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Abstract: Bradykinesia, a slowing of movement, is the fundamental motor feature of Parkinson’s disease (PD) and the 

only physical sign that is obligatory for diagnosis. The complex nature of Bradykinesia makes it difficult to 

reliably identify, particularly as the early stages of the disease. This paper presents an extension of previous 

studies, applying evolutionary algorithms to movement data obtained from the standard clinical finger tapping 

(FT) test to characterise Bradykinesia. In this study, hand pronation-supination (PS) and hand opening-closing 

(HO) tasks are also considered. Cartesian Genetic Programming (CGP), is the evolutionary algorithm used to 

train and validate classifiers using features extracted from movement recordings of 20 controls and 22 PD 

patients. Features were selected based on the current clinical definition of Bradykinesia. The results show the 

potential of HO and PS to be used as effective classifiers with an accuracy of 84%. Discriminative features 

were also investigated with the possibility of informing clinical assessment. 

1 INTRODUCTION 

Bradykinesia, meaning slowness of movement, is 

the only clinical sign that is mandatory for the 

diagnosis of Parkinson’s Disease (PD)  (Heldman et 

al. 2011). The terms akinesia (absence of movement), 

bradykinesia (slowness of movement), and 

hypokinesia (decreased amplitude), are all used 

interchangeably to describe the most prominent 

phenomena of Parkinsonism. The conditions they 

describe are usually referred to collectively as 

bradykinesia (Figure 1). This symptom might have 

the highest potential as a motor progression marker of 

Parkinson’s disease (Maetzler et al. 2009). The 

complex nature of Bradykinesia itself is one of the 

reasons that makes it difficult for clinicians and 

neurologists to be certain of its existence in the early 

stages of Parkinson’s disease. Clinicians look for 

signs of bradykinesia by observing a patient’s ability 

to perform rapid, repetitive, alternating movements of 

the hand using tasks such as finger taps, toe taps, hand 

grips and hand pronation–supination (Jankovic 

2008). The gold standard for clinical evaluation is the 

Unified Parkinson’s Disease Rating Scale, UPDRS, 

and its modified version, MDS-UPDRS (Goetz et al. 

2008). It remains unclear how slowed movements due 

to physiological ageing are different from the 

bradykinesia seen in parkinsonian conditions. A 

better understanding of characteristics of 

bradykinesia and how it differs between these groups 

can be used to inform clinical assessments towards 

conforming early diagnosis.  

Finger tapping (FT) is a popular task that has been 

used many times in studies to evaluate Bradykinesia 

in PD. Several methods have been used to optimise 

FT data recorded by movement sensors in studies that 

use statistical tests to compare movement features of 

PD patients against healthy controls (Dunnewold et 

al. 1997) (Jobbágy et al. 2005) (Yokoe et al. 2009) 

(Espay et al. 2011) or with other movement disorders 

(Ling et al. 2012). Alternatively, popular statistical 

machine learning methods such as support vector 

machine (SVM) is claimed to achieve better 

classification on FT movement data. (Martinez 

Manzanera et al. 2015) (Patel et al. 2009). 
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Figure 1: Descriptions of Bradykinesia. (Fernandez et al. 

2014). 

Our group have successfully used Evolutionary 

Algorithm (EA) to evolve high accuracy classifiers 

that differentiate Parkinson's disease patients from 

healthy controls (Lones et al. 2012) (Smith and 

Timmis 2008). Further investigation into classifiers 

evolved was able to characterise movement disorder 

in PD (Lacy et al. 2013) and inform clinical 

assessment (Lones et al. 2013). Based on the success 

of using FT data, we believe that EAs can also be used 

on other motor tasks to achieve the same if not better 

results. Specifically, this study extends our work to 

other common clinical motor tasks;  pronation-

supination (PS) and hand opening-closing (OC) tasks. 

FT was also included in this study for validation and 

comparison purposes.  

Cartesian Genetic Programming (CGP), a type of 

EA was used to train classifiers.  CGP was introduced 

by Miller and Thomson (Miller and Thomson n.d.) 

where the candidate solutions are represented as a 

string of integers of fixed length that is mapped to a 

non-cyclic directed graph. CGP and its variants have 

shown excellent ability in the classification of a range 

of medical applications including the classification of 

mammograms for the detection of breast cancer 

(Hope et al. 2007) and diagnosis of Alzheimer’s 

disease (Hazell and Smith 2008). Additionally, there 

were also classifications using bio-signals such as 

spectral data for evaluation of cancerous thyroid cell 

lines (Lones et al. 2010), digital images of the cells to 

differentiate benign and  malignant breast mass cells 

(Ahmad et al. 2012) and electrocardiography (ECG) 

signals to classify cardiac arrhythmia types (Ahmad 

et al. 2013).  

A distinct advantage of EAs is that the classifiers 

evolved can be scrutinised to discover which features, 

or even, which parts of the movement data were used 

in their construction. Although statistical machine 

learning methods such as SVM usually able to 

generate comparable classifiers, it requires extra steps 

to identify most discriminating inputs. A technique 

such as forward-selection wrapper approach or other 

feature ranking methods had to be integrated to 

achieve the same objective.  

The main objectives of this paper are to look into 

the potential of applying EAs to evolve classifiers 

using movement data of PS and HO tasks and 

evaluate possible Bradykinesia characteristics that 

later can be used to inform clinical assessments.  

2 METHODOLOGY  

After obtaining informed written consent, 20 controls 

and 22 patients with idiopathic Parkinson’s disease 

were tested using the Movement Disorders Society 

Unified Parkinson’s Disease Rating Scale (MDS-

UPDRS) in a conventional clinical setting at the 

Monash Medical Centre, Melbourne, Australia. The 

finger tapping, pronation-supination and hand 

opening-closing components of the MDS-UPDRS 

were assessed both clinically and using an objective 

motion tracking system. 

2.1 Movement Data Collection 

The motion tracking system used for movement 

recording employ Polhemus Patriot Electromagnetic 

(EM) tracking sensors (Polhemus 2016). The system 

consists of electronic system unit (SEU), a magnetic 

transmitter and two EM tracking sensors. Each 

participant wears the EM sensors on index finger and 

thumb when they perform the specified assessments. 

The EM sensors record position and orientation 

relative to the transmitter in six degrees of freedom 

with an update rate of 60 Hz per sensor. The system 

returns three Cartesian coordinates (X, Y, and Z) and 

three orientation Euler Angles: azimuth, elevation 

and roll. 

2.2 Movement Features 

Features were extracted based on the current clinical 

definition of bradykinesia and the nature of the 

movement in each task.  

2.2.1 Finger Tapping 

In this study, patients were asked to perform the 

standard clinical finger tapping test as defined by the 

Movement Disorders Society Unified Parkinson’s 

Disease Rating Scale (MDS-UPDRS).  This instructs 

patients to perform ten finger taps as fast and as wide 

as possible. As one of the final objectives of this study 

is to inform clinical assessment, it is important for the 
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task to be performed identically with standard clinical 

evaluation. 

The separation distance between the finger and 

the thumb during the finger tapping action was 

computed by first calculating the difference between 

the x, y and z coordinate values for the respective 

sensors, and then, the Euclidean distance, or overall 

positional separation, between index finger and 

thumb. Speed and acceleration were calculated as 

the first and second derivatives of the distance, 

respectively. The raw movement data was also 

preprocessed to remove noise using Low Pass 5Hz 

Butterworth filter. Butterworth filter is most common 

filter used in biomechanics data analysis due to its 

excellent passband response (Christodoulakis et al. 

2010). 

Patients often have difficulties in performing the 

exact number of the cycles as instructed. Therefore, 

cycles frequency is one of the features selected 

instead of time taken to finish the task. Other features 

were quantified for the opening and closing phases of 

the cycle. The opening phase begins once the fingers 

are separated, from an initially closed position – 

equating to a minimal distance between the sensors – 

to when they are maximally separated; the closing 

phase begins once the sensors move towards one 

another after the point of maximal separation and 

finishes when the sensors have achieved a minimum 

separation. 

 

Figure 2: Separation data showing opening and closing 

phases of a tapping cycle. 

Figure 2 provides a representation of positional 

separation data, showing opening and closing phases 

of a cycle. Minimum, maximum and average of 

normalised speed and acceleration of both cycle 

phases were computed according to (Lacy et al. 

2013). To measure rhythm, Coefficient of Variation 

(COV) was used. COV reflects how much a 

movement component measure varies over a defined 

period. It may be considered a measure of how 

rhythmic the repetitive movements are. COV of 

amplitude was calculated over a period of tapping 

cycles as follows: 
 

    𝐶𝑂𝑉 𝑠𝑝𝑒𝑒𝑑 =  
𝜎  𝑐𝑦𝑐𝑙𝑒𝑠 𝑚𝑎𝑥 𝑠𝑝𝑒𝑒𝑑

𝜇 𝑐𝑦𝑐𝑙𝑒𝑠 𝑚𝑎𝑥 𝑠𝑝𝑒𝑒𝑑 
                (1) 

 

To calculate the decrementing trend, maximum 

separation amplitude or speed for each tap cycle was 

linearly regressed against the number of cycles. A 

negative slope indicates that the overall trend of a 

movement component measure is decrementing and a 

zero or positive slope indicates that the amplitude is 

not decrementing. Figure 3 provides examples of 

linear regression plots of maximum amplitude to 

obtain the slope indicating a trend of separation 

amplitude. Measures of amplitude and speed alone 

may not have captured the real movement patterns of 

subjects. To capture the relationship between these 

components a variable called periodicity was 

calculated. 
 

   𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝑖𝑡𝑦 = 𝑚𝑎𝑥 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒  × 𝑚𝑎𝑥 𝑠𝑝𝑒𝑒𝑑  (2) 

 

Figure 3: An example of tap decrementing trend for a 

patient with slope = -0.6. 

Other features extracted are halts, hesitation and 

amp*freq. Halts were measured by calculating the 

percentage of the tap cycle duration spent at ‘zero’ (< 

5% of the maximum) speed: 
 

𝐻𝑎𝑙𝑡𝑠 =
𝑇𝑖𝑚𝑒 < 5% 𝑚𝑎𝑥 𝑠𝑝𝑒𝑒𝑑

𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 (𝑡𝑎𝑠𝑘) 
 ×  100%   (3) 

 

When the movement showed smaller peaks 

between tapping cycle phases (Figure 4), it is treated 

as hesitation.  
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Figure 4: The smaller peaks counted as four hesitations. 

Bigger amplitude with greater frequency during 

finger tapping means faster finger movement. This is 

considered as better performance. Alternatively, the 

movement can be executed faster with smaller 

amplitude. The amplitude × frequency of tapping is 

suggested in (Jobbágy et al. 2005) to characterise the 

speed. This feature is determined for each tapping 

cycle and then averaged over the whole test. Table 1 

summarises all features used as inputs to the CGP 

classifier.  

Table 1: Finger tapping extracted features. 

                     Feature 

(0) Cycles frequency 

(1) Max overall amplitude 

(2) Mean amplitude  

(3) Maximum overall speed 

(4) Max opening speed 

(6) Max closing speed 

(7) Max opening acceleration 

(8) Max opening deceleration 

(9) Max closing acceleration 

(10) Max closing deceleration 

(11) Periodicity  

(12) COV amplitude 

(13) COV speed 

(14) Decrementing amplitude 

(15) Decrementing speed 

(16) Halts 

(17) Hesitation 

(18) 
 

Amp*freq 

2.2.2 Hand Pronation-supination 

For the hand pronation-supination task (PS), the 

MDS-UPDRS requires the participant to extend the 

arm out in front of their body with the palms face 

down and then turn the palm up and down alternately 

10 times as fast and fully as possible. 

After some experimentation, it was concluded that 

the most useful data in our pronation-supination 

recordings came from the movement of the thumb. 

Since only one sensor is used, the amplitude is 

defined as the Euclidean distance between thumb 

sensor and Patriot transmitter.  
 

𝑎𝑚𝑝 (𝑡) =  √𝑥(𝑡)2  +  𝑦(𝑡)2  + 𝑧(𝑡)2                 (4)                        
 

Velocity was calculated by differentiation of each 

Cartesian coordinate component (x, y, z) over the 

sampling time period to compute the respective 

velocity components (𝑣𝑥,𝑣𝑦,𝑣𝑧 ). The total velocity 

was computed from the sum of its components and its 

magnitude, the speed 
 

    𝑣𝑒𝑙(𝑡) =  √𝑣𝑥(𝑡)2  +  𝑣𝑦(𝑡)2  + 𝑣𝑧(𝑡)2               (5) 
 

Acceleration is obtained by differentiating the 

velocity, using the same sampling time. The same 

features in Table 1 were used for PS classifiers by 

replacing opening and closing phases with pronation 

and supination phases respectively. 

Since PS involves angular movements, movements 

were computed using Euler angles. Average, 

minimum and maximum of angular velocity and 

angular acceleration values were calculated 

according to (Picardi et al. 2010), giving the 

additional six angular features shown in Table 2. 

Table 2: Hand pronation-supination features. 

                     Feature 

(19) Mean angular speed 

(20) Max angular speed 

(21) Min angular speed  

(22) Mean angular acceleration 

(23) Max angular acceleration 

(24) Min angular acceleration  

2.2.3 Hand Opening-closing 

For the hand opening-closing task (HO), the MDS-

UPDRS requires the participant to make a tight fist 

with the arm bent at the elbow so that the palm faces 

the examiner and then requires the participant to open 

the hand ten times as fully and as quickly as possible.  

Sensors were placed at the same positions as in finger 

tapping task. However, unlike finger tapping, which 

is a simultaneous movement of thumb and fingers, the 

hand-opening task involves two steps movements. 

Therefore, the features extracted were also taking into 

account the measurements of both sensors separately, 

instead of just considering the distance between the 

two sensors.  The thumb sensor (TS) and finger 

sensor (FS) movement data were used to compute the 

total of seventeen features. (Table 3).  
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Table 3: Hand opening-closing extracted features. 

 Feature 

(0) HO frequency 

(1) Maximum opening  

(2) COV opening 

(3) TS average speed 

(4) TS minimum speed 

(5) TS maximum speed  

(6) TS minimum acceleration 

(7) TS maximum acceleration 

(8) TS COV speed  

(9) TS Halts 

(10) FS average speed 

(11) FS minimum speed 

(12) FS maximum speed  

(13) FS minimum acceleration 

(14) FS maximum acceleration 

(15) FS COV speed  

(16) FS Halts 

2.3 Classification 

Classification used a typical CGP evolutionary 

strategy which selects one parent from each 

generation and uses mutation to produce four 

children. The next generation then comprises the 

parent and the four children, giving a population of 

size five - four children plus one parent: (1+4) - ES. 

Three sets of classifiers were evolved, one for each 

movement task. The input data consists of floating 

point values representing selected Bradykinesia 

features extracted from the patient’s movement (as 

defined in section 2.2). 

The fitness assigned to each classifier is simply 

the proportion of samples correctly classified. 

Previous CGP classifiers in FT studies (mentioned in 

the introduction) used the area under a ROC Curve 

(Fawcett 2006) as fitness function, but in this study, 

classification accuracy is used for simplicity and 

direct comparison. Through experimentation, the 

following CGP parameters values were adopted: 

number of nodes available 15, nodes arities of 2, 

mutation rate of 0.05 and number of generations 

10000. The  function set comprised ({+, −,×,÷,

𝑚𝑒𝑎𝑛, 𝑚𝑖𝑛,  max, 𝑚𝑜𝑑𝑒}). Data from each class was 

divided into training and test sets. To compensate for 

any effect on results caused by small amounts of 

training and test data, 5-fold cross validation was 

used. Results are averaged over ten runs for statistical 

significance. The best classifier model is used to 

determine those features that are most discriminative. 

3 RESULTS 

With numbers of subjects relatively low compared to 

our previous FT studies, the classifications accuracies 

in this study are surprisingly good. For the finger 

tapping task, averaged accuracy of the test set across 

ten runs is 82.66%. For the pronation-supination task, 

80.54%, and for the hand opening task, 75.32%. Best 

and average accuracies of all tasks are summarised in 

table 4.   

Table 4: Average and best accuracies of classifiers evolved 

for all motor tasks. 

Task 

Accuracy 

Averaged ten runs Best run 

train test train test 

FT 91.69 83.3 91.79 87.20 

PS 92.04 80.54 94.34 84.03 

HO 92.92 75.32 94.27 80.21 
 

Figure 5 showing the distribution of cross-

validated classification accuracies for ten runs of each 

task. 

 

Figure 5: Distribution of accuracies across ten runs. 

As mentioned in the introduction, one of the main 

advantages of using GP method is the ability to 

recognise which inputs were used to evolve the 

strongest classifier. For example, the PS classifier 

with 85% accuracy is visualised in figure 6, showing 

only the active nodes.  

 

Figure 6: Visualisation of a PS classifier. 

In  this  example,   the  inputs  used   are  maximum 
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overall speed and speed rhythm (COV). All features 

used to evolve the best classifier of each task are 

summarised in table 5.  

Table 5: Most discriminating features for each task. 

Task Features 

FT (4)(7)(9) (14) from Table 1 

HO (0)(2)(3)(4)(5)(6) (14) from Table 2 

PS 
(8) (13) (14) (16) (17) (20) from Table 1* 

and Table 2 

* replaced opening phase with pronation phase and closing 

phase with supination phase. 

4 CONCLUSIONS 

It is clear from the classification results that hand 

opening-closing and hand pronation-supination have 

the same potential as finger tapping to be used as a 

tool in the characterisation of Bradykinesia using GP 

to inform clinical assessment. The overall accuracy 

was lower than shown in previous studies of GP 

classifications using finger tapping data, but we 

believe this is due to smaller numbers of subjects. 

Almost all classifiers across ten runs for all tasks are 

consistent with good accuracies above 70%.  

Although the most discriminative movement features 

in this study may not be generalised to inform clinical 

assessment because of the small sample numbers, it 

was demonstrated that by using GP, it could easily be 

acquired. 

Movement features are computed based on the 

current clinical definition of Bradykinesia. However, 

CGP has the ability to accept raw positional or speed 

data points and perform an unbiased search that will 

not be constrained by pre-defined characteristics. 

Future work will process PS and HO data using a 

sliding window, similar to FT acceleration data in 

continuous time series adopted by (Lones et al. 2014). 

By using raw data points to induce classifiers, it opens 

the possibility of finding new features of 

Bradykinesia from the movement tasks.   
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