
A C++ Implementation of UML Subsets and Unions for MDE

Francesco Bedini, Ralph Maschotta, Alexander Wichmann and Armin Zimmermann
Software and Systems Engineering Group, Technische Universität Ilmenau, Ilmenau, Germany

Keywords: Subset, Union, UML, Ecore, C++, Variadic Template.

Abstract: This paper shows and discusses the realization of advanced data structures used in the UML specification
(namely subsets, unions, and subset-unions) for a C++ execution engine. Those data structures have been real-
ized thanks to the use of variadic templates, which were first introduced in C++11. Thanks to those templates
which allow to take as parameters a non-fixed number of elements in an elegant manner, it has been possible to
automatically generate from the Ecore and UML ecore models type-safe data structures which avoid elements
being duplicated or the generation of additional lists during run-time. A performance analysis is presented to
show how our implementation behaves compared to the other possible approaches.

1 INTRODUCTION

To describe a complex structure such as that of the
UML metamodel, advanced abstract data structures
are required. The Object Modeling Group (OMG)
makes a massive use of subsets and unions to describe
the inheritance of attributes between classes.

Those annotations allow to easily and quickly de-
fine in a model collections of unique elements, thanks
to the intrinsic properties of a set. The association end
properties hugely simplify the life of a modeler, as he
or she does not need to make sure whether inherited
elements are already present in a collection more than
once, for example when related subsets reference at
the end the same union.

On the other hand, the realization is not straight-
forward and requires a careful analysis or a compro-
mise between wasting memory and speed to comply
with the UML definition of subsets and unions.

This paper proposes the realization of such com-
plex data structure by using recently introduced
C++ constructs such as variadic templates (Gregor and
Järvi, 2007) and tuples.

In this paper, we extend our Execution Engine al-
ready described in (Jäger et al., 2016; Bedini et al.,
2017) by defining and implementing a set of data
structures instead of using collecting operations to
create the requested sets on the fly. Our approach
minimizes the full duplication of elements in differ-
ent lists and is entirely type-safe, as each item stored
in our collection preserves its type. Thanks to its ro-
bust recursive implementation, elements which are in-

serted in a subset are assured to be inserted in all the
corresponding unions and subsets.

As an implementation of the often used UML sub-
sets and unions is, of course, not natively supported
by any programming language or library, an imple-
mentation is necessary.

The rest of this paper is structured as follows. Sec-
tion 2 describes the state of the art, Section 3 describes
the proposed method, whereas Section 4 describes re-
alization details. In Section 5, a validation example is
shown, while Section 6 shows a performance bench-
mark evaluating the time and memory required for
different test cases. Finally, Section 7 summarizes the
paper and proposes improvements as future works.

2 STATE OF THE ART

The UML specification makes a significant use of ab-
stract data structures to model class attributes which
are derived from related classes. Those relations
include associations, inheritances, aggregations, and
compositions.

Those dependencies are explicitly indicated on
the association ends with properties enclosed in curly
brackets such as {subsets <end>} or {union}, as it
can be seen in Fig. 1. The parameter <end> is the
name of the referred union which will contain the el-
ements stored in this and other subsets.

The few existing implementations of the UML
metamodel, in particular, the one included in the
IDE Eclipse, show us different implementation ap-

464
Bedini, F., Maschotta, R., Wichmann, A. and Zimmermann, A.
A C++ Implementation of UML Subsets and Unions for MDE.
DOI: 10.5220/0006606404640471
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 464-471
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



 / ownedElement : Element
 / owner : Element

Element

 / memberNamespace : Namespace

NamedElement

 / ownedMember : NamedElement
/ member : NamedElement
 / importedMember : PackageableElement

Namespace

 namespace : Namespace

PackageableElement

namespace

/ importedMember

*

*

{subsets memberNamespace}

{subsets member}

/ owner

/ ownedElement

0..1

0..*
{union}

{union}

/ namespace

/ ownedMember

0..1

*

{subsets memberNamespace,
union}

{subsets ownedElement, union}

/ memberNamespace

/ member

*

*

{union}

{union}

Figure 1: UML class diagram of a portion of the UML
metamodel showing the dependencies between four classes
as an example.

proaches, which as it will be shown are not efficient
nor dynamic, either for their execution time or be-
cause of wasted storage due to the duplication of ele-
ments or the management of additional caches.

For example, a Java version is already imple-
mented in the Eclipse EMF. Subsets cannot be
changed after their creation, and are lazily created
and cached once. This implementation limits the
tool’s capability of supporting real-time changes to
the model, without the need of destroying and cre-
ating the list every time.

Fig. 1 shows an UML class diagram representing
a small extract of the UML metamodel. It shows the
relationship between four UML classes. From this
diagram, the following subsets (S) and unions (U) can
be inferred:

Element::ownedElement (U) composed by Name-
space::ownedMember (S)

Namespace::member (U) composed by Name-
space::importedMember (S)

NamedElement::memberNamespace (U)
composed by NamedElement::namespace (U)
and NamedElement::memberNamespace (S)

Although this example might seem trivial, in real-
ity, a union could be made of plenty of subsets, even
from very different levels of the inheritance hierarchy.

As the UML specification action do not strictly
formalize what a subset is in the Meta-Object Facility
(MOF) infrastructure (Alanen and Porres, 2008), for
this paper, we use the following definition:

Subsets: are unordered collections of unique ele-
ments, sub-setting one or more unions.

Unions: every element which is referenced by at
least one subset, is a union, and it contains all the ele-
ments contained by its subsets, at most once.

The possibility to implement those kinds of as-
sociation properties consists of two possible ap-
proaches. The first one consists of storing the at-
tributes once in the base class containing the union
and then using methods in the lower elements which
are subsets referencing that element to walk through
the inheritance tree and collect the corresponding ele-
ments in a new container. Possibly this container may
be cached for faster subsequent retrievals.

The second one would consist of duplicating the
elements or a reference to those items in every class,
making the insertion operation more demanding but
speeding up the get operation as the lists are already
built and available at the right place. In both cases,
those data structures need to be able of storing ele-
ments of different types.

There are different possibilities to store elements
of various kinds inside a collection in C++. The most
basic and dangerous one would be to store the object
pointers in a collection of void pointer types (void*).
This technique can lead to undefined behaviors as the
compiler would not throw any exception when the
pointer is statically cast to a wrong type.

A second use would be to use the “any” li-
brary included in the well known open source
portable Boost library set (Dawes et al., 1998).
Using this library, it would be possible to de-
fine a collection of type boost::any, which is a
proper value type. To use the value or pointer
stored in it, it is necessary to retrieve it using
the method boost::any cast<Type>(element) :
Type (Karlsson, 2005). The advantage of using Boost
rather than void pointers lays in the fact that the cast
would throw an exception if the types are not consis-
tent, preventing the standard C++ undefined behavior.

Another possibility, which is the one which has
been chosen for our realization, is introduced in the
following section.

3 METHOD

The evolution of C++ allows a more elegant and
type-safe way of realizing this kind of components,
which is by using variadic templates and the con-
cept of tuples, both introduced in the C++11 spec-
ification (ISO/IEC., 2011). Variadic templates are
function templates which contain at least a parameter

A C++ Implementation of UML Subsets and Unions for MDE

465



-set : T

Set

Union

tuple : Union

Subset

SubsetUnion

T

U
T
...U

T
...U

tuple

1..*

Figure 2: UML class diagram of the proposed containers.

pack, which is a template parameter that accepts zero
or more template arguments (Gregor, 2006). An ellip-
sis following a parameter name defines it as a param-
eter pack. Tuples are data structures which allow to
collect items of different type and access them based
on their defined order.

The order of the elements inside the template con-
sists of taking the current collection type as the first
parameter, and then the related unions’ types. The or-
der is assured to be consistent in the whole generated
model as the Acceleo code generator takes care of
defining it in a query, which always returns the same
output given the same input parameters.

Fig. 2 shows the structure of our realization of the
containers proposed in this paper. Our base data type
is a Set, containing an attribute set (here meant as
a C++ set) of type T, which is the template type. We
make use of the C++ templates, which are shown in
angle brackets and separated by commas.

Each Subset then has its type and its set of ele-
ments, of type T, plus one or more unions, of type U.
Each Union contains, in turn, a set, of type U.

There are associations which are at the same time
both a subset and a union. For those cases, the class
SubsetUnion should be used. It takes the same tem-
plate parameters as a Subset but moreover can be ref-
erenced by other subsets, too.

To define the data structures in the metamodel,
the following changes have been performed. The
EReference elements contained in the UML Ecore
metamodel need to be annotated with a defined anno-
tation “union” or “subset” to be interpreted as such
by our C++ generator. The subset annotation must,
of course, include the referenced union, as the UML
specification does with the <end> attribute inside the
association ends.

With those annotations, the code generator iden-

tifies the unions and subsets. Their types are then
derived from the model, and for each of them an at-
tribute of type Union, Subset or SubsetUnion is cre-
ated in the relevant classes. Moreover, getter methods
are generated for settable references. Those methods,
simply return a shared pointer to the class’ reference
which consists of a ready-to-use list.

4 REALIZATION

All our data structures allow adding, removing and
finding elements contained in them. We use shared
pointers to simplify the memory management.

The Listing 1 shows how the insertion of one ele-
ment in a subset works. As we are using the C++ Sets
as data structures, it is not needed to check that the
inserted elements are unique. In case the element al-
ready exists in the collection, the element will not be
added again (Musser et al., 2009).

virtual void add(shared_ptr <T> el)
{
Set<T>::add(el);
call_addEl_with_tuple(el, _tuple ,
index_sequence_for
<shared_ptr <Union <U>>...>());

}

void call_addEl_with_tuple(
shared_ptr <T> el,
const tuple <shared_ptr
<Union <U>>...>&tuple ,

index_sequence <Is ...>) {
addElRecursive(el,
get<Is>(tuple) ...);

}

template<class FirstU , class ... RestU >
void addElRecursive(shared_ptr <T> el,
shared_ptr <Union <FirstU > > obj,
shared_ptr <Union <RestU > > ... rest) {
addElRecursive(el, rest ...);
obj->add(el);

}

template<class FirstU , class ... RestU >
void addElRecursive(shared_ptr <T> el,
shared_ptr <Union <FirstU > > obj) {
obj->add(el);

}

Listing 1: add element method of a subset. All operations
are private, except add, which is the public interface.

For brevity, namespaces in listings are omitted
throughout this paper. The insertion of an element in
a subset works as follows: the element is first inserted
into the subset’s own set, and then is recursively in-

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

466



serted in all the unions with the help of the auxiliary
methods call addEl with tuple which calls, in turn,
the addElRecursive methods. There are two addEl-
Recursive methods, as one is called with a variadic
template that is at every iteration shrunk of one ele-
ment, and one is called for a single item, namely the
last union.

Our implementation moreover supports the inser-
tion of multiple elements at once through an iterator
or the inclusion of an entire Subset. The deletion of
an item is realized in the same recursive manner.

5 EXAMPLE

Fig. 3 shows the C++ realization of a connection be-
tween the example UML metamodel shown in Fig. 1
and the defined Subsets and Unions of Fig. 2. The re-
sulting created objects and connections are shown in
the object diagram in Fig. 4. This corresponds to the
C++ instructions shown in listing 2.

shared_ptr <Constraint > pe =
umlFactory ->
createConstraint_in_Context(package);

shared_ptr <Class > n1 =
umlFactory ->
createClass_in_Package(package);

shared_ptr <Class > n2 =
umlFactory ->
createClass_in_Namespace(n1);

n1->getImportedMember()->add(pe);

Listing 2: Initialization code for the exposed example.

As PackageableElement is an abstract class, the
subclass Constraint has been used instead.

The umlFactory allows to easily create elements
and assign their container and set the back reference
on their container consistently. First we create two
Namespaces n1, n2, and the constraint pe, and then
we import pe into n1.

The constraint pe has been created on purpose
inside the package instead of inside the namespace
to show that it will be included when the Members
and ImportedMembers get retrieved, but not when the
OwnedElements are requested.

We run this code and print out the elements re-
trieved by different operations executed on the in-
stance n1:

n1->getOwnedElement (1 element)
-n2
n1->getOwnedMember (1 element)
-n2
n1->getMember (2 elements)

-n2
-pe
n1->getImportedMember (1 element)
-pe

which is coherent with what was defined in Fig. 1.

5.1 Subsets and Unions applied to the
Ecore Metamodel

Although subsets and unions are defined and used in
the UML specification, we have additionally applied
them to the Ecore metamodel to generate the getter
and setter operation automatically from the model,
which allowed us to remove the corresponding opera-
tion definition from the Ecore model. This change re-
duces the size of the Ecore metamodel and simplifies
its maintainability in the future (Kleppe et al., 2003).

Once all the subsets and union have been denoted
as such in the metamodel, our generator has been able
to automatically produce compilable code correctly
representing all the containment relationship between
all elements.

Fig. 5 shows an extract of the Ecore meta-
model. EReferences and EAttributes are both
EStructuralFeatures, which can be retrieved from
a EClass by calling the method getEStructural-
Features. This method must return all the
EAttributes and all the EReferences which are
owned by the EClass.

Our code generator generates the getter operations
shown in Listing 3, which simply returns the associ-
ated attribute of the same type.

shared_ptr <Union <EStructuralFeature >>
getEStructuralFeatures ();

shared_ptr <Subset <EAttribute ,
EStructuralFeature >> getEAttributes();

shared_ptr <Subset <EReference ,
EStructuralFeature >> getEReferences();

Listing 3: Automatically generated Subsets and Unions get-
ter source code.

It is important to notice that each getter method
automatically returns the correct type, without any ad-
ditional cast needed to use the retrieved elements.

6 PERFORMANCE EVALUATION

This section shows the results of the measurements
performed on 3 different implementations, two of
which in C++ and one in Java. The first one is depicted
as “SubsetUnion” in all following plots, and it is the
one described throughout this paper. The second and

A C++ Implementation of UML Subsets and Unions for MDE

467



-set : T

Set

Union tuple : Union

Subset

SubsetUnionUnion <U->Element>

Element

NamedElement

Namespace

SubsetUnion

<T->NamedElement,

U_0->Element,

U_1->NamedElement>

Union

<U->NamedElement>

PackageableElement

Subset

<T->PackageableElement,

U->NamedElement>

T

U

T
...U

T
...U

/ importedMember

/ memberNamespace

/ member*

*

/ namespace

/ ownedMember0..1

/ owner

/ ownedElement

0..1

0..*

tuple

1..*

*

*namespace

*

<<bind>>

<<bind>>

<<bind>>

<<bind>>

Figure 3: UML class diagram of the C++ realization of the data structures, using the template T and the variadic templates U.

ownedElement = u0
member = u1
ownedMember = su
importedMember = s

n1 : Namespace n2 : Namespace

tuple = u0, u1
set = n2

su : SubsetUnion <T->NamedElement,

U_0->Element, U_1->NamedElement>

set = n2, pe

u1 : Union <U->NamedElement>

set = n2

u0 : Union <U->Element>

pe : PackageableElement
tuple = u1
set = pe

s : Subset <T->PackageableElement,

U->NamedElement>

tuple

importedMember

set

set

set

tuple

ownedElement

set

tuple

member

setownedMember

Figure 4: UML object diagram representing the objects created in the example and their relationship.

third implementation have the same behavior, but they
are realized in C++ (called “Manual”) and in “Java”.

Those two versions store their elements in the sub-
sets only, and when a Union is requested, a list gets
generated by going through the entire class hierarchy.
This realization mimics the implementation that can
be found in the Ecore realization in Eclipse.

For all the computations, a 10-level subset hierar-
chy has been used, as depicted in Fig. 6.

As the C++ version is currently not realized in a
parallel manner, for keeping the comparison fair all
tests have been executed on a 3,20GHz single-core
64bit machine with 16GB of RAM, as otherwise, Java
would take automatically advantages of multi-core
parallel execution.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

468



EClass

EClassifier
{abstract}

EAttribute

EReference

EStructuralFeature
{abstract}

ETypedElement
{abstract}

/ eReferences

0..*

{subsets eStructuralFeatures}

/ eAttributes

0..*

{subsets eStructuralFeatures}

eStructuralFeatures

0..*

{union}

Figure 5: UML class diagram of a small portion of the
Ecore metamodel, showing a union and two subsets.

6.1 Memory Occupation

Table 1 and the corresponding plot in Fig. 7 show the
memory occupied during the creation of the ten levels
of subsets and the fetching of all those levels in the
three different implementations.

It can be seen that the amount of memory occu-
pied is always linear to the number of elements and
that the Java implementation is the one requiring the
highest amount of memory.

The difference between the SubsetUnion and
Manual implementation shows how much memory is
used by inserting a pointer to an element in all the
unions pointed by all the subsets.

6.2 Execution Time

The plot shown in Fig. 8 shows the time needed to
create 105 elements (solid lines) and the time required
to retrieve the unions from each subset level (dashed
lines) starting from 10 and proceeding up to level 1.
At the end of the creation process, the union will con-
tain 106 elements, as there are ten layers.

All the data shown in this section has been ob-
tained by averaging the execution time of 11 runs, af-
ter taking out the longest and shortest execution time.

Container Element

Container_Level1 Element_Level1

Container_LevelN Element_LevelN
subset_LevelN

/ subset_Level1

/ union *

{union}

{subsets subset_LevelN-1}

*

{subsets union, union}

..
.

..
...
.

*

~
~

~
~

~
~

Figure 6: UML Class diagram showing the structure used
for the benchmarks.

Table 1: Comparison between the occupied memory at the
end of the benchmarks executions. The numbers on the first
row show how many elements per layer are present.

Elements 103 104 105 106

SubsetUnion 2.1 13.5 127.1 1263.6
Manual 2.0 10.1 86.6 845.0
Java 13.5 61.9 211.1 1929.7

1000 10000 100000 1000000

0

1,000

2,000

Elements per subset level
O

cc
up

ie
d

R
A

M
(M

B
) SU Manual Java

Figure 7: Comparison between the occupied memory at the
end of the benchmarks executions.

The standard deviations are shown in the form of error
bars, too.

As expected, inserting an element in the lower lev-
els of the hierarchy requires more time for the Subset-
Union implementation, as they have to be inserted
into the referenced unions too.

Although the benchmarks have been executed on
a single core machine, the results obtained from the
Java test do not seem to show any correlation between
the subset level and the required time. Those reg-
ular peaks seem to suggest that the virtual machine
might be occupied performing other operations, like
the garbage collection checking the status of the allo-
cated memory.

The results show that the construction of the union
upon the creation time is more efficient when the re-
trieval operation of the union at the different level
happens more than once.

The UML implementation contained in Eclipse
tackles this problem by using a cache, which pre-
vents the creation of the lists as long as the cache re-
mains valid. This approach limits the ability to make
changes to the model during run-time.

As the creation of the new lists would be exe-
cuted at run-time and are demanding as they possi-
bly require extra memory allocation and correctness
checks, our type-safe implementation is a promising
performance improvement, in particular in the cases
where the get operations are frequent, as they have,
in our case, a minimal complexity, consisting in just
returning a pointer to the requested collection.

A C++ Implementation of UML Subsets and Unions for MDE

469



1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2
·105

Subset levels

Ti
m

e
(µ

s)

create(): SubsetUnion Manual Java
getSubsetUnion(): SubsetUnion Manual Java

Figure 8: Execution time for the creation (solid lines) and the retrieval (dashed lines) of 105 elements on each subset level.

7 CONCLUSION

Thanks to the implementation of the Subset, Union
and SubsetUnion data structures in C++ with mean of
variadic templates, it has been possible to obtain an
efficient, clear, and concise way to define them. This
implementation technique avoids the on the fly con-
struction of other lists and makes dynamic casting to
the correct element type unnecessary.

From some preliminary tests, it could be seen that
adding elements to the C++ standard library’s sets is
much slower than vectors when the number of items
increases, as the uniqueness check has to be carried
out upon every insertion.

As the generator has an overall view of the com-
plete model or metamodel that is going to be gener-
ated, it is in the condition of assuring that elements
which belong to classes with multiple inheritances get
inserted only once.

In this way, some additional run-time checks can
be saved, and the more efficient vectors can be used
instead of sets without breaking any uniqueness con-
straint. Then two add methods can be offered, one
which checks the uniqueness constraint, that should
be used for run-time changes, and one that does not
proofs uniqueness that can be used, for example, dur-
ing the model instantiation.

ACKNOWLEDGEMENTS

This work has been supported by the Federal Ministry
of Economic Affairs and Energy of Germany under
grant FKZ:20K1306D.

The source code for the C++ code generator, the
execution engine, the data structures introduced in
this paper and the ecore models can be found at the
MDE4CPP project page (Systems and Software En-
gineering Group, 2016) under the MIT license.

REFERENCES

Alanen, M. and Porres, I. (2008). A metamodeling language
supporting subset and union properties. Software &
Systems Modeling, 7(1):103–124.

Bedini, F., Maschotta, R., Wichmann, A., Jäger, S., and
Zimmermann, A. (2017). A model-driven C++-fUML
execution engine. In 5th Int. Conf. on Model-Driven
Engineering and Software Development (MODEL-
SWARD 2017).

Dawes, B., Abrahams, D., and Rivera, R. (1998). Boost.org.
online. Retrieved from http://www.boost.org/.

Gregor, D. (2006). A brief introduction to variadic tem-
plates.

Gregor, D. and Järvi, J. (2007). Variadic templates for C++.
In Proceedings of the 2007 ACM Symposium on Ap-
plied Computing, SAC ’07, pages 1101–1108, New
York, NY, USA. ACM.

ISO/IEC. (2011). ISO international standard ISO/IEC

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

470



14882:2011(e) programming language C++. Re-
trieved from https://isocpp.org/std/the-standard.

Jäger, S., Maschotta, R., Jungebloud, T., Wichmann, A.,
and Zimmermann, A. (2016). An EMF-like UML
Generator for C++. 4th Int. Conf. on Model-Driven
Engineering and Software Development (MODEL-
SWARD 2016).

Karlsson, B. (2005). Beyond the C++ standard library: an
introduction to boost. Pearson Education.

Kleppe, A. G., Warmer, J. B., and Bast, W. (2003). MDA ex-
plained: the model driven architecture: practice and
promise. Addison-Wesley Professional.

Musser, D. R., Derge, G. J., and Saini, A. (2009). STL tu-
torial and reference guide: C++ programming with
the standard template library. Addison-Wesley Pro-
fessional.

Systems and Software Engineering Group (2016). Model
Driven Engineering for C++ (MDE4CPP), see
http://sse.tu-ilmenau.de/mde4cpp.

A C++ Implementation of UML Subsets and Unions for MDE

471


