Species Categorization via MicroRNAs
Based on 3’UTR Target Sites using Sequence Features

Malik Yousef¹, Dalit Levy¹ and Jens Allmer²

¹Community Information Systems, Zefat Academic College, Zefat, 13206, Israel
²Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands

Keywords: MicroRNA, MicroRNA Target, Categorization, Sequence Features, Machine Learning.

Abstract: Proteins define phenotypes and their dysregulation leads to diseases. Post-translational regulation of protein abundance can be achieved by microRNAs (miRNAs). Therefore studying this method of gene regulation is of high importance. MicroRNAs interact with their target messenger RNA via hybridization within a specialized molecular framework. Many miRNAs and their targets have been identified and they are listed in various databases like miRTarBase. The experimental identification of functional miRNA-mRNA pairs is difficult and, therefore, they are detected computationally which is complicated due to missing negative data. Machine learning has been used for miRNA and target detection and many features have been described for miRNAs and miRNA:mRNA target duplexes generally on a per species basis. However, many claims of cross-kingdom regulation via miRNAs have been made and, therefore, we were interested whether it is possible to differentiate among species based on the target sequence in the mRNA alone. Thus, we investigated whether miRNA targets sites within the 3’UTR can be differentiated between species based on k-mer features only. Target information of one species was used as positive examples and the others as negative ones to establish machine learning models. It was observed that few features were sufficient for successful categorization of microRNA targets to species. For example mouse versus Caenorhabditis elegans reached up to 97% average accuracy over 100 fold cross validation. The simplicity of the approach, based on just k-mers, is promising for automatic categorization systems. In the future, this approach will help scrutinize alleged cross-kingdom regulation via miRNAs in respect to miRNA from one species targeting miRNAs in another.

1 INTRODUCTION

Protein expression is tightly regulated on several levels since their dysregulation may often lead to disease. Two of these levels are gene regulation and protein stability. Another regulatory level that directly modulates protein abundance is post transcriptional regulation governed by microRNAs (Erson-Bensan, 2014). Mature microRNAs (miRNAs) interact with messenger RNAs (mRNAs) via hybridization which leads to modulation of the translation rate (Saçar and Allmer, 2013). A stretch of approximately 20 nucleotides incorporated in the RISC complex functions as the target recognition key. This type of post-transcriptional regulation has been described for many species ranging from viruses (Grey, 2015) to plants (Yousef, Allmer and Khalifa, 2016a). Known pre-miRNAs are stored in miRBase (Griffiths-Jones, 2010) and their targets can be found in TarBase (Vergoulis et al., 2012) and miRTarBase (Hsu et al., 2014). Currently, about 30000 miRNAs are known but many more may exist (Londin et al., 2015). In respect to the targets, one miRNA can have many targets and an mRNA may be targeted by many miRNAs so that the number of possible interactions is very large. Human, for example, has less than 2,000 known pre-miRNAs but more than 300,000 miRNA-mRNA interactions. For these interactions to be detectable experimentally, both miRNA and mRNA need to be co-expressed. This feat is impossible to achieve for all miRNA-mRNA pairs since some may only be expressed under certain conditions (Saçar and Allmer, 2013). For this reason, computational detection of pre-miRNAs has become important and most approaches employ machine learning (Allmer, 2014; Saçar and Allmer, 2014). Machine learning models have been established for many species...
among them for metazoan (Allmer and Yousef, 2012) and plants (Yousef, Allmer and Khalifa, 2016a) and they depend on the parameterization of the folded pre-miRNA’s three dimensional structure (Sacar and Allmer, 2013). Many features have been described and we recently compared existing machine learning approaches and were able to show that an ensemble method is applicable to all species (Sacar Demirci, Baumbach and Allmer, 2017). This shows that some structural features universally describe miRNAs. On the other hand, sequence based features like k-mers and sequence motifs (Yousef, Allmer and Khalifa, 2016a), (Malik Yousef, Khalifa, et al., 2017) can be used to differentiate pre-miRNAs among species (Malik Yousef, Nigatu, et al., 2017). Selected features are, therefore, important when training machine learning classifiers to distinguish between positive (miRNAs or their targets) and negative examples. Generally, two-class classifications suffers from missing high quality negative examples (Khalifa et al., 2016) which is even worse when considering miRNA targets. There is no dataset holding the guarantee not to contain target sites for miRNAs which confounds their computational prediction (Hamzeiy, Allmer and Yousef, 2014). A viable approach to remove the dependency on negative data is to use one-class classification (Yousef, Allmer and Khalifa, 2016b). For the computational detection of miRNA targets(Peterson et al., 2014), generally the miRNA:mRNA duplex is considered. Some of the most commonly used features are seed match, conservation, free energy, and target site accessibility. For instance, NBmiRTar (Yousef et al., 2007) splits the duplex into two parts “seed” and “out-seed” and extracts a set of features from each. Among these features are the number of bulges, number of loops, and number of asymmetric loops. NBmiRTar also employs sequences features like k-mers. Similarly, RFmiRTarget (Mendoza et al., 2013) extracts alignment features that are assigned by miRanda (Enright et al., 2003), minimum free energy (MFE), and structural features (Watson-Crick matches, G:U wobble pair, gaps, mismatches).

In this study, we avoid the problem with missing negative data by using positive examples from one species as negative examples for another species. Thereby, training machine learning models that can differentiate among targets from different species. Since structural features are widely applicable and evolutionary stable, we use k-mers which are less stable and allow differentiation among relatively closely related species (Malik Yousef, Khalifa, et al., 2017; Malik Yousef, Nigatu, et al., 2017) which is in line with previous reports of fast evolution within vertebrate, fly, and nematode 3’UTRs (Chen and Rajewsky, 2006). Accordingly, this study only considers 3’UTR target sites. Thus, it is our aim to differentiate between miRNA targets sites of one species by using another species as negative training data which means that positive and negative classes derived from known miRNA targets sites. There have been accounts of cross-kingdom regulation via miRNAs and we were able to reject some of them (Bağcı and Allmer, 2016), but on the other hand cross-kingdom regulation may occur in tightly coupled systems like viruses or intracellular parasites and their hosts (Saçar, Bağcı and Allmer, 2014; Saçar Demirci, Bağcı and Allmer, 2016). Machine learning models allowing the differentiation of miRNA targets among species add another line of evidence for the investigation of cross-kingdom regulation and we suggest that both miRNAs should fit the host species machine model (Malik Yousef, Nigatu, et al., 2017) as well as the targeting model (this study) to consider the regulation for experimental follow-up studies.

2 MATERIALS AND METHODS

2.1 Datasets

We downloaded all microRNAs’ targets for all species available on miRTarbase (Release 6.0: Sept. 15, 2015) having 500 or more targets which included the species Caenorhabditis elegans (Cel), Mus musculus (Mmu), Homo sapiens (hsa), Rattus norvegicus (Rno), and Bos Taurus (Bta) (Table 1). All data can be considered positive examples for application in regular machine learning. However, to distinguish among species one species’ positive data was utilized for training as positive examples while the other’s positive data was used as negative training and testing examples.

Table 1: List of the species whose known miRNA:mRNA duplexes were used in this study and their amounts available on miRTarBase. Cleaning refers to clustering of reads and removing duplicates.

<table>
<thead>
<tr>
<th>Species</th>
<th>Number of target sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cel</td>
<td>4,029</td>
</tr>
<tr>
<td>Mmu</td>
<td>54,951</td>
</tr>
<tr>
<td>Hsa</td>
<td>317,542</td>
</tr>
<tr>
<td>Rno</td>
<td>658</td>
</tr>
<tr>
<td>Bta</td>
<td>489</td>
</tr>
</tbody>
</table>
MicroRNA target information on miRTarBase is presented as miRNA:mRNA duplexes (Figure 1). Here we only consider the lower part of the image which refers to the sequence within the 3’UTR.

Figure 1: Example duplex structure of a miRNA and its target 3’UTR target site.

The set of 3’UTR target sites were filtered according to sequence similarity using USEARCH (Edgar, 2010) on the sequences of each species and also on a per species basis to ensure that there is no bias due to multiple identical target sequences. 74 similar sequences between Hsa and Mmu were detected and removed.

2.2 Parameterization

2.2.1 K-mers and Feature Vector

K-mers are short stretches of nucleotides of length k (also termed n-grams or words). Such sequence-based features were used for ab initio pre-miRNA detection, before, and may also be useful for target prediction (Yousef, Allmer and Khalifa, 2016b). Formally, a 1-mer is one element of the relevant alphabet, here {A, U, C, G}. A 2-mer can generate 16 different elements: AA, AC, …, UU. Higher k have also been used (Cakir and Allmer, 2010), but here we limited k to 1 ≤ k ≤ 3 leading to 84 features. As features k-mer frequencies were calculated from the target sequences divided by the k-mers in the sequence given by len(sequence) - k + 1.

The feature vector thus consist of all k-mers (1 ≤ k ≤ 3).

For the comparison study we have consider the results that we have published in previous studies based on k-mer and sequence motifs (M Yousef et al., 2017).

2.2.2 Classification Approach

Random Forest (RF, default settings of KNIME implementation were used) was used for classification in this study since it outperformed support vector machines (Vapnik, 1995), decision trees (DT), and Naïve Bayes (NB) in preliminary tests. The classification approach was setup using the data analytics platform KNIME (Berthold et al., 2008). Models were trained and tested using 100 fold Monte Carlo cross validation (Xu and Liang, 2001) and in each fold of the cross validation the data were split into 80% training and 20% testing. During random selection, negative and positive examples were sampled in equal amounts since we showed that this approach is beneficial for model establishment in pre-miRNA detection (Sacar and Allmer, 2013). For each of the 100-fold Monte Carlo cross validation (MCCV) the performance was recorded.

2.2.3 Model Performance Evaluation

For each established model we calculated a number of performance measures for the evaluation of the
classifier such as sensitivity, specificity and accuracy according to the following formulations (with TP: true positive, FP: false positive, TN: true negative, and FN referring to false negative classifications):

- Sensitivity = TP / (TP + FN); (SE, Recall)
- Specificity = TN / (TN + FP); (SP)
- Precision = TP / (TP + FP); (PR)
- F-Measure = 2 (PR * SE) / (PR + SE)
- Accuracy (ACC) = (TP + TN) / (TP + TN + FP + FN)

All reported performance measures refer to the average of 100-fold MCCV.

3 RESULTS AND DISCUSSION

The random forest classifier was used to establish machine learned models using an 80/20 split from random sampled and stratified training and testing data during 100-fold MCCV.

Table 2: Average performance of models trained for miRNA 3’UTR target site classification against one or the other species. Training/testing was performed with an 80/20 split at 100-fold MCCV for k-mers and motif comparing to k-mers only (this study).

<table>
<thead>
<tr>
<th>Species</th>
<th>k-mer & & motif</th>
<th>k-mer only</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACC</td>
<td>F-Measure</td>
</tr>
<tr>
<td>Mmu vs Cel</td>
<td>0.97</td>
<td>0.99</td>
</tr>
<tr>
<td>Rno vs Mmu</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>Hsa vs Cel</td>
<td>0.93</td>
<td>0.93</td>
</tr>
<tr>
<td>Rno vs Hsa</td>
<td>0.91</td>
<td>0.91</td>
</tr>
<tr>
<td>Bta vs Mmu</td>
<td>0.92</td>
<td>0.91</td>
</tr>
<tr>
<td>Bta vs Hsa</td>
<td>0.89</td>
<td>0.89</td>
</tr>
<tr>
<td>Bta vs Cel</td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>Rno vs Cel</td>
<td>0.76</td>
<td>0.75</td>
</tr>
<tr>
<td>Rno vs Bta</td>
<td>0.68</td>
<td>0.65</td>
</tr>
<tr>
<td>Hsa vs Mmu</td>
<td>0.66</td>
<td>0.67</td>
</tr>
<tr>
<td>Bta & Rno vs Cel</td>
<td>0.66</td>
<td>0.63</td>
</tr>
<tr>
<td>Bta & Rno vs Mmu</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Bta & Rno vs Hsa</td>
<td>0.9</td>
<td>0.9</td>
</tr>
</tbody>
</table>

In general we used all the 85 k-mer features but tested the number of features that should optimally be used for classification (figure 1). For many tests even low number of features led to relatively good results. As seen from Figure 1 it is possible to achieve similar results when using few features (1 vs. 2) and that after using more than 5 features not much performance can be gained by adding further features. The list of top k-mer features are listed in Table 4 on a per experiment basis.

The feature sets consisting of 84 k-mer features were then used to establish models to differentiate between miRNA 3’UTR target sites between species (Yousef, Khalifa, Acar, and Allmer, 2017). Table 2 indicates that distantly related species (Figure 3) are easier to differentiate using the trained models. Examples are Mmu vs Cel, Hsa vs Cel, Bta vs Cel, and Rno vs Cel. However, Rno vs Mmu which are the perhaps most closely related species (Figure 3) in this study achieved an unexpectedly high accuracy whereas Hsa vs Mmu and Rno vs Bta were according to expectations. We attribute the high accuracy when distinguishing between Rno and Mmu or Hsa to the comparably low number of available examples for Rno.

Additionally we have tested multi-class classification using KNIME (Berthold et al., 2008) based on WEKA 3.7 (Hall et al., 2009) employing the one-to-one method and balancing the data set considering 700 examples for training and 200 for testing from each dataset. By combining Bta and Rno and Hsa and Mmu. The results are shown in Table 3 showing an overall accuracy of 78%.

Table 3: multi-class classification results for Bta combined with Rno (Bta and Rno) and Hsa combined with Mmu (Hsa and Mmu). Since motifs were found to be sufficient in our previous work (Malik Yousef, Khalifa, et al., 2017), the computationally expensive motif calculations for the new data were not performed in this study (gray cells).

According to the results in (Yousef, Khalifa, Acar, and Allmer, 2017) both Rno and Mmu may contain foreign examples in their datasets such that...
Figure 3: Phylogenetic relationship among organisms and groups used in this study was established using phyloT (http://phylot.biobyte.de). Itol (http://itol2.embl.de/) was used to create this graph (Leutnic and Bork, 2011).

Table 4: Top 15 k-mer for each experiments. The top k-mer sorted by information gain (IG) for Mmu vs. Cel.

<table>
<thead>
<tr>
<th>k-mer</th>
<th>IG</th>
</tr>
</thead>
<tbody>
<tr>
<td>UOG</td>
<td>0</td>
<td>CCU</td>
<td>0</td>
<td>CUG</td>
<td>0</td>
<td>G</td>
<td>0</td>
<td>UG</td>
<td>0.3</td>
<td>UG</td>
<td>0.3</td>
<td>UG</td>
<td>0.3</td>
<td>UG</td>
<td>0.3</td>
</tr>
<tr>
<td>CUG</td>
<td>0</td>
<td>GUC</td>
<td>0</td>
<td>G</td>
<td>0</td>
<td>AG</td>
<td>0</td>
<td>CU</td>
<td>0.3</td>
<td>CU</td>
<td>0.3</td>
<td>CU</td>
<td>0.3</td>
<td>CU</td>
<td>0.3</td>
</tr>
<tr>
<td>CA</td>
<td>0</td>
<td>AA</td>
<td>0</td>
<td>AU</td>
<td>0</td>
<td>CUG</td>
<td>0</td>
<td>GA</td>
<td>0.3</td>
<td>G</td>
<td>0.4</td>
<td>G</td>
<td>0.4</td>
<td>G</td>
<td>0.4</td>
</tr>
<tr>
<td>GC</td>
<td>0</td>
<td>AAG</td>
<td>0</td>
<td>U</td>
<td>0</td>
<td>CG</td>
<td>0</td>
<td>AG</td>
<td>0.3</td>
<td>CA</td>
<td>0.3</td>
<td>CA</td>
<td>0.3</td>
<td>CA</td>
<td>0.3</td>
</tr>
<tr>
<td>CU</td>
<td>0</td>
<td>GAA</td>
<td>0</td>
<td>GC</td>
<td>0</td>
<td>U</td>
<td>0</td>
<td>AU</td>
<td>0.3</td>
<td>AG</td>
<td>0.4</td>
<td>U</td>
<td>0.4</td>
<td>A</td>
<td>0.6</td>
</tr>
<tr>
<td>ACU</td>
<td>0</td>
<td>G</td>
<td>0</td>
<td>UU</td>
<td>0</td>
<td>UC</td>
<td>0</td>
<td>CA</td>
<td>0.3</td>
<td>AU</td>
<td>0.3</td>
<td>AU</td>
<td>0.3</td>
<td>C</td>
<td>0.3</td>
</tr>
<tr>
<td>GCU</td>
<td>0</td>
<td>C</td>
<td>0</td>
<td>UCG</td>
<td>0</td>
<td>GC</td>
<td>0</td>
<td>G</td>
<td>0.3</td>
<td>GA</td>
<td>0.3</td>
<td>C</td>
<td>0.3</td>
<td>U</td>
<td>0.6</td>
</tr>
<tr>
<td>CUG</td>
<td>0</td>
<td>CC</td>
<td>0</td>
<td>CG</td>
<td>0</td>
<td>UCG</td>
<td>0</td>
<td>AA</td>
<td>0.3</td>
<td>GU</td>
<td>0.3</td>
<td>GU</td>
<td>0.3</td>
<td>CU</td>
<td>0.6</td>
</tr>
<tr>
<td>CG</td>
<td>0</td>
<td>A</td>
<td>0</td>
<td>AG</td>
<td>0</td>
<td>AAG</td>
<td>0</td>
<td>AG</td>
<td>0.3</td>
<td>AC</td>
<td>0.4</td>
<td>UC</td>
<td>0.3</td>
<td>UC</td>
<td>0.3</td>
</tr>
<tr>
<td>ACA</td>
<td>0</td>
<td>AAA</td>
<td>0</td>
<td>UUU</td>
<td>0</td>
<td>UUC</td>
<td>0</td>
<td>GU</td>
<td>0.3</td>
<td>AA</td>
<td>0.4</td>
<td>AC</td>
<td>0.3</td>
<td>CA</td>
<td>0.6</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>AAC</td>
<td>0</td>
<td>UG</td>
<td>0</td>
<td>UG</td>
<td>0</td>
<td>UU</td>
<td>0.2</td>
<td>GC</td>
<td>0.4</td>
<td>AG</td>
<td>0.3</td>
<td>GC</td>
<td>0.4</td>
</tr>
<tr>
<td>CUA</td>
<td>0</td>
<td>AUA</td>
<td>0</td>
<td>GG</td>
<td>0</td>
<td>CAG</td>
<td>0</td>
<td>GC</td>
<td>0.2</td>
<td>UA</td>
<td>0.4</td>
<td>GA</td>
<td>0.3</td>
<td>UA</td>
<td>0.3</td>
</tr>
<tr>
<td>CAU</td>
<td>0</td>
<td>AG</td>
<td>0</td>
<td>UUC</td>
<td>0</td>
<td>UU</td>
<td>0</td>
<td>UC</td>
<td>0.2</td>
<td>UC</td>
<td>0.4</td>
<td>UA</td>
<td>0.3</td>
<td>AC</td>
<td>0.5</td>
</tr>
<tr>
<td>AUG</td>
<td>0</td>
<td>ACA</td>
<td>0</td>
<td>UCG</td>
<td>0</td>
<td>UG</td>
<td>0</td>
<td>UA</td>
<td>0.2</td>
<td>GG</td>
<td>0.3</td>
<td>GC</td>
<td>0.3</td>
<td>AA</td>
<td>0.5</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>ACC</td>
<td>0</td>
<td>UC</td>
<td>0</td>
<td>UUU</td>
<td>0</td>
<td>GO</td>
<td>0.2</td>
<td>U</td>
<td>0.2</td>
<td>AA</td>
<td>0.3</td>
<td>GC</td>
<td>0.3</td>
</tr>
</tbody>
</table>

they 1) become different from each other and 2) do not fit to the general expectation. For Mmu we previously discovered that filtering their pre-miRNAs by a very simple measure (RPM > 100) leads to a 10% increase in average model accuracy for pre-miRNA detection (Saçar Demirci, Baumbach and Allmer, 2017). It seems likely, that the effect of this may be even more pronounced in dependent datasets like miRNA targets since pre-miRNAs that are not likely true lead to targets which are impossibly true. Furthermore, each miRNA can have many similar but not identical target sites which may further increase the effect thereby strongly affecting classification accuracy.

3.1 Top K-mer Features

For each experiment we have used information gain (IG) in order to rank the k-mer features. The top 15 k-mer are listed in Table 4 sorted by IG values for Mmu vs. Cel. It is interesting to observe that for distant species like Mmu and Cel high IG values can be achieved whereas for closely related species like Hsa vs. Mmu this is not possible.

Table 5 shows the similarity between the 6 experiments top 15 k-mer features (excluding 4 experiments that the feature are not relevant and considered as random with IG value close to zero). It can be observed that for similar combination of species like Bta vs. Mmu and Hsa, respectively, similar features are selected. For Hsa vs. Cel and Bta vs. Mmu this is not the case and the similarity among top 15 features is much lower.
Table 5: Similarity of the top 15 k-mer among the different experiments. The similarity is the number of common features divided by 15.

<table>
<thead>
<tr>
<th></th>
<th>Mmu vs Cel</th>
<th>Rno vs Mmu</th>
<th>Hsa vs Cel</th>
<th>Rno vs Hsa</th>
<th>Bta vs Mmu</th>
<th>Bta vs Hsa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mmu vs Cel</td>
<td>0.85</td>
<td>0.95</td>
<td>0.90</td>
<td>0.80</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>Rno vs Mmu</td>
<td></td>
<td>0.80</td>
<td>0.90</td>
<td>0.90</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>Hsa vs Cel</td>
<td></td>
<td></td>
<td>0.80</td>
<td>0.75</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>Rno vs Hsa</td>
<td></td>
<td></td>
<td></td>
<td>0.80</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>Bta vs Mmu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.90</td>
</tr>
</tbody>
</table>

4 CONCLUSIONS

MicroRNAs are recognized as important regulatory agents. Their action allows fine-tuning of gene expression with a many to many relationship between miRNAs and their targets. Machine learning has become an important tool for miRNA and miRNA target detection despite missing quality guarantee for negative data (Allmer and Yousef, 2012). MicroRNA targets often fall within the 3′UTRs of known genes. The focus of this study is on performing species categorization employing only k-mer features and considering only 3′UTR microRNA target sites. In our previous study (M Yousef et al., 2017) we have shown that using k-mer and motif features was successful for model establishment considering the 3′UTR target sites only. Here we compare our previous approach of using just k-mer against motif combined with k-mer in order to allow for development of future automated systems which need easy to calculate features. The results show that the current approach is successful and in most experiments even slightly better. Moreover, the simplicity of the model that based on just-k-mers is a promising approach for future automatic categorization system and also simple for interpretation. This work is especially important when computationally detecting miRNAs since it allows to add significance to predicted targets which should fit the species specific model.

In addition, we have previously shown that pre-miRNAs can be categorized into species (Malik Yousef, Khalifa, et al., 2017; Malik Yousef, Nigatu, et al., 2017). Together, these lines of evidence can be used to add confidence to computationally detected miRNAs. Additionally, alleged cross-kingdom regulation via miRNAs should be checked with this approach to avoid propagation of spurious results (Bağcı and Allmer, 2016).

ACKNOWLEDGEMENTS

The work was supported by the Zefat academic college for MY and DL.

REFERENCES

latency and persistence.’, The Journal of general virology, 96 (Pt 4), pp. 739–51. doi: 10.1099/
vir.0.070862-0.

sequences and annotation.’, Current protocols in
bioinformatics / editorial board, Andreas D. Baxevanis ... [et al.], Chapter 12, p. Unit 12.9.1-10. doi:
10.1002/0471250953.bi12099.s29.

methods for microRNA target prediction.’, Methods in

Hsu, S.-D. et al. (2014) ‘miRTarBase update 2014: an
information resource for experimentally validated
miRNA-target interactions.’, Nucleic acids research, 42 (Database issue), pp. D78-85. doi: 10.1093/nar
gkt1266.

on one and two-class classification performance for
plant microRNAs.’, PeerJ. United States, 4, p. e2135.

Letunic I, Bork P. Interactive Tree Of Life v2: online
annotation and display of phylogenetic trees made

evidence for the expression of numerous novel
primate- and tissue-specific microRNAs’, Proceedings
of the National Academy of Sciences, 112(10), pp.
E1106-E1115. doi: 10.1073/pnas.1420955112.

Matthews, B. W. (1975) ‘Comparison of the predicted
and observed secondary structure of T4 phage lysozyme’,
BBA - Protein Structure, 405(2), pp. 442–451. doi:

Mendoza, M. R. et al. (2013) ‘RFMiRTarget: Predicting
Human MicroRNA Target Genes with a Random
Forest Classifier’, PLoS ONE, 8(7), doi: 10.1371/
journal.pone.0070153.

Peterson, S. M. et al. (2014) ‘Common features of
microRNA target prediction tools’, Frontiers in

Methods for MicroRNA Gene Prediction’, in Yousef,
M. and Allmer, J. (eds) miRNomics: MicroRNA
Biology and Computational Analysis SE - 10. Humana

microrna gene prediction: On the impact of class
imbalance and feature number for microrna gene
prediction’, in 2013 8th International Symposium on
Health Informatics and Bioinformatics. IEEE, pp. 1–6.
doi: 10.1109/HBIT.2013.6661685.

for Computational Analysis of miRNAs in Cancer’,
Pakistan Journal of Clinical and Biomedical
Research, 1(2), pp. 3–5.

Prediction of MicroRNAs from
Toxoplasma gondii Potentially Regulating the Hosts’
Gene Expression.’, Genomics, proteomics and
bioinformatics, 12(5), pp. 228–238. doi: 10.1016/
j.igpb.2014.09.002.

gondii MicroRNAs in Murine and Human Hosts’, in Non-coding RNAs and
inter-kingdom communication. Springer.

algorithms’, Nature communications, 8(1), p. 330. doi:
10.1038/s41467-017-00403-z.

theory. New York, New York, USA: Springer-Verlag.

Vergoulis, T. et al. (2012) ‘TarBase 6.0: capturing the
exponential growth of miRNA targets with
gkr1161.

validation’, Chemometrics and Intelligent Laboratory
Systems, 56(1), pp. 1–11. doi: 10.1016/S0169-
7439(00)00122-2.

target predictions–machine learning for microRNA
targets.’, Bioinformatics (Oxford, England), 23(22),

Yousef, M., Nigatu, D.; et al. (2017) ‘Categorization of
Species based on their MicroRNAs Employing
Sequence Motifs, Information-Theoretic Sequence
Feature Extraction, and K-mers’, EURASIP Journal on
Advances in Signal Processing.

MicroRNA Targets From Diverse Species Using
Sequence Motifs And K-Mers, Proceedings of
BIOSTEC 2017, 10th International Joint Conference
on Biomedical Engineering Systems and

Yousef, M., Khalifa, W.; et al. (2017) ‘MicroRNA
categorization using sequence motifs and k-mers’,
s12859-017-1584-1.

Plant MicroRNA Prediction Can Be Achieved Using
Sequence Motif Features’, Journal of Intelligent

Selection for MicroRNA Target Prediction – Comparison
of One-Class Feature Selection Methodologies’, in
Proceedings of the 9th International Joint Conference
on Biomedical Engineering Systems and Technologies,