source samples tend to
be re-weighted largely, even if there are more source
samples which are close to target samples. There-
fore, we set B to the reciprocal of the ratio of the
source samples which are close to target samples, i.e.,
B = nsc/ncl, where ncl is the number of source sam-
ples whose average similarity measured by the Gaus-

4In this case, Precision and Recall are both zero.

sian kernel function to the target samples is larger
than that between target samples. If ncl = 0, we set
B = 10,000 so that none of the si reaches the upper
bound B, and in this case si does not depend on B.

Thirdly, we scale the parameter λ by nsc to balance
the slack variables ξξξ and κκκ. In Eq. (10), the 1

λνnall
ξξξ

tends to be significantly smaller than κκκ due to the term
1

nall
5. In addition, κκκ is weighted by nsc by definition,

i.e., κi := nsc
ntar

∑ntar
j=1 k(xsc

i ,xtar
j ). Since nsc and nall for

the target person are different from those of the other
persons, and nsc is nearly equal to nall, we set λ as λ =
λ′/n2

sc. In Sec. 4.7, we investigated the dependency of
OCSTM on the parameter λ′. Since the dependency
is small, we set λ′ = 1,000 in all experiments except
in Sec. 4.7.

4.4 Comparison with Related Methods

In this section, we demonstrate the effectiveness of
OCSTM for anomalous facial expression detection
compared with related methods. Since we sup-
pose that only one-class samples are available, we
treat three one-class methods as compared methods,
i.e., OCSVM trained on the only target samples (T-
OCSVM), OCSVM trained on the source and target
samples (ST-OCSVM), and a state-of-the-art multi-
task learning with one-class SVM (ML-OCSVM) (He
et al., 2014). These methods were implemented by
us and the parameters for each method were tuned so
that it exhibits the best result. For this comparison,
we used DFL features.

Table 2 shows the F1 scores and AUC of the com-
pared methods. We see that our approach outperforms

5In the empirical risk of STM, the training loss is
not weighted by nall, i.e., C ∑ntr

i=1 siLp(yi,wTxi), where ntr
means the number of the source samples in this paper,
Lp(y, ·) is a loss function for each sample whose class la-
bel is y, and C is a constant parameter.
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(a) T-OCSVM on target samples
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(b) OCSTM on target and source samples
Figure 2: 2D PCA projections of the samples and the hyperplanes for T-OCSVM and OCSTM when ntar = 10. Green and red
squares respectively represent normal and anomalous test samples in the target domain, and orange crosses and gray squares
respectively represent normal training samples in the target and source domains. A red closed surface represents a hyperplane
of each classifier which predicts a sample inside as normal.

Table 3: Average similarities between the normal and
anomalous samples in the target domain, computed by the
Gaussian kernel function.

subject normal-anomalous normal-normal
1 0.140 0.331
2 0.019 0.358
3 0.007 0.345
4 0.256 0.372
5 0.411 0.333
6 0.012 0.316
7 0.003 0.361
8 0.169 0.321
9 0.178 0.406

10 0.418 0.362

all the other methods on average. The higher scores
of OCSTM compared with T-OCSVM are not sur-
prising because T-OCSVM was learnt from only lim-
ited training samples and thus suffered from overfit-
ting. As discussed in Sec. 1, ST-OCSVM cannot han-
dle the individual differences appropriately, resulting
in low F1 scores for several subjects. The scores
of ML-OCSVM are close to those of T-OCSVM.
This is because that ML-OCSVM combines the ST-
OCSVM and T-OCSVM models and a higher combi-
nation weight for T-OCSVM was selected. In contrast
to ML-OCSVM, which can only produce intermedi-
ate classifiers of two models, OCSTM fits the target
distribution better since OCSTM selects source sam-
ples which are close to the target samples.

Table 3 shows the average similarities between the
normal and anomalous samples in the target domain,
and the similarity is given by the Gaussian kernel
function. For subjects #5 and #10, the similarity be-
tween the normal and anomalous samples in the target
domain is larger than that between the target normal
samples. Therefore, the requirement (1) in Sec. 4.2 is

violated, and F1 scores are zero (Table 2).
Fig. 2 shows 2D PCA projections of the samples

and the hyperplanes for T-OCSVM and OCSTM. In
Fig. 2, green and red squares respectively represent
the normal and anomalous test samples in the target
domain, and orange crosses and gray squares respec-
tively represent the normal training samples in the tar-
get and source domains. Purple squares in Fig. 2
(b) represent the source samples that are given larger
instance-wise weights than the mean. Since we used
non-linear feature mapping, a hyperplane is a closed
surface in the example space. A red closed surface
represents a hyperplane of each classifier which pre-
dicts a sample inside as normal. In Fig. 2 (a) many
normal test samples are outside the closed surface,
which signifies that the model of T-OCSVM overfits
to a few target samples. Conversely, in Fig. 2 (b) more
normal test samples are inside the closed surface than
T-OCSVM in Fig. 2 (a), which signifies that OCSTM
avoids overfitting unlike T-OCSVM. Since in Eq. (2),
small weights s are given to the slack variables ξξξ of
the source samples which are far from the target sam-
ples, OCSTM hardly considers such samples. Con-
sequently, the optimization in Eq. (1) yields a hyper-
plane such that the target samples and the source sam-
ples which are close to the target samples are inside
the closed surface.

4.5 Comparison of Feature Extraction
Methods for OCSTM

In this section, we investigate the dependency of the
proposed method on the feature extraction methods.
As mentioned in Sec. 4.2, the two requirements for
features are necessary in OCSTM. We conducted ex-
periments using the three feature extraction methods.
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Table 4: F1 score using three feature extraction methods for
OCSVM and OCSTM (ntar = 500).

T-OCSVM OCSTM
subject LBPH SIFTD DFL LBPH SIFTD DFL

1 0.03 0.03 0.11 0.07 0.05 0.21
2 0.11 0.13 0.31 0.20 0.18 0.54
3 0.64 0.69 0.88 0.72 0.75 0.90
4 0.45 0.52 0.60 0.59 0.59 0.61
5 0.06 0.08 0 0.09 0.15 0
6 0.06 0.06 0.15 0.08 0.08 0.21
7 0.11 0.14 0.34 0.18 0.18 0.56
8 0.52 0.59 0.75 0.60 0.62 0.73
9 0.35 0.41 0.67 0.44 0.43 0.82

10 0.46 0.45 0 0.63 0.52 0
average 0.28 0.31 0.38 0.36 0.35 0.46

Table 4 shows F1 scores of T-OCSVM and OC-
STM using three kinds of features, LBPH, SIFTD and
DFL. The OCSTM outperforms T-OCSVM for each
feature extraction method in F1 score, and the results
show that the source samples which are close to the
target samples help to predict the classes of the test
samples accurately. Table 4 also shows that the F1
scores using DFL are higher than those using features
LBPH and SIFTD. This is because high-dimensional
features, i.e., LBPH and SIFTD, contain more irrele-
vant information than low-dimension ones, i.e., DFL.

As mentioned in Sec. 4.4, the F1 scores of OC-
STM with DFL features for subjects #5 and #10 are
zero because the similarity between the normal and
anomalous samples in the target domain is larger than
that between the target normal samples. On the other
hand, in OCSTM with LBPH and SIFTD features, we
confirmed that the similarity between the normal and
anomalous samples in the target domain is smaller
than that between the target normal samples for all
subjects. Thus the requirement (1) in Sec. 4.2 is sat-
isfied and the F1 scores are not zero.

4.6 Performance Analysis in Terms of
the Number of the Target Samples

In this section, we analyze how the performance of
our method depends on the number of target samples
ntar. We conducted experiments using DFL by vary-
ing ntar from 10 to 500.

Fig. 3 shows the F1 scores and AUC of OCSTM
and the compared methods. We see that the perfor-
mance decreases as ntar decreases. OCSTM outper-
forms the other methods for each ntar in F1 score and
AUC, except for AUC when ntar = 10. The F1 score
of OCSTM when ntar = 300 is higher than those of the
other methods when ntar = 500. We can safely con-
clude that OCSTM avoids overfitting better than the
other methods.
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Figure 3: Performance of OCSTM with respect to the num-
ber ntar of target samples. A line graph and a bar graph
respectively represent F1 scores and AUC for each method.
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Figure 4: F1 scores and AUC of OCSTM with respect to
the parameter λ′ (ntar = 500). For comparison, the scores of
the other methods are shown as horizontal lines.

4.7 Dependency of OCSTM on the
Parameter λ

Here we analyze how the performance of our method
depends on the parameter λ = λ′/n2

sc. We con-
ducted experiments using DFL by varying λ′ ∈
{1,10,100,1000,10000} when ntar = 500.

Fig. 4 shows the F1 scores and AUC of OC-
STM with respect to parameter λ′ and the scores of
the other compared methods. Note that scores of the
compared methods are the best scores by varying their
parameters. We see that the performance of OCSTM
does not largely depend on the parameter λ′. Al-
though when λ′ = 100 the F1 score of OCSTM is
lowest, the performance is still higher than the other
methods.
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5 CONCLUSIONS

In this paper, we proposed a one-class transfer
learning method named OCSTM, for personalized
anomalous facial expression detection. Unlike other
anomaly detection methods, the OCSTM learns a per-
sonalized model from the target and source samples
by re-weighting the samples based on their proximity
to the target samples. Therefore, re-weighted sam-
ples help the target model to avoid overfitting even
if the sample size of the target samples is small, and
the classifier handles the individual differences appro-
priately. Experiments conducted on UNBC-MSPEA
database show that OCSTM outperforms original
one-class SVM including the generic and single-task
model, and the state-of-the-art ML method. Further-
more, since the selection of feature extraction meth-
ods highly influences the performance of one-class
methods, we investigated suitable features for OC-
STM in anomalous facial expression detection. The
results show that DFL produces higher accuracies
than LBPH and SIFTD because low-dimension fea-
tures, i.e., DFL, contain less irrelevant information
than high-dimension ones, i.e., LBPH and SIFTD.
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