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Abstract: Cyber-physical systems are highly collaborative by nature. At runtime these systems collaborate with each 

other to achieve goals that a single system could not achieve on its own. For example, autonomous vehicles 

can dynamically form convoys at runtime to facilitate higher traffic throughput and a reduction in CO2 

emissions. While the importance of context documentation and analysis in system development is well known, 

current model-based engineering approaches struggle with the size and complexity of cyber-physical systems’ 

contexts. This is due to high variety and dynamicity of the contexts to be considered. For example, a convoy 

to be formed at runtime may consist of different numbers of participating vehicles. Additionally, it may face 

different neighboring, not partaking context systems (e.g., non-equipped vehicles, equipped but not 

participating vehicles) and situations (e.g., speed limits, road construction sites, emergency vehicles). This 

paper proposes a context ontology to cope with highly dynamic contexts of cyber-physical systems by 

explicitly differentiating between not only the system and its context but also between the cyber-physical 

system network the system participates in, as well as the system network’s context. 

1 INTRODUCTION 

Cyber-physical systems (CPS) are closely integrated 

in their contexts. Not only by monitoring context 

measurements by means of sensors and influencing 

their context by means of actuators, but also with one 

another by means of direct communication devices or 

the future internet (Wolf, 2009). In doing so, cyber-

physical systems form collaborating system networks 

to achieve common goals (Broy and Schmidt, 2014). 

For example, a network of transport robots can 

optimize costs and time used for transporting goods. 

This might involve single systems deviating from 

their local optima (e.g., taking a longer route) in order 

to contribute to the global optimization goal (e.g., 

minimizing the total distance travelled of all transport 

robots involved). 

The context of a CPS is an important driver for 

the functionality and behavior the system exhibits. 

Furthermore, the existence of other context objects, 

such as barriers, people, or the number and position 

of production belts influences the actual behavior of 

the system. Hence, context aspects need to be taken 

into account during the engineering of cyber-physical 

systems. For example, the context is explicitly 

elicited during requirements engineering (Nuseibeh 

and Easterbrook, 2000), it is considered during safety 

analyses such as the FMEA (Stamatis, 2003), and the 

systems’ architecture is designed to allow for context 

awareness at runtime (Whittle et al., 2009). 

Since model-based engineering can be seen as the 

standard approach to cope with today’s challenges in 

cyber-physical system development (Broy, 2013), 

context models are heavily relied upon (Fouquet et 

al., 2012). However, current approaches do not take 

into account the two-sided nature of the context, when 

it comes to modeling CPS networks. For CPS 

networks, parts of the context behave like a system on 

their own, namely the cyber-physical system under 

development and other cyber-physical systems in its 

context, which together form a system network to 

achieve common goals, create emergent 

functionality, and exhibit an aligned behavior. Hence, 

the model-based documentation must not only 

distinguish between the system and its context, but 

furthermore, between the system and the system 

network, as well as between the system network and 

its context. It is important to note that the system, the 

system network and their contexts are partly 

overlapping. This must be explicitly taken into 
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account when it comes, among others, to safety 

analyses. For example, each CPS must prevent unsafe 

behavior of the system network it is partaking in and 

unsafe context conditions identified from a system 

network perspective must be taken into account for 

each single system as well. 

In this paper, we contribute an ontological context 

modeling framework for collaborating cyber-physical 

systems. The framework explicitly differentiates 

between the system under development, the system 

network under consideration (that the system under 

development belongs to) and their contexts. 

Furthermore, overlaps and mutual relations are 

identified and reflected in the modeling framework to 

enable advanced model-based analysis approaches to 

take advantage of this. 

The paper is structured as follows. Section 2 

briefly introduces the state of the art and previous 

work the ontological context modeling framework 

builds upon. Section 3 introduces the core principles 

of the ontological context framework and the frame-

work itself. Finally, Section 4 concludes the paper. 

2 RELATED WORK 

In the software engineering field many approaches 

have been suggested for using contextual information 

as well as for explicitly documenting the system’s 

context, which is especially important in 

requirements engineering (Gause, 2005). To this end, 

various approaches to document context information 

in requirements models have been suggested. For 

instance, goal-oriented approaches (e.g., (Yu, 1996; 

Ali, Dalpiaz and Giorgini, 2010)), refine top-level 

goals considering context knowledge elicited during 

requirements engineering. By doing so, goal 

fulfillment either depends on the system itself, on 

subsystems, or on entities in the context, such as 

external systems or human users. Common 

requirements engineering approaches typically take 

context information into account, but do so from the 

perspective of a single system, not considering the 

system network the system is part of or other systems 

attached to the system network.  

In component-based development (e.g., (Cechich, 

Piattini and Vallecillo, 2003; Karsai et al., 2003)), a 

system is refined across several layers of abstraction. 

Every subsystem can be considered a system in a 

shared context (i.e., the overall system), such 

approaches assume that only one overall development 

process is in place, which sequentially traverses the 

emerging subsystem tree and does not consider 

concurrent engineering processes. Ontology-based 

context modeling approaches, which have been 

proposed in the past (e.g., (Strang, Linnhoff-Popien 

and Frank, 2003)), focus on the documentation of 

context information of a single system under 

development. These approaches mostly rely on state-

based behavior and do not take other types of context 

information into account, like static-structural or 

functional dependencies.  

In order to document context information 

explicitly, some approaches (e.g., (Bergh and Coninx, 

2006; Dhaussy et al., 2009)) extend existing 

modeling languages such as the languages of the 

UML. Explicit documentation of context information 

is a prerequisite for various quality assurance and 

analysis approaches, such as model checking of 

development artifacts (e.g., (Dhaussy et al., 2009)) as 

well as impact analysis of context changes (e.g., 

(Alfaro and Henzinger, 2001)).  

A more generic view on the meaning of context in 

system development is given in context theory. For 

example, in (Gong, 2005), the distinction is made 

between context subject, i.e., the system, for which 

the context is being considered, and context objects, 

i.e., the entities that are within the context subject’s 

context. By selecting the context subject, the scope is 

clearly defined: In principle, everything that is part of 

the context subject can be changed during 

development, whereas context objects are beyond the 

scope of development and cannot be changed. 

Context theoretic approaches such as (Jackson, 1995; 

Jin and Liu, 2006), place particular emphasis on the 

distinction between the system, the system’s context, 

and the effect of the system onto its context. In this 

paper, we build on these approaches by extending 

them with the distinction between system and system 

network as well as their contexts and the resulting 

implications of this extension. 

In previous work, we introduced an ontology for 

modeling the context of embedded systems (Daun, 

Tenbergen, et al., 2016). Thereby, clearly 

distinguishing between the context of knowledge 

(Daun et al., 2014), which places emphasis on 

identifying and documenting knowledge sources as 

needed in requirements engineering, and the 

operational context, which describes the context the 

system will be operating in at runtime. In this paper, 

we will focus on the operational context, for which 

the ontology provides the basis for various automated 

context analysis approaches (Daun et al., 2015) and 

facilitates the concurrent engineering of interacting 

systems. (Daun, Brings, et al., 2016). In this paper, 

we extend this context ontology to account for 

systems in the same system network and the 

dynamicity of such system networks. 
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3 CONTEXT FRAMEWORK 

This chapter introduces the proposed context 

modeling framework for cyber-physical system 

networks. The framework is based on five principles: 

(1) the separation between system and context, (2) the 

consideration of different context subjects and their 

overlapping contexts (3), the differentiation between 

individual CPS and the CPS network, (4) the 

differentiation between different types of context 

objects, and (5) the dynamic nature of the context to 

be considered. A detailed description of these 

principles is given in Sections 3.1-3.5. Section 3.6 

introduces the resulting context ontology.  

3.1 Principle 1: Separation between 
System and Context 

In software engineering the dividing line between 

system and context is traditionally drawn between 

what can be changed and what cannot be changed 

during development (e.g., (Nature Team, 1996)). 

While the system can be changed as needed, the 

context comprises all objects that are of relevance to 

the system and its development, but cannot be 

influenced during development and are thus seen as 

given. For example, during the development of an 

automotive traffic sign assistant, the object 

recognition functionality can be implemented as 

desired. The street signs to be recognized, however, 

cannot be changed or influenced, but they do have an 

impact on the object recognition functionality 

implemented in the system.  

The system and its context are separated by the 

system boundary.  

Figure 1 illustrates the relationship between the 

system, its context and the irrelevant environment. 

Everything within the system boundary is part of the 

system and subject to the development process, while 

everything outside is considered as given. Not 

everything outside the system boundary, however, is 

of relevance for the system and its development 

process. A car’s engine, for example, is of no 

relevance to the aforementioned traffic sign assistant 

and thus not part of the traffic sign assistance’s 

context but part of the irrelevant environment.  

While the context also includes aspects that 

mainly influence system development and not the 

system’s runtime behavior (e.g., road traffic licensing 

regulations), this paper focuses on the operational 

context, i.e., the part of the context that the system 

interacts with at runtime. 

Context

System

System Boundary

Context Boundary
Irrelevant 
Environment

 

Figure 1: Context. 

3.2 Principle 2: Consideration of 
Different Context Subjects and 
Their Overlapping Contexts  

To cope with the complexity of modern systems, 

systems engineering frameworks utilize abstraction 

layers that allow for decomposing systems into sub-

systems (e.g., (Böhm et al., 2016)). Figure 2 

illustrates this in a simplified fashion for the traffic 

sign assistant. On the second abstraction layer, the 

system is decomposed into the three components 

camera, electronic control unit (ECU), and user 

interface. The ECU is further decomposed into an 

object recognition component and a system 

management component on the third abstraction 

layer.  

Traffic Sign
Assistant

Camera ECU User Interface

Camera

ECU

User Interface

Object
Recognition

System 
Management

Abstraction Layer 1

Abstraction Layer 2

Abstraction Layer 3

Abstraction Layer 2

 

Figure 2: Decomposition of a Traffic Assistant. 

From the traffic sign assistant’s point of view all 

three components are part of the system. From the 

ECU’s point of view, however, the camera and the 

user interface are part of its context. Similarly, from 

the camera’s point of view, the ECU and the user 

interface are part of the camera’s context and both the 

ECU and the camera are in the user interface’s 

context. This relation between the different systems 

and their context is illustrated in Figure 3. As can be 

seen in Figure 3, the distinction between system and 

context depends on the development subject and, 

hence, must be seen as variable. 
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Figure 3: Exemplary mutual relationships between different CPS and their context objects. 

For example, during the engineering of the traffic 

assistant on a high-level of granularity all three 

subsystems, i.e., ECU, camera and user interface, 

must be considered as part of the system. In contrast, 

on a more detailed level, the subsystems will be 

engineered within different engineering paths. In 

consequence, the user interface and camera must be 

viewed as context when engineering the ECU; ECU 

and user interface are part of the context of the 

camera; and ECU and camera are context objects for 

the user interface. In context theory, the system, 

subsystem, function, software, or whatever the 

context is defined for, is typically referred to as the 

context subject. 

3.3 Principle 3: Differentiation between 
System and System Network 

CPS form networks to achieve a common goal. For 

instance, a network of transport robots can negotiate 

an optimized strategy for transporting goods from A 

to B. To this end, each robot in the network adjusts its 

behavior accordingly, which may require it to select 

a suboptimal route and load for itself. Figure 4 (1) 

illustrates how a network of transport robots moves 

goods from A to B. 

Considering a system network of autonomous 

transport robots as the context subject, the context 

objects comprise goods to be transported, the goods’ 

current positions and destinations as well as obstacles 

in the room. An important characteristic of system 

networks that consist of CPS is that they are usually 

not designed as a whole, but rather piece by piece, i.e., 

each system separately without explicitly defining all 

possible system networks which it can be part of. 

Therefore, it is reasonable for a single transport 

robot (e.g., R2) to be considered as the context 

subject. This, in contrast, leads to the other robots 

being context objects. In other words, from the point 

of view of a single robot the context comprises the 

other robots within the system network as well as the 

context objects that are outside the system network 

(goods, obstacles etc.). Both points of view are 

illustrated in Figure 4 (2) and Figure 4 (3) 

respectively. 

From the point of view of a single CPS, the 

context consists of the system network as well as 

other objects outside the system network. In the 

transport robot example, there might not be the one 

transport robot as context object but rather different 

robots of different types. For instance, R2 and R3 

might be of the same type, while the other six robots 

are from four different manufacturers. 

As can be seen for CPS networks, it can be 

differentiated between the CPS and its context and the 

system network and its context. Table 1 summarizes 

the two different manifestations of context subjects 

and context objects that are relevant to CPS. 

Table 1: Different Definitions of Context Subject and 

Context Objects for System Networks. 

 
System network 

perspective 
CPS perspective 

Context 

subject 
System network 

CPS within a system 

network 

Context 

objects 

Relevant objects 

outside the system 

network 

Other CPS in the 

system network and 

relevant objects 

outside the system 

network 

Treating collaborative systems in the system 

network as context objects, however, ignores the fact 

that unlike context objects in the conventional sense, 

these other systems often are not predefined at design 

time. In fact, many system networks will consist only 

in part of systems existent at design time.   

3.4 Principle 4: Differentiation between 
Collaborative Context Objects and 
Non-Collaborative Context Objects 

Systems collaborating in a system network 

emergently create some kind of overall functionality 

to achieve super goals that the individual systems 

cannot achieve on their own. Hence, there is a 

significant  difference  between  context  objects  that  
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Figure 4: Illustration of a System Network of Transport Robots. 
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collaborate with the system under development (i.e., 

the context subject) to achieve such a super goal and 

context objects that do not collaborate. 

Therefore, there is a need to distinguish between 

different context object classes. We choose to label 

them as Collaborative Context Objects and Non-

Collaborative Context Objects. Figure 4 (4) 

illustrates the separation of collaborative and non-

collaborative context objects for the transportation 

robot example. 

Collaborative and non-collaborative context 

objects both belong to the relevant context. Since CPS 

provide their functionalities to a system network, the 

system network can achieve goals that a single system 

would not be able to achieve on its own. Therefore, 

objects that cooperate actively in achieving a goal 

through providing their functionalities belong to the 

collaborative context. For instance, the collaborative 

context of robot R2 contains all CPS that R2 

collaborates with in order to achieve a common goal, 

i.e., transporting a good from A to B, optimized 

regarding time and cost.  

All objects in the collaborative context of a 

system under development (i.e., the context subject) 

are able to actively communicate certain information 

(e.g., states, properties, parameters) about themselves 

that are necessary for evaluating how to achieve this 

goal. On the other hand, non-collaborative context 

objects participate only passively in achieving the 

system network’s goal. As long as a transported good 

does not engage in a negotiation process with the 

robots (e.g., negotiation of transportation price and 

duration), it remains a non-collaborative context 

object. 

3.5 Principle 5: Dynamicity of CPS 
Networks 

CPS networks change at runtime (Broy, 2012). 

Therefore, CPS that are part of such a network have 

to cope with a dynamic context. Considering our 

running example, new robots might be introduced to 

the system network over time, or an individual robot 

might receive an upgrade that enables it to carry 

higher loads. In principle, whether a given context is 

dynamic depends on the time-span considered, 

respectively the observation horizon. Coming back to 

the transport robots, robot R2 might be considered the 

context subject. If the observation horizon is chosen 

to be infinitely short, there will be no change in the 

collaborative context as well as in the non-

collaborative context of robot R2. If instead the 

observation horizon is chosen to be longer, for the 

context subject R2, several changes are possible: 

New objects may enter the relevant context. This 

can be collaborative objects, e.g., a new robot is 

introduced to the fleet (see Figure 4 (5)), or non-

collaborative objects, e.g., a new good has to be 

transported. Similarly, context objects may leave the 

context and become part of the irrelevant 

environment. Again, these can be collaborative 

context objects, e.g., a robot leaves the fleet because 

it is not working profitably any more, or non-

collaborative context objects, e.g., a transported good 

reached its final destination. Furthermore, objects 

may change their context class, e.g., a transported 

good is equipped with software that enables it to 

participate in a price negotiation with the robots, 

resulting in a change of the context objects class from 

non-collaborative to collaborative object.  

3.6 Context Ontology 

The context ontology shown in Figure 5 is based on 

the five principles introduced in sections 3.1-3.5 and 

illustrates the different concepts and their 

relationships. The environment is split into the 

irrelevant environment and the context, which are 

separated by the context boundary. The context itself 

is comprised of various context objects (e.g., the 

traffic sign, the precipitation) and separated from the 

context subject (e.g., the traffic sign assistant) by the 

subject boundary. The context subject can be a system 

network, an individual system, a subsystem, software, 

or hardware. The context ontology further 

distinguishes between two types of context objects; 

non-collaborative context objects (nCCO) and 

collaborative context objects (CCO). The nCCOs do 

not participate in a collaboration with the context 

subject. This could be a traffic sign, which does not 

communicate with the traffic sign assistant, but is 

nevertheless part of the context. A CCO would be a 

traffic light, which is able to communicate with the 

context subject (i.e., the car’s traffic sign assistant) in 

order to change from red to green when the car is 

approaching. The dynamicity (Dynamic) of the 

context objects relies on the chosen observation 

horizon, which can be illustrated by two extremes. 

Having an infinitesimal short observation horizon, 

there would not be any change in any context object 

at all. Having an infinite long observation horizon, 

there can be many changes. All the described 

concepts are generic and not tied to a specific domain. 

As part of our future research we will develop 

domain-specific extensions for these concepts. 
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Figure 5: Context Ontology. 

4 CONCLUSIONS 

In this paper, we discussed the need to not only 

document and analyze the context of a CPS under 

development, but also the context of the collaborative 

system network the individual CPS takes part in. To 

this end, we presented a context ontology, which not 

only distinguishes between system and context, but 

also takes mutual relations between different CPS, the 

differentiation between individual systems and system 

network, the distinction between collaborative and 

non-collaborative objects, as well as the dynamicity of 

the context for collaborative CPS into account.  

First evaluation results in industry are promising. 

However, future work will have to deal with a thorough 

investigation of the proposed methodological context 

framework. Furthermore, future work will deal with 

the instantiation of the context modeling framework 

for specific purposes, such as behavioral modeling, 

documenting the logical architecture of CPS networks, 

applying model verification techniques. 
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