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Abstract: In this paper we develop a representation for fine-grained retrieval. Given a query, we want to retrieve data
items of the same class, and, in addition, rank these items according to intra-class similarity. In our training
data we assume partial knowledge: class labels are available, but the intra-class attributes are not. To com-
pensate for this knowledge gap we propose using an autoencoder, which can be trained to produce features
both with and without labels. Our main hypothesis is that network architectures that incorporate an autoen-
coder can learn features that meaningfully cluster data based on the intra-class variability. We propose and
compare different architectures to construct our features, including a Siamese autoencoder (SAE), a classi-
fying autoencoder (CAE) and a separate classifier-autoencoder (SCA). We find that these architectures indeed
improve fine-grained retrieval compared to features trained purely in a supervised fashion for classification.
We perform experiments on four datasets, and observe that the SCA generally outperforms the other two. In
particular, we obtain state of the art performance on fine-grained sketch retrieval.

1 INTRODUCTION

In example-based retrieval, given a query represented
by an exemplar the goal is to return data items that are
as similar to the exemplar as possible, usually in a list
ordered by similarity to the exemplar. Similarity be-
tween exemplar and query results may be judged by
whether they belong to the same object class, or by
more fine-grained properties, such as whether query
and result show the same instance of a class (instance-
level retrieval), or by similarity in pose, color, or style
of objects in images. Thanks to the availability of
a large amount of labeled data, neural networks for
classification and class-based retrieval can be trained
very successfully in a supervised fashion (He et al.,
2016). The resulting features, however, do not na-
turally support fine-grained retrieval, because class-
based training leads to invariance against fine-grained
properties such as object pose etc. To suppress inva-
riance, one could enrich the training data with labels
for fine-grained properties (such as instance-level la-
bels), and train again in a supervised manner (Rade-
nović et al., 2016; Gordo et al., 2016). However, this
requires much more effort to prepare suitable labeled
training data.

To avoid cumbersome labeling of training data,
one could leverage representations obtained using au-

toencoder networks for fine-grained retrieval. By con-
struction, features extracted from autoencoders retain
as much information as possible about the data, in-
cluding fine-grained properties. Therefore, it seems
attractive to exploit such representations for fine-
grained retrieval. When trained in an unsupervised
manner, however, autoencoder features suffer from
entanglement, which means that information about
class membership and fine-grained properties may be
encoded in overlapping feature dimensions. There-
fore, we cannot expect good class-based retrieval per-
formance when using autoencoder features.

Our goal in this paper is to develop a representa-
tion that supports fine-grained retrieval, but does not
require supervised learning with fine-grained labels.
Given a query, we want to retrieve data items of the
same class, and in addition, rank the query results ac-
cording to intra-class similarity (for example object
pose). Our assumption is that we have training data
containing class labels, but intra-class variability is
not labeled and needs to be taken into account using
unsupervised learning. Our main hypothesis is that
we can achieve fine-grained retrieval by leveraging an
autoencoder, which should learn to capture intra-class
variability in an unsupervised manner.

We explore different ways to combine class-based
supervised learning and an autoencoder to construct
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our features, and show that indeed this can improve
fine-grained retrieval. As a key contribution of this
paper, we propose and compare three main architec-
tures: (1) a siamese autoencoder (SAE) that learns a
representation that respects class membership using a
contrastive loss; (2) a classifying autoencoder (CAE)
that jointly minimizes the sum of an autoencoding and
a classification loss using a single network; (3) a sepa-
rate classifier-autoencoder (SCA) based on separate
training of a supervised classification and an unsu-
pervised autoencoding network, followed by conca-
tenation of the respective feature vectors. In our ex-
periments, we find that all three architectures indeed
improve fine grained retrieval compared to features
trained purely in a supervised fashion for classifica-
tion. In addition, the SCA outperforms the other two
(SAE and CAE). Intuitively, this is because the SCA
leads to better disentanglement, separating invariant
class properties from fine-grained variability. We ex-
ploit this to construct a feature similarity metric that
is highly effective for fine-grained retrieval.

We evaluate and compare our approaches using
four different datasets, MNIST hand-written di-
gits (Lecun et al., 1998), Google street view house-
numbers (Netzer et al., 2011), images rendered from
ShapeNet (Chang et al., 2015), and sketches from the
Sketchy database (Sangkloy et al., 2016). In gene-
ral, we show that concatenating supervised and unsu-
pervised features that were trained separately outper-
forms the other techniques that we explored.

In particular, we demonstrate that for sketch-based
sketch retrieval we significantly outperform the state
of the art on fine-grained retrieval in the Sketchy da-
tabase (Sangkloy et al., 2016). This is remarkable be-
cause the previous state of the art used fine-grained
labels in a supervised training setup (Sangkloy et al.,
2016). In contrast, we do not use fine-grained labels
for training, yet obtain improved fine-grained retrieval
thanks to the inclusion of unsupervised autoencoder
features in our representation.

2 RELATED WORK

Image Retrieval. While our main application in
this paper is focusing on sketch data, our problem
is related to image retrieval in general. Tradi-
tionally, descriptors for image retrieval are based
on local features, for example by aggregating lo-
cal gradient-based features and by building bag-of-
visual-words (BOV), Fisher kernel (Perronnin et al.,
2010), or VLAD (vector of locally aggregated des-
criptors) (Jgou et al., 2010) representations. More re-
cently, the success of deep convolutional neural net-

works for image classification has inspired holistic
image representations based on these techniques tar-
geted at image retrieval. Babenko et al. (Babenko
et al., 2014) were among the first to leverage acti-
vations in convolutional neural networks (CNNs) as
features for image retrieval, demonstrating competi-
tive results compared with traditional hand-crafted fe-
atures. Paulin et al. learn patch-based features using
CNNs and aggregate them using VLAD for image re-
trieval (Paulin et al., 2015).

Babenko et al. (Babenko and Lempitsky, 2015)
make the interesting observation that a global des-
criptor constructed from local CNN features by sum
pooling aggregation, without high-dimensional em-
bedding, outperforms aggregation using more sophi-
sticated techniques such as Fisher vectors and VLAD.
Similarly, Tolias et al. (Tolias et al., 2016) propose to
build a feature based on a regional maximum activa-
tion of convolutions (R-MAC). They show that their
representation is significantly more suitable for fine-
grained retrieval tasks, such as particular object re-
trieval, compared to previous work based on CNN
features (Babenko et al., 2014; Babenko and Lem-
pitsky, 2015). They also develop a re-ranking appro-
ach using approximate object localization and query
expansion, and they show that with these additional
steps, their technique also outperforms the previous
state of the art based on hand crafted features (Mi-
kulik et al., 2013) on standard benchmarks (Philbin
et al., 2007; Philbin et al., 2008).

Instead of relying on hand crafted aggregation
strategies, like in R-MAC (Tolias et al., 2016), it
seems attractive to learn parameters of feature ag-
gregation in an end-to-end manner. Arandjelovic et
al. (Arandjelovic et al., 2016) propose a network ar-
chitecture that includes an aggregation layer inspired
by VLAD (Jgou et al., 2010) that can be trained by
backpropagation. They report state of the art results
on place recognition benchmarks. Gordo et al. (Gordo
et al., 2016) build on R-MAC, but include a region
proposal network that is trained in an end to end man-
ner, instead of using a fixed grid of regions. Rade-
novic et al. (Radenović et al., 2016) use a represen-
tation also based on maximum activation of convo-
lutions (MAC), but instead of regionally aggregating,
they propose to fine tune the network using hard po-
sitive and hard negative examples. Both Gordo and
Radenovic et al. achieve excellent results, although
Gordo (Gordo et al., 2016) reports the highest mean
average precision scores on standard benchmarks for
image retrieval.

Sketch Retrieval. A main difference between these
image retrieval techniques and our approach is that
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our goal is to construct a feature representation suita-
ble for fine grained retrieval in a partly unsupervised
manner, that is, when fine-grained labels are not avai-
lable. In addition, our main application is sketch re-
trieval, rather than image retrieval. Deep learning has
been used for sketch classification (Yu et al., 2016b)
or retrieval (Su et al., 2015), outperforming classical
techniques based on bags-of-visual-words (Eitz et al.,
2012) or Fisher vectors (Schneider and Tuytelaars,
2014) by a large margin. One could leverage fea-
tures extracted from classification networks also for
fine-grained retrieval, but we show that our approach
outperforms this strategy.

Recently, Sangkloy et al. (Sangkloy et al., 2016)
constructed a database (called Sketchy) with sketch-
photo pairs that provide fine-grained instance level
labels. They leverage this data to learn a joint em-
bedding for sketches and images using a triplet loss.
Their approach is very similar to concurrent work by
Yu et al. (Yu et al., 2016a), who collected a similar da-
tabase and also learned a joint embedding with CNNs
and a triplet loss. Both Sankloy and Yu et al. show
state of the art results for instance-level sketch-based
image retrieval and sketch-based sketch retrieval. In
contrast, we are not using instance-level labels for
training, and we focus on sketch retrieval. We use
the fine-grained labels in the Sketchy database only
to evaluate the fine-grained retrieval performance, and
we show that our approach improves fine-grained ske-
tch retrieval, even though we do not use fine-grained
labels for training.

3 NETWORK ARCHITECTURES
FOR FINE-GRAINED
RETRIEVAL USING
AUTOENCODERS

In this section we propose our approach to learn fea-
tures that supports fine-grained example-based retrie-
val. Our assumption is that the training data contains
semantic object category labels, but no fine-grained
labels that encode intra-class variability such as ob-
ject pose, style, or color. To learn a representation that
includes both class-level semantics and fine-grained
properties, we propose three network architectures as
shown in Figure 1, and all three leverage autoencoders
to capture intra-class variability in a partly unsupervi-
sed manner. We are calling these architectures Sia-
mese autoencoders (SAE), classifying autoencoders
(CAE), and separate classifier-autoencoders (SCA).
The motivation behind choosing these three architec-
tures is as follows: comparing the SAE and CAE al-

lows us to evaluate the suitability of contrastive versus
classification loss, and the CAE explores separate ver-
sus joint training (as in SAE and CAE) of the classi-
fier and the autoencoder. We report on our evaluation
in Section 4.

3.1 Siamese Autoencoder (SAE)

Siamese networks with contrastive loss functions
have been widely used to learn representations that
support classification, retrieval, and cross-domain
embeddings in a common feature space (see Wang
et al. (Wang et al., 2015) for an example). If the
loss is purely driven by class membership, howe-
ver, the representations are pushed to become inva-
riant to intra-class variability, which is not desirable
for fine-grained retrieval. Therefore, we propose Sia-
mese autoencoders (SAE), which extend the Siamese
architecture with a pair of decoders as shown in Fi-
gure 1(a). Intuitively, this should force the learned re-
presentation to retain intra-class variability, while still
separating different classes. To the best of our know-
ledge this is novel in the context of image represen-
tations, although a similar architecture has been in-
troduced to learn speaker-specific representations for
speaker recognition (Chen and Salman, 2011).

A Siamese network (Chopra et al., 2005) consists
of a pair of networks with shared weights. Training is
performed by feeding triplets (xi,x j, li, j) that contain
a pair of images (xi,x j) and a binary label li, j ∈ {0,1}
that is zero if xi and x j have the same class label and
one otherwise. Siamese networks can be trained by
minimizing a contrastive loss,

Lcon(xi,x j, li, j) =(1− li, j)d(zi,z j)

+ li, j max(0,m−d(zi,z j)),
(1)

where d(x,y) is the Euclidean distance between x and
y, z is the network output for image x, and m is a user-
defined margin. The network acts as an encoder E
that produces a latent representation z = E(x) of x. In
this representation, input images from the same class
are pulled together, and images from different classes
are pushed further apart than the margin m.

Our Siamese autoencoder adds a pair of Siamese
decoders at the end of the network, see Figure 1(a),
to capture fine-grained properties. Each decoder D
tries to reconstruct the original image from the latent
representation z such that D(z) is as similar to the in-
put x as possible, forcing the representation to retain
intra-class variability. The autoencoder can be trained
by minimizing a reconstruction loss, for example L2,

Lrec(x) = ||x− x̃||22, (2)

where x̃ = D(E(x)). Hence, we train the SAE using
the following loss function consisting of a weighted
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Figure 1: We propose and evaluate three architectures for fine-grained retrieval in a partly unsupervised manner (no fine-
grained labels) by leveraging autoencoders: a Siamese autoencoder (SAE), classifying autoencoder (CAE), and separate
classifier-autoencoder (SCA).

sum of contrastive and reconstruction loss,
Lsae(xi,x j, li, j) =γLcon(xi,x j, li, j)

+(1− γ)
Lrec(xi)+Lrec(x j)

2
,

(3)

where γ ∈ [0,1] is used to balance contrastive vs. re-
construction loss.

3.2 Classifying Autoencoder (CAE)

We observe in practice that training using a contras-
tive loss can be unstable and requires very careful
initialization. To alleviate these issues, Siamese net-
works can be regularized by including a softmax clas-
sification loss (Bui et al., 2016; Sangkloy et al., 2016).
To determine whether the contrastive loss provides
any advantage for fine-grained retrieval at all, we pro-
pose a classifying autoencoder (CAE) that only uses
a classification network instead of a Siamese setup to
learn the labeled class-level semantics. We again in-
clude a decoder D(z) and reconstruction loss to cap-
ture intra-class variability, as shown in Figure 1(b).
We achieve this by adding a single fully-connected
layer f with linear activation function to the output
of the encoder z. This maps the latent representation
z to a probability distribution over the object catego-
ries f (z). Note that we feed z as input to the decoder
and not f (z). We train the CAE by minimizing the
following loss function,

Lcae(x,c) = γLclass(x,c)+(1− γ)Lrec(x), (4)
where c is the category label of image x, Lclass is the
traditional classification loss, i.e. cross entropy with
softmax, and γ is used to balance classification vs. re-
construction loss. Note that one can easily combine
SAE and CAE, and we evaluate this option as well.

3.3 Separate Classifier-Autoencoder
(SCA)

A disadvantage of the two previous architectures is
that they lead to detrimental competition between the

classification and reconstruction losses, for example
when two images belong to different classes, but exhi-
bit similar fine-grained properties. In theory, with
enough training data this issue should resolve itself.
But in practice, we found that we can train the net-
works to be good at classification or fine-grained re-
trieval, but not both. Moreover, the weighting para-
meter γ depends on the training data and has to be
fixed at training time, and finding γ such that the lear-
ned representation provides a desired trade-off is te-
dious.

To mitigate these issues, we propose a representa-
tion based on a separate classifier-autoencoder (SCA),
which consists of two separately trained networks.
Hence, the two loss functions do not directly com-
pete. The first networks is an autoencoder that learns
a representation z1 to encode intra-class variability.
The second network is trained in a supervised fashion
using a classification loss to learn a representation z2
that captures the semantics in the data. We concate-
nate these two vectors to form the final representation
z = (z1,z2). See Figure 1(c) for a visualization of the
proposed architecture.

The SCA leads to a representation that better di-
sentangles class information from fine-grained pro-
perties compared to SAE and CAE. Since the second
part of our representation encodes only semantic in-
formation, we can design a similarity metric that ena-
bles the user to choose the tradeoff between seman-
tic and fine-grained information during retrieval time.
Using the cosine similarity as distance metric, we pro-
pose a weighted dot product for retrieval,

sim(zi,z j)=α
zi2 · z j2
||zi2 || ||z j2 ||

+(1−α)
zi1 · z j1
||zi1 || ||z j1 ||

, (5)

where α is a user-defined parameter for the tradeoff
between semantics and intra-class variability. One
drawback of SCA is that the learned representation
is prone to redundancy, since the autoencoder will en-
code some semantic information in z1. Our experi-
ments, however, show that in practice the benefits of
separating the two loss functions outweigh this issue.
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4 EXPERIMENTS

In this section, we present extensive evaluations of
our method on different datasets. First, we quanti-
tatively evaluate our approach on sketch images from
the Sketchy database and compare to previous state of
the art on this dataset. Second, we show a quantita-
tive comparison of the proposed method to two base-
lines on images rendered from ShapeNet. Third, we
show qualitative results on MNIST and SVHN. We
use Tensorflow (Abadi et al., 2016) with the Adam
optimizer (Kingma and Ba, 2014) in all our experi-
ments.

4.1 Sketch-based Sketch Retrieval

To provide a quantitative evaluation of our propo-
sed architectures, we consider the problem of sketch-
based sketch retrieval and train using sketch images
from the Sketchy database (Sangkloy et al., 2016).
This dataset is attractive for our evaluation because
it includes both class-level and fine-grained annotati-
ons. The data consists of sketch-photo pairs of 125
categories, collected using crowd sourcing: for each
photo, participants were asked to sketch the object
with a pose similar to that of the object in the photo.
The database contains 12,500 photos and 75,481 ske-
tches with a resolution of 256× 256, and each photo
has at least 5 associated sketches that show the same
object with similar pose. This information can be le-
veraged to design a benchmark for fine-grained ske-
tch retrieval: we consider a retrieved sketch relevant
if it stems from the same photo as the query sketch,
which implies that the result is of the same category
and has the same pose as the query. We use the test set
proposed by Sankloy et al. (Sangkloy et al., 2016) for
evaluation (7,063 sketches) and the remaining 68,418
sketches for training.

Inspired by Sankloy et al. (Sangkloy et al., 2016),
we use GoogLeNet (Szegedy et al., 2015) as enco-
der, initialized with weights pre-trained on Image-
Net (Russakovsky et al., 2015). We use the activa-
tions of the last pooling layer, a 1024-dimensional
vector, as latent representation z. The decoder con-
sists of 11 layers: a fully-connected layer to map z to
a 980-dimensional vector that is reshaped to form a
7×7×20 tensor, followed by 10 layers of transposed
convolutions, sometimes called deconvolutions, with
3×3 kernels. We use ReLU activations for all but the
output layer, and the hyperbolic tangent activation on
the output layer. The input to the network is of size
224× 224 and we randomly crop and flip input sket-
ches for data augmentation.

In our experiment, we observed that training a

SAE on this type of data using contrastive loss as
defined in Equation 1 leads to unstable training and
the network often diverges. As proposed by Bui et
al. (Bui et al., 2016), we obtained more stable trai-
ning by adding a classification term to our loss, which
results in a combination of our SAE and CAE archi-
tectures. The classification term is weighted 20 times
lower than the contrastive term, which is enough to
achieve stable training. We report results for γ = 0.05
and γ = 0.0005. Since the encoder is pre-trained on
ImageNet and the decoder is trained from scratch, we
start training with γ = 0.0001 and continuously incre-
ase γ during training to the final value.

In addition to SAE, we also train a CAE by mi-
nimizing the loss as defined in Equation 4. We start
training with γ = 0.01 and increase γ during training
to γ = 0.5. Note the different magnitude of γ compa-
red to SAE: classification loss and reconstruction loss
have comparable magnitudes on our training data,
whereas the contrastive loss is about two orders of
magnitude higher than the other two.

Our third approach is to train a SCA as introduced
in Section 3.3. We use the same architecture as be-
fore but add an additional fully-connected layer with
ReLU at the end of both encoders (in the separate
classification and autoencoder branches) to reduce the
dimensionality to 512. After training, we concatenate
the two feature vectors to form a 1024-dimensional
embedding (the same as used in our SAE and CAE
architecture), and we perform retrieval using the dis-
tance metric in Equation 5 with α = 0.3.

We compare the performance of our SAE, CAE,
and SCA features to four baselines: (1) GoogLeNet
trained solely on classification, (2) a fully unsuper-
vised autoencoder, (3) the sketch branch from the
Sketchy network (Sangkloy et al., 2016), and (4) R-
MAC (Tolias et al., 2016). Note that (3) was trained
by leveraging the fine-grained sketch-photo relations
in a supervised manner via a triplet loss. In contrast,
our SAE, CAE, and SCA architectures only use ob-
ject categories and learn the fine-grained similarities
in an unsupervised manner using the autoencoder. For
R-MAC, we use the activations from the last convolu-
tional layer of (1), which is a 7× 7× 1024 tensor, to
construct the R-MAC features. In addition to the fine-
grained retrieval benchmark described above, we use
the sketches from the Sketchy database to define a se-
cond, semantic only retrieval benchmark. In this ben-
chmark, we consider retrieval results relevant if they
are of the same category as the query, regardless of the
pose. For all methods, we report mean average preci-
sion (mAP) on both benchmarks in Table 1. On the
fine-grained benchmark, retrieval with R-MAC featu-
res (which were designed to facilitate fine-grained re-
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Table 1: mAP for both fine-grained and semantic only re-
trieval benchmark on the Sketchy test set.

method fine-grained semantic only
Autoencoder 0.2370 0.0405
Classification Network 0.2334 0.6290
Sketchy Network
(Sangkloy et al., 2016) 0.2867 0.5125
R-MAC
(Tolias et al., 2016) 0.2809 0.4171
SAE γ = 0.01 (ours) 0.1313 0.3843
SAE γ = 0.0005 (ours) 0.2837 0.2396
CAE γ = 0.5 (ours) 0.4654 0.2652
SCA α = 0.3 (ours) 0.4946 0.5303

trieval) increases mAP by almost 5% compared to the
classification baseline that serves as input to construct
the R-MAC features. This is roughly on par with
Sketchy (Sangkloy et al., 2016). Our SCA feature
performs best on the fine-grained benchmark, closely
followed by CAE. SAE performs worse than CAE,
which is surprising, since using a Siamese architec-
ture and a triplet loss has been proposed for image re-
trieval (Wang et al., 2014). Yet in our experiment, we
observe that the CAE architecture, which combines
classification and an autoencoder, is more effective
for fine-grained retrieval. As a key contribution of our
work, SCA obtains an mAP score more than 20% hig-
her than the previous state of the art (Sangkloy et al.,
2016), and CAE is still 17% better, even though we
do not use the fine-grained labels for training our mo-
dels.

On the semantic only benchmark, the classifica-
tion network (unsurprisingly) performs best, followed
by SCA, which still beats Sketchy. Note that in con-
trast to SCA, semantic retrieval performance decrea-
ses drastically for both SAE and CAE, compared to
the classification baseline. We believe this is because
(1) the learned embedding is too entangled, and (2)
finding an optimal γ is not feasible, since it has to
be fixed at training time. Remarkably, R-MAC also
decreases the semantic only retrieval performance by
more than 20%, compared to the classification base-
line. It seems that SAE, CAE, and R-MAC introduce
a strong tradeoff between fine-grained and semantic
only retrieval, which is undesirable.

Figure 2 plots the mAP for SCA for different va-
lues of α on both benchmarks. Although there is still
a tradeoff between fine-grained and semantic retrie-
val, we can obtain good retrieval performance on both
benchmarks for a wide range of α values. Intuitively,
this is because SCA better enforces the separation of
class-level and fine-grained information in the featu-
res. Moreover, SCA enables the user to choose the
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Figure 2: SCA mAP versus α for both fine-grained and se-
mantic only retrieval on the Sketchy test set.
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Figure 3: Precision-recall curves on the Sketchy fine-
grained and semantic only retrieval benchmarks, averaged
over all queries.

tradeoff by setting the parameter α at retrieval time.
Figure 3 shows precision-recall curves on both ben-
chmarks for SCA, our best performing method, in
comparison to R-MAC and Sketchy. Even though
SCA and Sketchy perform very similar on the seman-
tic only benchmark in terms of mAP, the difference
is significant for small recalls, which is a useful pro-
perty in practice. Note that R-MAC performs misera-
bly on the semantic only benchmark, which is surpri-
sing because the input features for R-MAC perform
superior. Finally, we show some qualitative retrieval
results in Figure 4. Note that our method retrieves
sketches at the top that match both object category
and object pose.

4.2 ShapeNet

In this experiment, we evaluate fine-grained retrieval
of rendered 3D objects according to viewpoint. Gi-
ven a rendered object, the goal is to retrieve images
of other objects of the same class, seen from the same
viewpoint. We obtained an image dataset by rende-
ring objects from 11 ShapeNet categories: airplane,
bed, bench, bus, car, chair, guitar, piano, table, train,
and boat. For each object, we render diffuse RGB
images of resolution 256x256 from 32 discrete view-
points, 8 azimuth and 4 elevation angles. This results
in a dataset of 902,336 images and we split the ob-
jects to form a training set of 812,103 images and a
test set of 90,233 images. We train a SAE, CAE, and
SCA as described in Section 3.3 using the same net-
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R-MAC Sketchy Ours (SCA)

Figure 4: Qualitative retrieval results on the Sketchy test set. The query images are on the top row and we show the top-10
retrieval results beneath. Retrieval results that do not match the query class label are marked with a red cross. Blue circles
mark retrieval results that match the query class label but do not stem from the same photo, thus they potentially do not match
the query pose. Results that stem from the same photo as the query sketch are marked with a green tick. These are the results
that we consider relevant for fine-grained retrieval, since they are guaranteed to match both query category label and pose.
We use α = 0.3 for SCA.

Table 2: mAP for both fine-grained and semantic retrieval
benchmark on the ShapeNet test set.

method fine-grained semantic only
Autoencoder 0.1738 0.2138
Classification Network 0.1890 0.6827
SAE γ = 0.0005 (ours) 0.2910 0.6578
SAE γ = 0.01 (ours) 0.2854 0.6686
CAE γ = 0.5 (ours) 0.2120 0.6827
CAE γ = 0.3 (ours) 0.2545 0.6746
CAE γ = 0.1 (ours) 0.3081 0.6552
SCA α = 0.1 (ours) 0.3310 0.6443

work architectures as in the Sketchy experiments, and
the fine-grained viewpoint labels are not used for trai-
ning. An autoencoder and a classification network are
trained as baselines for comparison. All encoders fol-
low a GoogLeNet architecture and are initialized with
weights pre-trained on ImageNet. Unfortunately, we
are not able to compare RMAC performance on this
experiment. Computing RMAC on the Sketchy data-
set took more than one week using the publicly avai-
lable implementation, and since our ShapeNet dataset
is 10 times larger, applying RMAC to this dataset is
not feasible.

Our test set serves as a fine-grained retrieval ben-
chmark, where we consider results as relevant only if
they match both object category and viewpoint with
the query image. In addition, we also evaluate on a
semantic only retrieval benchmark by considering re-
sults relevant if they have the same object category as
the query, regardless of the pose. Table 2 shows mAP
for all networks on both benchmarks. The classifi-

cation network and the autoencoder perform very si-
milar on fine-grained retrieval. SAE, CAE, and SCA
all increase fine-grained retrieval performance signi-
ficantly, and SCA outperforms both SAE and CAE.
Note that even though the classification network per-
forms best on semantic only retrieval, SAE, CAE, and
SCA performance is only insignificantly lower. We
show qualitative results in Figure 5. Note that SCA
retrieves objects that match both query category and
viewpoint, whereas the classification network is more
invariant to pose and the autoencoder often retrieves
the wrong categories. Our ShapeNet benchmark con-
tains objects that are almost rotationally symmetric,
such as buses or guitars. In these cases, SCA often
finds images of objects that are 180° rotated, which
is reasonable for nearly symmetric objects. Howe-
ver, our benchmark considers these results as irrele-
vant (that is, wrong pose), which may explain why
the mAP for fine-grained retrieval (Table 2) is lower
than in the Sketchy benchmark (Table 1).

4.3 MNIST

For a qualitative evaluation of our method, we train
a SCA on hand-written digits from the MNIST (Le-
Cun and Cortes, 2010) dataset. Here we demonstrate
that SCA enables retrieval of digits with similar hand-
writing style, where sensitivity to style is learned in an
unsupervised manner.

The official training set of 60,000 images is used
for training and we evaluate using the official test set
of 10,000 examples. The two encoders E1 and E2 take
28×28 grayscale images as input and consist of four
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Figure 5: Qualitative retrieval results on the ShapeNet test set. The query images are on the top row and we show the top-10
retrieval results beneath. Retrieval results that do not match the query class label are marked with a red cross. Blue circles
indicate retrieval results that match the query category but do not match the query pose. Results that we consider relevant for
fine-grained retrieval are marked with a green tick. We use α = 0.1 for SCA.

convolutional layers with 3× 3 kernels, followed by
ReLU activations. The outputs of the last convoluti-
onal layers are 4× 4× 256 tensors that are mapped
to a 16-dimensional latent representations z1 and z2
using a single fully-connected layer with ReLU acti-
vation. Finally, we add an additional fully-connected
layer with linear activation f behind E2. We employ
batch normalization (Ioffe and Szegedy, 2015) for all
convolutional layers but not for the fully-connected
layers. The decoder is the reverse of the encoders:
we start with a fully-connected layer to increase the
dimensionality of the latent representation to 4096-
dimensional and reshape to form a 4×4×256 tensor.
This tensor is mapped back to the input image space
using four layers of transposed convolutions. We em-
ploy batch normalization and ReLU activations for all
but the output layer. The output layer uses hyperbolic
tangent activation.

To compare the effect of the proposed SCA on
the learned embedding, we trained two baseline net-
works: a classification network and a fully unsupervi-
sed autoencoder. Both baselines use the same archi-
tecture as our SCA, with the exception of the latent
representation being 32-dimensional.

Figure 6 shows t-SNE (Maaten and Hinton, 2008)
embeddings for digits “one” and “seven” from the
MNIST test set, where we plot the digits at the po-
sition of their t-SNE coordinates. The visualization
shows that digits are embedded depending on writing
style when training the SCA. For example, straight di-
gits “one” are mapped to the upper right region of the
cluster and more italic styles are mapped to the lower
left region. This also holds for digits “seven”, for ex-
ample all digits featuring a cross are embedded close
together (lower left inset). The autoencoder also em-

beds digits according to writing style, but it does not
separate the different classes as well as SCA and the
classification network, it actually maps italic digits
and straight digits to two completely distinct clusters.
In contrast, the embedding learned by the classifica-
tion network is completely invariant to writing style,
as shown in the insets.

Figure 7 shows some retrieval examples on the
MNIST test set for all three networks. Training a
classification network leads to retrieval results with
the same class label as the query, but arbitrary wri-
ting style. In contrast, training an autoencoder yields
retrieval results with similar writing styles but often
wrong class labels. Note that the proposed SCA le-
arns an embedding where neighboring samples are si-
milar in both class label and writing style, which ena-
bles fine-grained retrieval without any supervision on
writing styles.

4.4 SVHN

Similar to the previous experiment, we also train a
SCA on the SVHN (Netzer et al., 2011) dataset.
Training is performed without any data augmentation
using the official training set consisting of 73,257 ex-
amples, and we evaluate our networks using the test
set of 26,032 images. The SCA takes 32× 32× 3
RGB images as input and follows the exact same ar-
chitecture as for the MNIST experiments presented
above.

Again, we train two baseline networks for com-
parison: a classification network and an autoencoder.
Figure 8 shows retrieval examples on the SVHN test
set for all three networks. We can observe the same
behavior as for MNIST: the embedding learned by the
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Figure 6: Learned t-SNE embeddings for digits “one” (black) and “seven” (red) from MNIST test set. We plot the digits at
their t-SNE coordinates.

Classification Network Autoencoder Ours (SCA)

Figure 7: Qualitative retrieval results on the MNIST test
set. The query images are on the top row and we show the
top-10 retrieval results beneath. We use α = 0.2 for SCA.

Classification Network Autoencoder Ours (SCA)

Figure 8: Qualitative retrieval results on the SVHN test set.
The query images are on the top row and we show the top-
10 retrieval results beneath. We use α = 0.4 for SCA.

SCA enables retrieval of samples that are similar in
both content and style, whereas the embedding lear-
ned by the classification network is invariant to style
and the autoencoder does not learn much semantics.
Note that for this dataset the learned style is mainly
determined by the color of the digits, the background
colors and textures, and adjacent distractor digits.

5 CONCLUSIONS

In this paper we have developed features that sup-
port fine-grained retrieval in a partly unsupervised
manner, without requiring fine-grained labels. We

proposed three different architectures leveraging au-
toencoders for this purpose: a Siamese autoencoder
(SAE), a classifying autoencoder (CAE), and a se-
parate classifier-autoencoder (SCA). We found that,
despite its simplicity, the SCA architecture performs
best in practice. The SCA avoids using a contrastive
loss, which can be unstable to train. In addition, it re-
tains fine-grained information by including an autoen-
coder. Finally, it better separates semantic class-level
information from fine-grained properties compared to
the CAE approach. This avoids detrimental competi-
tion between the classification and reconstruction loss
during training. We quantitatively evaluate our ap-
proach and show that it leads to a significant impro-
vement over the state of the art in a fine-grained sketch
retrieval benchmark. In addition, it reliably retrieves
correct object poses in a benchmark with images ren-
dered from ShapeNet. We further demonstrate fine-
grained retrieval of hand-written digits and images of
house numbers based on style, without requiring style
annotations.

As a disadvantage of our approach, various fine-
grained properties (color, style, viewpoint, etc.) of
complex data will be entangled in the autoencoding
features, and the user cannot control which of these
properties should be considered (ir)relevant for re-
trieval. In the future, we would like to investigate
interactive techniques that allow the user to intuiti-
vely control the retrieval criteria on the fly and easily
obtain desired results.
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