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Abstract: Solving or approximating the linear sum assignment problem (LSAP) is an important step of several con-
structive and local search strategies developed to approximate the graph edit distance (GED) of two attributed
graphs, or more generally the solution to quadratic assignment problems. Constructive strategies find a first
estimation of the GED by solving an LSAP. This estimation is then refined by a local search strategy. While
these search strategies depend strongly on the initial assignment, several solutions to the linear problem usu-
ally exist. They are not taken into account to get better estimations. All the estimations of the GED based
on an LSAP select randomly one solution. This paper explores the insights provided by the use of several
solutions to an LSAP, refined in parallel by a local search strategy based on the relaxation of the search space,
and conditional gradient descent. Other generators of initial assignments are also considered, approximate
solutions to an LSAP and random assignments. Experimental evaluations on several datasets show that the
proposed estimation is comparable to more global search strategies in a reduced computational time.

1 INTRODUCTION

The graph edit distance (GED) is a well-known mea-
sure of dissimilarity between attributed graphs, pro-
posed in the context of error-correcting graph match-
ing (Sanfeliu and Fu, 1983; Bunke and Allermann,
1983). A complete overview, with applications in pat-
tern recognition and machine learning, can be found
in (Neuhaus and Bunke, 2007; Riesen, 2015).

The GED captures the minimal amount of dis-
tortion needed to transform an attributed graph G1
into an attributed graph G2 by iteratively editing both
the structure and the attributes of G1, until G2 is
obtained. At each iteration, one attributed node or
edge is usually removed, inserted or substituted with
a non-negative cost (the strength of this local dis-
tortion). The resulting sequence of edit operations
γ, called edit path, transforms G1 into G2. Its cost
(the strength of the global distortion) is measured by
Lc(γ) = ∑o∈γ c(o), where c(o) is the cost of the edit
operation o. Among all edit paths from G1 to G2, de-
noted by the set Γ(G1,G2), a minimal-cost edit path
is a path having a minimal cost. The GED from G1 to
G2 is defined as the cost of a minimal-cost edit path:

dc(G1,G2) = min
γ∈Γ(G1,G2)

Lc(γ). (1)

Since Γ(G1,G2) has a large, potentially infinite cardi-

nality, edit paths are generally restricted so that each
node and edge of each graph is involved in a sin-
gle edit operation. With this restriction, and under
some constraints on the cost c(·) 1, the minimal edit
path problem (Eq. 1) is equivalent to the minimal-cost
error-correcting graph matching problem (ECGM).
This graph matching problem finds optimal corre-
spondences between the nodes of two graphs so that
each node is either assigned to another node (substi-
tuted) or assigned to a dummy node (removed or in-
serted). Correspondences between edges (edge edit
operations) are induced by these node correspon-
dences. Like other graph matching problems, the
minimal-cost error-correcting graph matching prob-
lem can be written as a quadratic assignment problem
(QAP). Considering the general expression of QAP
(Lawler, 1963), the GED is given by (Bougleux et al.,
2017):

dg,c,D(G1,G2) = min
x∈πn,m,ε

c>x+gx>Dx (2)

where πn,m,ε=vec[Πn,m,ε] is the set of vectorized per-
mutation matrices of size (n+m)×(m+n) (one-to-
one node correspondences or assignments), n and m
are the order of G1 and G2 respectively. The costs

1Substituting an edge e1 by an edge e2 is not more ex-
pensive than removing e1 plus inserting e2 (Bougleux et al.,
2017)
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of editing nodes are encoded by the vector c≥0 of
size (n + m)2, and the cost of editing edges by the
(n+m)2× (n+m)2 matrix D≥0. The parameter g
is equal to 1/2 when both graphs are undirected, or 1
otherwise. Other expressions can be found in (Riesen,
2015).

Computing the GED is NP-hard (Zeng et al.,
2009). Several algorithms are designed to com-
pute an exact solution (Riesen, 2015; Lerouge et al.,
2017; Blumenthal and Gamper, 2017; Abu-Aisheh
et al., 2017), but they are restricted to relatively small
set of graphs composed of only few nodes. More-
over, finding an approximate solution within some
constant factor from the global minimum cannot be
done in polynomial time (unless P=NP). More details
on quadratic assignment problems in general can be
found in (Burkard et al., 2009). In particular, good
approximate solutions are obtained in short comput-
ing time by heuristic algorithms based on constructive
greedy strategies, or on pure or hybrid local search
strategies, e.g. limitation of exact algorithms (time,
upper bound on the number of iterations, etc), single
solution methods (simulated annealing, tabu search,
greedy randomized adaptive search, relaxation-based
search) or population based methods (genetic algo-
rithms, scatter search, ant colony optimization). This
paper focuses on fast methods developed for finding a
good overestimation of the GED.

Bipartite GED. Fastest estimations are obtained by
replacing the quadratic problem by a linear sum as-
signment problem (LSAP) (Riesen, 2015):

x? ∈ argmin
x∈πn,m,ε

c̃>x (3)

where the cost c̃i, j of assigning two nodes is de-
fined as the optimal cost of assigning two structures,
each centered at a node, with respect to the initial
edit costs c and D. In other terms, it defines an
edit distance between two structures. Several types
of structures have been considered, e.g. star sub-
graphs or local neighborhoods (Riesen and Bunke,
2009; Riesen et al., 2014; Cortés et al., 2015), random
walks (Gaüzère et al., 2014), or small subgraphs (Car-
letti et al., 2015). Using this framework the approx-
imate GED, known as the bipartite GED (bGED), is
defined as the quadratic cost of a solution x? to the
LSAP, i.e. an edit path induced by the node assign-
ment: bGED(G1,G2)=c>x?+gx?>Dx?. A solution
to the LSAP can be computed in cubic time with re-
spect to the number of nodes (here n+m), for instance
with the Hungarian algorithm. Several strategies have
been proposed to reduce this time complexity, e.g. re-
formulation as a reduced LSAP (Serratosa, 2014; Ser-
ratosa, 2015). Alternatively, an assignment x∈πn,m,ε

having a low linear cost x>c̃ can also be computed by
several greedy algorithms in quadratic time (Riesen
et al., 2015; Fischer et al., 2017). The resulting greedy
bipartite GED remains comparable to the bipartite
GED on several datasets.

Greedy Refinement Methods. To refine the bipar-
tite GED, or its greedy version, several local search
strategies have been introduced in (Riesen and Bunke,
2015; Riesen, 2015). From a solution to the LSAP
defined by Eq. 3, these iterative algorithms compute
one or several new assignments at each iteration by
modifying the cost vector c̃ and by eventually solv-
ing a new LSAP, or by swapping some pairs of as-
signed nodes. The selection of a candidate assign-
ment depends on the quadratic function. While these
methods can still compute an estimation of the GED
in polynomial time, they are based on local search
strategies which usually lead to a local minimum of
the quadratic function. A strategy based on simulated
annealing has been recently proposed in (Riesen et al.,
2017) to drive the search out of a local minimum.

Relaxation-based Methods. Search strategies
based on the relaxation of Eq. 2 have been investi-
gated in (Bougleux et al., 2017). Initially developed
for the graph matching problem (Zaslavskiy et al.,
2009; Leordeanu et al., 2009; Liu and Qiao, 2014;
Vogelstein et al., 2015), they relax the set of solutions
to the set of doubly-stochastic matrices (values
in [0,1]). Then the integer projected fixed point
(IPFP) procedure (Leordeanu et al., 2009), or the
fast approximate quadratic programming procedure
(Vogelstein et al., 2015), proceed as follows. From
an initial candidate solution, they track a good local
minimum of the quadratic function in the relaxed
domain, by a conditional gradient descent (Frank-
Wolfe algorithm (Frank and Wolfe, 1956)), and
finally project the solution into the discrete domain
by solving an LSAP. The quality of the estimation
depends strongly on the initialization. A more global
approach is proposed in (Zaslavskiy et al., 2009; Liu
and Qiao, 2014). It consists to also relax the quadratic
function so that it becomes more or less convex, or
more or less concave. From the totally convex
version to the totally concave version, each step of
the approach finds a local minimum of a relaxed
version, by the Frank-Wolfe algorithm initialized by
the local minimum found at the previous step. While
this path-following algorithm does not need to be
initialized, it is computationally more expensive than
the previous ones.
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Multistart Strategy. Instead of developing more
complex and global strategies, local search strate-
gies can be improved by considering several ini-
tial candidates instead of only one. Then the min-
imal estimation, or a corresponding assignment, is
retained. While this only reduces the initialization
problem, the different estimations are independent to
each others and can be computed in parallel. This
simple and under-estimated strategy, known as mul-
tistart (Burkard et al., 2009), is commonly used in
non-linear approximation. For instance, for the graph
matching problem, experiments presented in (Vogel-
stein et al., 2015) show that this strategy leads to a bet-
ter estimation than the more global method based on
convex-concave relaxation (Zaslavskiy et al., 2009).

Contributions. In this paper, we explore the multi-
start strategy for improving the estimation of the GED
obtained in (Bougleux et al., 2017) by the Frank-
Wolfe algorithm (Sec. 2). Like for other local search
strategies, the descent process is initialized with a so-
lution to the LSAP defining the bipartite GED (Eq. 3).
Depending on the cost values, several assignments
may solve this LSAP. The bipartite GED selects only
one of them, arbitrary. So we consider a set of so-
lutions to the LSAP for improving both the bipar-
tite GED and the relaxation-based approach (Sec. 3).
Contrary to that, an LSAP can have only one or few
solutions, and there is no guarantee that one of them is
also a solution for the quadratic problem. So we con-
sider several other types of initial assignments: ap-
proximate solutions to the LSAP by a greedy strategy,
random assignments, and random doubly-stochastic
matrices. The impact of the multistart strategy is ana-
lyzed empirically in Sec. 4 on several datasets. It pro-
vides comparable or better results than more global
strategies, with a reduced computational time.

2 BIPARTITE GED REFINED BY
FRANK-WOLFE ALGORITHM

To find an approximate GED, (Bougleux et al., 2017)
proposed to refine the bipartite GED by the Frank-
Wolfe algorithm. It is inspired by the IPFP procedure
presented in (Leordeanu et al., 2009) for approximate
graph matching. It is a gradient-descent method based
on the continuous relaxation of the binary constraints
imposed on the solutions of the problem, and on first-
order approximation of the quadratic functional in the
relaxed domain.

Let πn,m,ε = vec[Πn,m,ε] be the set of candidate as-

signments to the QAP defined by Eq. 2, where

Πn,m,ε =
{

X ∈ {0,1}(n+m)×(m+n) :

X1 = 1, XT 1 = 1
∀i = 1, . . . ,n, ∀ j > m, j 6= m+ i, xi, j = 0

∀ j = 1, . . . ,m, ∀i > n, i 6= n+ j, xi, j = 0
}

is the set of permutation matrices encoding error-
correcting assignments (Bougleux et al., 2017;
Riesen, 2015). Let Q(x) = cT x + gxT Dx = xT ∆x
be the quadratic function, with ∆=g(D + DT )/2 +
diag(c). The relaxation consists in considering the set
of vectorized bistochastic matrices vec[Dn,m,ε] where

Dn,m,ε =
{

X ∈ [0,1](n+m)×(m+n) :

X1 = 1, XT 1 = 1
∀i = 1, . . . ,n, ∀ j > m, j 6= m+ i, xi, j = 0

∀ j = 1, . . . ,m, ∀i > n, i 6= n+ j, xi, j = 0
}

Given a cost matrix ∆ and an initial continu-
ous or discrete candidate solution x, the procedure
IPFP(∆,x) iterates the two following steps until con-
vergence:

1. Minimize a linear approximation of Q around the
current solution x in the discrete domain by solv-
ing an LSAP:

b?← argmin
b∈πn,m,ε

(x>∆)b (4)

2. Perform the descent by minimizing Q along the
segment [x,b] in the continuous domain:

α?← argmin
α∈[0,1]

Q(x+α(b?−x)) (5)

x← x+α?(b?−x) (6)

The iterative process stops when

xT ∆(x−b?)< β
∣∣Q(x)+xT ∆(b?−x)

∣∣ (7)

holds, for a given scalar β∈(0,1), or if a given num-
ber of iterations is reached. Generally, the algo-
rithm converges to a local minimum x of the relaxed
quadratic problem, and independently x can be con-
tinuous. So a final resolution of the LSAP given by
Eq. 4 is performed, and the quadratic cost Q(b?) is
then returned as an approximate GED.

This is a special case of Frank-Wolfe algorithm.
Step 1 finds a direction of descent according to the
first-order Taylor expansion of Q around x, which is
given by Q(y)≈Q(x)+(x>∆)(y−x). The minimiza-
tion of Q around x is thus approximatively equiva-
lent to the minimization of x>∆y with x fixed. Since
any LSAP and its relaxed version share the same so-
lutions, a solution to the minimization of x>∆y in the
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continuous domain is reduced to solve the LSAP de-
fined by Eq. 4. So Step 1 can be computed in cubic
time in worst-case, for instance with the Hungarian
algorithm. Contrary to that, Step 2 can be solved ana-
lytically in linear time.

As discussed in the introduction, the quality of the
estimation returned by IPFP depends strongly on the
initialization. While a random or a flat initial vec-
tor can be used, a solution to the LSAP (Eq. 3) in-
volved in the definition of the bipartite GED leads
to a better estimation of the GED (Bougleux et al.,
2017). Moreover, this estimation seems to be also
slightly more accurate than other local search strate-
gies (Riesen, 2015), as evaluated in the context of
ICPR GDC 2016 2 (Abu-Aisheh et al., 2017). IPFP
is thus a good candidate for multistart local search
strategies.

3 MULTISTART IPFP FOR
ESTIMATING THE GED

We consider the following procedure for estimating
the GED with a multistart local search strategy:
1. Generate a set S⊆Dn,m,ε of assignments

2. Refine the estimation Q(x,∆) of each assignment
x∈S by the same refinement method. This pro-
vides a sequence S? of |S| assignments yx∈πn,m,ε
such that Q(yx,∆)≤Q(x,∆) is the improved esti-
mation obtained from x. Note that several assign-
ments of S can lead to the same refined assign-
ment, and that different refined assignments of S?

can have the same quadratic cost.

3. Return the smallest refined estimation given by
miny∈S? Q(y,∆) and the set argminy∈S?Q(y,∆) of
refined assignments reaching this minimum.

Whereas the generation of the initial set of assign-
ments is the main difficulty of this procedure (Step 1),
the refinements in Step 2 are independent to each oth-
ers, hence they can be computed in parallel. This is
the main advantage of this simple strategy over hy-
brid search strategies, which are generally not easily
nor highly parallelizable. Both sequential and paral-
lel versions of the proposed procedure are analyzed in
Sec. 4 with IPFP as a refinement procedure.

The resulting estimation of the GED is denoted by
multiple IPFP (mIPFP), i.e.

mIPFP(∆,S) = min
x∈S
{Q(y,∆) : y = IPFP(∆,x)} (8)

where S is the set of initial assignments computed in
Step 1. We consider three types of initial sets:

2Graph Distance Contest: gdc2016.greyc.fr

a. assignments solving the LSAP involved in the bi-
partite GED (Eq. 3), or

b. assignments approximating this LSAP (selected
by a greedy algorithm), or

c. random assignments, or

d. random bistochastic matrices.

Given an integer k≥1, each generator returns a set
Sk⊆Dn,m,ε composed of at most k assignments. In
addition, in order to study the impact of each type of
set on the estimation of the GED, two calls of a same
generator with parameters k and l provide two sets Sk
and Sl such that:

k < l⇒ Sk⊆Sl (9)

In such a case, for all k≥1, mIPFP satisfies:

mIPFP(∆,Sk)≥mIPFP(∆,Sk+1)≥mIPFP(∆,Skmax)

where kmax denotes the maximum number of assign-
ments that can be computed with the generator. Hence
k controls the ratio between computational time and
closeness to mIPFP(∆,Skmax).

Minimal-cost Assignments and Multiple Bipartite
GED. This generator computes a set Sk by enumer-
ating at most k solutions to the LSAP involved in the
definition of the bipartite GED (Eq. 3):

Sk(c̃)⊆ argmin
x∈πn,m,ε

c̃>x (10)

where the vector c̃ encodes the transformed costs be-
tween nodes. Remark that from the set Sk(c̃), a multi-
ple bipartite GED (mbGED) is directly defined by:

mbGED(∆,Sk(c̃)) = min
x∈Sk(c̃)

Q(x,∆) (11)

Since the generator fulfills the inclusion condition
given by Eq. 9, mbGED satisfies:

mbGED(∆,Sk(c̃))≥mbGED(∆,Sk+1(c̃)), ∀k ≥ 1.

Moreover, the bipartite GED, bGED(∆, c̃) defined in
Section 1 may be interpreted as mbGED(∆,S1(c̃)).
We have hence mbGED(∆,Sk(c̃)) ≤ bGED(∆, c̃),
for all k≥1. This multiple bipartite GED have
also been tested in our experimental evaluation.
Note that by definition we have mIPFP(∆,Sk(c̃)) ≤
mbGED(∆,Sk(c̃)).

Enumerating k solutions to an LSAP instance is
equivalent to enumerating k perfect matchings in a bi-
partite graph, which can be performed in polynomial-
time complexity by several algorithms. Indeed, con-
sider the LSAP defined by argminx c>x. Let x? be a
solution to this problem, and let (u,v) be the corre-
sponding pair of solutions to its dual problem, known
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as the labeling problem. The real vectors u and
v associate a real number to each node of the first
graph and the second graph, respectively, such that
ci j ≤ ui+v j for all (i, j) and c>x? = 1>u+1>v. Then
the bipartite graph composed of the edges ci j =ui+v j
contains all the solutions to the LSAP. It defines the
equivalence graph of the primal-dual problem. Both
primal and dual solutions can be computed by the
Hungarian algorithm (Burkard et al., 2009). So a
global procedure to generate k solutions to the LSAP
is given by:

1. Compute a pair (x?,(u,v)) of solutions to the
LSAP and its dual problem by the Hungarian al-
gorithm.

2. Construct the equivalence graph from u, v and c.

3. Enumerate at most k assignments in the equiva-
lence graph to produce the set Sk.

To enumerate the k assignments, we have chosen the
recursive algorithm proposed in (Uno, 1997). It is de-
terministic and it fulfills the inclusion condition given
by Eq. 9. It provides k solutions in O(kN) time com-
plexity for a bipartite graph with N nodes. Note that
for enumerating assignments in πn,m,ε and for favor-
ing large differences between assignments in the re-
sulting set Sk, the algorithm needs to be slightly mod-
ified. These modifications do not change its function-
ing nor its complexity. They will be detailed in a fu-
ture paper.

Low-cost Assignments. The second generator enu-
merates at most k assignments by a greedy algorithm
that tries to approximate the solution to the LSAP de-
fined by Eq. 10. Given the cost matrix c̃, it is given by
the following procedure:

1. Sort all the costs c̃i j in ascending order. This pro-
vides a sorted vector s.

2. Add an assignment x∈πn,m,ε to Sk by assigning
the nodes in the order determined by s while main-
taining assignment constraints. Let c̃max be the
cost associated to the last pair of assigned ele-
ments.

3. Construct a bipartite graph, similar to the equiva-
lence graph presented in the previous paragraph,
so that (i, j) is an edge if c̃i, j≤ c̃max.

4. Enumerate at most k low-cost assignments in the
bipartite graph computed in the previous step to
produce the set Sk, as before with (Uno, 1997).

Step 1 and Step 2 correspond to a constructive strat-
egy proposed in (Riesen et al., 2015) for computing
the greedy bipartite GED. Note that contrary to this
method, we use the classical counting sort algorithm

for integers costs. Given integer costs in {0, . . . , p},
it sorts all the costs in c̃ in O(2E) time complexity,
where E is the size of c̃. Due to the greedy strategy,
the bipartite graph computed in Step 3 necessarily in-
cludes the equivalence graph associated to the LSAP.
So Step 4 is able to enumerate more and different as-
signments than the previous generator.

Random Assignments. The third generator com-
putes a set Sk of k assignments in πn,m,ε; randomly
generated (uniform distribution). We will see in the
following section that such sets can lead to interesting
estimations of the GED compared to those obtained
with the two previous generators.

Random Bistochastic Matrices. Similarly, we
generate random matrices in Dn,m,ε according to the
method prescribed in (Cappellini et al., 2009). First it
constructs a random stochastic matrix so that values in
each column are i.i.d. and stochastic. This matrix is
then refined by Sinkhorn-Knopp algorithm (Sinkhorn
and Knopp, 1967; Knight, 2008) to produce a bis-
tochastic matrix. Its vectorization is retained as a ele-
ment of Sk.

4 EXPERIMENTS

In this section, we evaluate the proposed methods
through several experiments, in order to quantify the
benefit that can be achieved by taking into account
several optimal and suboptimal assignments. The
C++ source code we used is available online3.

GED Estimators. We tested in our experiments a
set of bipartite approximation methods and a set of
quadratic ones. Concerning the bipartite approaches,
we compare two versions of bGED (Riesen and
Bunke, 2009), (Gaüzère et al., 2014) differentiated
by the choice of the bipartite cost matrix computation
method. The procedure of (Riesen and Bunke, 2009)
aims at taking into account the local neighborhood of
graph nodes in the construction of the cost matrix,
with costs which correspond to the matchings of lo-
cal stars. In contrast, the bipartite cost matrix given
by (Gaüzère et al., 2014) represents costs of match-
ing local random walks. These two versions are ex-
tended with mbGED by enumerating optimal bipartite
assignments as described in section 3. We consider
also random assignments i.e. random permutations,
generated following a uniform distribution by the use
of the std::random shuffle procedure of the C++

3https://github.com/bgauzere/graph-lib
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Table 1: Maximum, minimum, mean and standard deviation of the number K of optimal solutions reached by Uno’s Algo-
rithm. The procedure has been stopped at 10,000 optimal bipartite mappings at the most, implying that these results are not
representative of the whole set of optimal bipartite solutions, which is even bigger. The bipartite cost matrix computation
schemes are (Riesen and Bunke, 2009) and (Gaüzère et al., 2014).

Dataset (Riesen and Bunke, 2009) (Gaüzère et al., 2014)
max(K) min(K) K̄ σ(K) max(K) min(K) K̄ σ(K)

Alkane 10000 1 6198 3847 10000 1 993 1977
Acyclic 10000 1 2313 3496 10000 1 182 857
MAO 10000 48 7695 3711 10000 1 948 2714
PAH 10000 10000 10000 0 10000 128 9894 879
CMU 16 1 1.6 1.5 -
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Figure 1: Approximate GED (a., b. and c.) and computation times of IPFP against GNCCP (d., e. and f.) sequential (seq)
and multi-threaded (mt) implementations, in accordance with the number of initial mappings. The exact GED (A∗) is known
for Acyclic, and GNCCP could not be applied on MUTA because of its high time complexity.

standard library, as well as low-cost, sub-optimal, bi-
partite assignments which approximate the ones of
(Riesen and Bunke, 2009), obtained via a greedy al-
gorithm. These bipartite methods correspond to the
three kinds of initialization described in section 3 and
their results are given in the first part of Table 2.

The quadratic approaches (second part of this ta-
ble) present a set of versions of IPFP and their ex-
tended mIPFP versions along with a convex-concave
procedure, GNCCP (Liu and Qiao, 2014), described
for GED estimation in (Bougleux et al., 2017) since
it uses a global search strategy which iterates in-
stances of IPFP algorithm. We complete this set of
experiments with the method of (Neuhaus and Bunke,
2007) which aims at resolving a relaxed version of

the quadratic assignment problem with classical opti-
mization tools.

The IPFP versions differ by their initializations
or sets of initial mappings. These sets are those de-
scribed in section 3. In addition, we also consider the
continuous initial vector j of same structure as matri-
ces in Dn,m,ε, so that each coefficient unconstrained to
be null is defined by:

jk,l = 2
n+m+2 (12)

Flat initial vectors are used as an initialization of
the Frank-Wolfe algorithm in several works to be-
gin with a centered candidate solution. In Ta-
ble 2, IPFPINIT refers to the IPFP method (sec-
tion 2) initialized with a discrete or continuous so-
lution x ∈ SINIT = SINIT

k=1 , where SINIT
k is a set of k so-
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Table 2: Mean approximate graph edit distance (d), error (e) and computation time in seconds (t), with a number of initial
assignments k = 40 on GREYC’s chemistry datasets. Nomenclature : bipartite estimation (bGED), IPFP quadratic estimation
(IPFP), m stands for multiple version, and r stands for recentered version

Algorithm Alkane Acyclic MAO PAH
d e t d e t d t d t

A* 15.3 16.7

B
ip

ar
tit

e

bGED Rie. and Bun. (2009) 37.8 22.5 ≈ 10−4 33.3 16.6 ≈ 10−4 95.7 10−3 135.2 10−3

bGED Gaü. et al (2014) 36.0 20.7 0.02 31.8 15.0 0.02 85.1 1.48 125.8 2.60

mbGED Rie. and Bun. (2009) 25.5 10.2 0.01 23.1 6.4 0.01 75.1 0.05 116.0 0.02
mbGED Gaü. et al (2014) 26.0 10.6 0.03 27.0 10.3 0.02 76.0 1.50 105.8 2.65
mbGED Random 60.2 44.9 ≈ 10−4 52.6 35.8 ≈ 10−4 164.3 ≈ 10−4 194.1 ≈ 10−4

mbGED Greedy 39.0 23.6 ≈ 10−4 38.1 20.7 ≈ 10−4 99.6 < 10−3 135.7 < 10−3

Fr
an

k-
W

ol
fe

IPFPFlat uniform init. 18.6 3.2 0.02 20.0 3.3 0.01 45.8 0.1 50.7 0.25
IPFPInit. Rie. and Bun. (2009) 18.1 2.7 0.02 18.9 2.1 0.009 38.4 0.04 50.0 0.09
IPFPInit. Gaü. et al (2014) 18.0 2.7 0.04 18.7 2.1 0.02 38.7 1.53 46.8 2.68
IPFPRandom init. 19.9 4.6 0.02 22.2 5.4 0.01 56.3 0.07 53.2 0.10
IPFPRandom bistoch. init. 19.3 3.9 0.03 19.8 3.1 0.04 51.9 0.32 51.8 0.48
IPFPGreedy init. 18.1 2.8 0.02 18.8 2.1 0.01 38.8 0.02 50.3 0.03

mIPFPInit. Rie. and Bun. (2009) 15.4 0.07 0.20 16.9 0.2 0.10 31.4 0.48 33.6 1.10
mIPFPInit. Gaü. et al (2014) 15.6 0.20 0.18 17.4 0.7 0.08 33.4 1.75 30.5 3.58
mIPFPRandom init. 15.3 0.01 0.22 16.74 <0.01 0.13 33.3 0.81 36.6 1.17
mIPFPRandom bistoch. init. 15.3 0.01 0.20 16.73 <0.01 0.13 31.6 1.60 34.8 2.94
mIPFPGreedy init. 15.4 0.06 0.17 16.8 0.03 0.11 31.8 0.46 35.4 1.01

Fr
an

k-
W

ol
fe

re
ce

nt
er

ed

rIPFPInit. Rie. and Bun. (2009) 17.9 2.5 0.03 18.7 2.0 0.03 38.5 0.14 48.3 0.18
rIPFPInit. Gaü. et al (2014) 17.7 2.4 0.07 18.7 2.0 0.05 35.8 1.63 45.3 2.73
rIPFPRandom init. 18.2 2.9 0.04 19.1 2.4 0.03 45.9 0.15 50.6 0.19
rIPFPRandom bistoch. init. 18.2 2.9 0.03 19.0 2.3 0.03 45.0 0.15 50.7 0.19
rIPFPGreedy init. 17.8 2.5 0.04 18.6 1.9 0.03 38.7 0.14 48.0 0.18

rmIPFPInit. Rie. and Bun. (2009) 15.4 0.12 0.09 16.8 0.1 0.07 31.37 0.40 31.5 0.70
rmIPFPInit. Gaü. et al (2014) 15.5 0.21 0.15 17.2 0.4 0.09 32.40 1.75 29.8 2.96
rmIPFPRandom init. 15.3 0.03 0.10 16.74 0.02 0.07 31.40 0.48 32.8 0.75
rmIPFPRandom bistoch. init. 15.3 0.04 0.10 16.75 0.03 0.07 31.42 0.44 32.8 0.74
rmIPFPGreedy init. 15.4 0.08 0.10 16.75 0.03 0.08 31.39 0.48 32.4 0.75

GNCCP 16.6 1.2 0.58 18.7 1.3 0.32 34.3 9.23 34.2 14.44
Neuhaus and Bunke (2007) 20.5 - 0.07 25.7 - 0.04 59.1 7.0 52.9 8.2

lutions corresponding to INIT. mIPFP then refers to
mIPFP(∆,SINIT

k ), the multistart version of IPFP that
is, IPFPINIT stands for mIPFP(∆,SINIT

1 ). Finally, we
consider initializations re-centered in the continuous
space from an initial x0 ∈ SINIT

k :

x = 1
2 (x0 + j) (13)

These re-centered versions are denoted by rIPFP and
rmIPFP in Table 2. The sequential and parallel ver-
sions of mIPFP are both implemented, but the times
given in the tables refer to the multi-threaded variant
with at most 4 threads.

Datasets. We performed our experiments on 5
chemoinformatics datasets4 and a geometric one.
The chemistry data are symbolic graphs represent-
ing molecules. Nodes correspond to atoms and edges

4Available at https://iapr-tc15.greyc.fr/links.html

are valence bounds. There are four different types of
graphs : acyclic unlabeled (Alkane), acyclic labeled
(Acyclic), unlabeled (PAH) and labeled (MAO). The
fifth chemistry dataset MUTA (Riesen and Bunke,
2008), is originally separated into seven subsets by
molecule size, from 10 to 70 atoms. In our experi-
ments, we randomly selected a subset of 100 graphs
over all the molecule sizes in MUTA, to let insertions
and deletions play an appreciable role, which is not
the case when the graph size is fixed

The Geometric graphs of CMU (Riesen and
Bunke, 2008) represent 30 points of interest manu-
ally picked up over a series of images depicting a
toy house captured from different viewpoints. Nodes
are labeled according to the coordinates of the points
(precision of 10−6) and edge labels are the euclidean
distance between them. Note that the GED-estimation
method of (Gaüzère et al., 2016) needs the data to
be integer typed, hence it could not be applied to the
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CMU datasets in our experiments. The graph pairs we
tested on this dataset are the same as in (Abu-Aisheh
et al., 2015).

Table 3: Mean approximate graph edit distance (d), error
(e) and computation time (t), with a number of initial as-
signments k = 40. Datasets MUTA and CMU.

Algorithm MUTA CMU k = 16
d t d t

bGED R. and B. 209 0.02 1810 0.01
mbGED R. and B. 196 0.9 1791 0.10
mbGED Random 276 < 10−3 > 106 < 10−3

mbGED Greedy 210 0.005 4418 0.02

IPFPInit. R. and B. 136 0.07 410 0.07
IPFPRandom init. 142 0.1 6532 0.90
IPFPInit. Greedy 136 0.09 414 0.02

mIPFPInit. R. and B. 127 3.25 410 1.35
mIPFPRandom init. 128 5.20 472 13.64
mIPFPInit. Greedy 133 3.58 415 0.7
GNCCP - 408 6.66

Analysis. Table 1 presents statistical information
about the number of optimal solutions of the LSAP
reached by Uno’s algorithm for each dataset. In order
to keep a reasonable computation time, we bounded
the algorithm by Kmax = 104 mappings. One can see
that the number of these optimal assignments can be
huge for symbolic graphs. These graphs, and in par-
ticular unlabeled graphs, lead indeed to relatively flat
linear cost matrices. The corresponding LSAP have
then a large number of optima. In contrast, the geo-
metric dataset CMU presents not much optimal solu-
tions with at most 16 ones, and generally 1 to 2 opti-
mal assignments per graph pair. These results shows
that on symbolic graphs, the strategy of taking an ar-
bitrary optimal bipartite solution to approximate the
GED can legitimately be questioned, as there can be
thousands of them.

Among the one-shot approaches, the bipartite ap-
proximation (Riesen and Bunke, 2009) gives esti-
mations which are far higher than the quadratic ap-
proaches (IPFP, GNCCP and Neuhaus and Bunke).
The gap deepens when the graph’s size increases, but
even small graphs of Alkane and Acyclic give error
rates 6 to 7 times higher than the refined assignments.

The extended version mbGED allows the estima-
tion to decrease rapidly depending on the number of
considered optimal assignments (see figure 1 a. b.
c.). We made this observation over all the consid-
ered datasets, especially for symbolic labeled data.
We can deduce that there are indeed better optimal bi-
partite assignments than the arbitrary ones, and more-
over, the gain in term of precision considering them
is significant, up to halve the error on some datasets

as shown in table 2. This highlights that in the con-
text of bipartite approximation, it is needed to search
not only for an optimal assignment, but also a rele-
vant one to estimate the GED. However, even consid-
ering 100 assignments, the bipartite estimations are
still above the quadratic ones.

While the Random-Walk based method to design
the bipartite cost matrix (Gaüzère et al., 2014) tends
to give better approximations with k = 1, it stabi-
lizes quicker when considering several assignments
on small sized graphs. Our interpretation of this is
that the downsized set of optimal solutions available
leads to less good ones in the context of GED estima-
tion, thus a faster convergence. More, the length of
the walks, here set to 3, is large in comparison to the
diameter of the small graphs, so they don’t allow to
represent well the neighborhoods, hence this method
is more relevant on larger graphs. Notice that the high
computation time required here comes from the deter-
mination of the cost matrix, and not from the compu-
tation of the k−1 remaining optimal mappings.

Compared to LSAP approaches, IPFP improves
dramatically the accuracy of GED estimations. How-
ever, as stated in subsection 2, this algorithm needs to
be initialized, and the initialization choice impacts a
lot on the obtained approximation. This is illustrated
in tables 2 and 3. Apart from the random initializa-
tions, all discrete initial vectors we tested lead to bet-
ter estimations than the trivial flat uniform continuous
vector j. Indeed, initial vectors which are close to low
local minima of the quadratic function Q(x,∆) will
lead to lower results in a smaller number of iterations.
In term of time complexity, IPFP will need more iter-
ations to converge from an initial value farther from a
local minimum, as we can remark in the case of ran-
dom initializations. This behavior deepens with the
multistart version mIPFP, as it is about iterating sev-
eral times this algorithm.

GNCCP estimation is more precise than single-
start IPFP on all tested datasets, as each iteration gives
a better initialization to the next. An advantage of this
method is that it does not need an initial guess, be-
cause the first iteration resolves a fully convex prob-
lem. However, the amount of time needed to reach the
global minimum during this first iteration could be re-
duced with a relevant initial assignment. Moreover, if
the first IPFP call needs too much time to converge,
it can be stopped in the implementation by reaching
the maximum number of iterations, thus leading to a
less relevant initialization to the next IPFP call and so
on. Yet, an initialization step for GNCCP is not part
of this paper and could be studied in a future work.

Such as IPFP, mIPFP is strongly impacted by its
initialization set, especially in term of computation
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time. Considering the approximation, mIPFP is the
more accurate method on all the tested datasets, CMU
excepted. Still, there is no initialization method that
beats the others on all the datasets. Good results have
been obtained via random initial assignments, which
can seems surprising while each IPFP may converge
to a far-from-optimal local minimum. But consider-
ing the fact that initial assignments should lie far from
each others in order to get different estimation of the
GED (i.e. generate few collisions through the IPFP
process), randomly generated initial guesses may sat-
isfy this condition. Nevertheless, each randomly ini-
tialized IPFP needs generally more time to converge,
since an initial assignment has a relatively low proba-
bility to be close to a local minimum.

mIPFP beats GNCCP over all the symbolic
datasets, with several kind of initializations. We be-
lieve that this result is related to the fact that one iter-
ation of GNCCP needs more IPFP iterations to con-
verge, and as many more as the treated problem is
convex or concave. We noticed that the total num-
ber of IPFP iteration through the GNCCP procedure is
frequently far higher to the total number of IPFP iter-
ations in the sequential mIPFP process (with k = 40).
As the number of iterations is bounded, a GNCCP it-
eration may not terminate on a close-to-optimal value,
in particular in the convex situation, and this has an
impact on the forthcoming iterations thus restraining
the convergence of GNCCP. Moreover, a higher num-
ber of IPFP iterations for GNCCP leads to a higher
computation time.

Finally, the re-centering procedure enhances a lit-
tle the refined solutions, in particular concerning large
graphs. The gain achieved with respect to the graph
size begins to be significant with the dataset PAH. We
also noticed a reduction of the needed time with these
graphs, and these results should be subjected to fur-
ther experiments on larger graphs.

5 CONCLUSIONS AND FUTURE
WORK

In this paper, we propose to refine bipartite GED with
multiple-initialized IPFP. We show that this simple
idea constitutes an alternative to more sophisticated
procedures like GNCCP, with the advantage to be eas-
ily parallelized. We study the impact of initialization
on this method through three kinds of assignments :
randomly generated, low-cost, and optimal bipartite
assignments. We show that our results with these
strategies are relatively close to each other, and com-
pete with stat-of-the art methods for estimating the
GED with a lower computation time.

In future work, we plan to seek how to get more
relevant sets of initializations to mIPFP, considering
a distance between assignments or by guiding their
enumeration by the quadratic costs. Another axis of
consideration is to study a possible way of initializing
GNCCP to get more precise estimations, in a better
time complexity.
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