
Towards a Digital Personal Trainer for Health Clubs
Sport Exercise Recognition Using Personalized Models and Deep Learning

Sebastian Baumbach1,2, Arun Bhatt2, Sheraz Ahmed1 and Andreas Dengel1,2
1German Research Center for Artificial Intelligence, Kaiserslautern (DFKI), Germany

2University of Kaiserslautern, Germany

Keywords: Human Activity Recognition, Sport Activities, Machine Learning, Deep Learning, LSTM.

Abstract: Human activity recognition has emerged as an active research area in recent years. With the advancement
in mobile and wearable devices, various sensors are ubiquitous and widely available gathering data a broad
spectrum of peoples’ daily life activities. Research studies thoroughly assessed lifestyle activities and are
increasingly concentrated on a variety of sport exercises. In this paper, we examine nine sport and fitness
exercises commonly conducted with sport equipments in gym, such as abdominal exercise and lat pull. We
collected sensor data of 23 participants for these activities, for which smartphones and smartwatches were
used. Traditional machine learning and deep learning algorithms were applied in these experiments in order
to assess their performance on our dataset. Linear SVM and Naive Bayes with Gaussian kernel performs best
with an accuracy of 80 %, whereas deep learning models outperform these machine learning techniques with
an accuracy of 92 %.

1 INTRODUCTION

It is commonly known that sport activities and regular
exercises are the key for preserving people’s physical
and mental health. In 2010, the British Association
of Sport and Exercise Sciences published a consensus
statement pointing out the correlation between no reg-
ular physical activity and an increased risk of cardio-
vascular disease or type 2 diabetes (O’Donovan et al.,
2010). Consequently, people regardless of their age
seek to take part in exercise programs or join gyms
to improve their fitness and strengthen their muscles.
It is also recommended to regularly perform sport as
this training lower blood pressure, improve glucose
metabolism, and reduce cardiovascular disease risk
(O’Donovan et al., 2010).
However, many athletes suffer from the right motiva-
tion to constantly practice over a long period of time.
According to the study of Scott Robert, this is one of
the people’s main reason for hiring a personal train-
ing: The wish to have someone motivating themselves
(Roberts, 1996).
Issues arouse from a practical perspective. Hiring a
personal trainer is expensive; especially when exer-
cising with a professional trainer. It does not make a
difference whether a personal trainer is hired privately
or provided by gyms. Professional health clubs usu-

ally offer personal trainer as a supplementary service
promise. Even in this case, however, sportsmen are
not constantly guided and supervised during their ex-
ercises in a way, which is really beneficial. Personal
trainers are still a large cost factor and thus, there can-
not normally be assigned a personal trainer per ath-
letes over their entire training session.
Those problems can be avoided with a system that
functions as a personal trainer, which accompany
each and every sportsmen in their training. A dig-
ital personal trainer that is able to supervise ath-
letes in their training has great potential to support
both professional and amateur athletes. A system
integrated into sport equipment can guide exercises
through their training not only helping to motivate
people. It can also supervise athletes performing sport
activities, which increases the safety and efficiency of
their training.
While many research studies focused on movement
activities (i.e. walking or jogging (Parkka et al.,
2006)) or daily life actions (vacuum cleaning or
brushing teeth (Kao et al., 2009)), only little work has
evaluated sport activities beyond endurance. Conse-
quently, the problem being examined in this paper is
how to perform activity recognition with sport equip-
ment of modern gyms. Therefore, the focus lies on
common devices (such as chest press) which are well
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known among athletes and a common practice per-
formed by many people in health clubs.
As to the best knowledge of the authors, no sport
equipment is currently available, which is automati-
cally sensing their users in gyms. This work utilized
the athlete’s smartphone and smartwatch, which are
widely available nowadays. Recent studies showed
the possibility to integrate such a human activity
recognition system in wearable devices (Ravi et al.,
2005; Shoaib et al., 2013). Sensor data of 23 par-
ticipants were collected performing nine common ex-
ercises with sport equipment in gyms. We evaluated
common state of the art machine learning algorithms
as well as latest deep learning models to assess their
classification accuracy. In order to enable and support
further research with our collected dataset, we made
our dataset publicly available.
In particular, this paper made following contributions:

• A novel and publicly available dataset contain-
ing smartphone and smartwatch sensor data of 23
male as well as female participants for nine com-
mon sport equipments of gyms. For each partici-
pants, we collected two sets of each exercise with
ten till fifteen repetition in each set. The dataset
can be downloaded from http://www.dfki.uni-
kl.de/∼baumbach/digital personal trainer.

• An detailed comparison of traditional machine
learning algorithms and state of the art deep learn-
ing techniques, i.e. LSTM. Experiments showed
that decision tree, linear SVM and Naive Bayes
with Gaussian kernel performed best with accu-
racy of 80 %. However, deep learning model
outperformed these machine learning models with
accuracy of 92 %

• Our results showed a significant increase of
26 percentage points in the performance of all
machine learning algorithms when personalized
models were used.

The rest of this paper is organized as follows.
Chapter 2 summarizes and assesses the state-of-the-
art in sport activity recognition for both machine
learning algorithms and deep learning techniques.
Section 3 presents the utilized activity recognition
process including the preprocessing steps on the data
as well as the applied classification algorithms. Sec-
tion 4 depicts the experimental setup where data for
23 participants were collected in a gym. Section
6 presents our finding where deep learning outper-
formed traditional machine learning algorithms by
twelve percentage points. Finally, the results are sum-
marized and discussed in Section 8.

2 RELATED WORK

Human Activity recognition is a vast area. Research
work have studied different kind of activities, rang-
ing from basic (such as walking, running, sleeping, or
climbing stairs) to complex (including eating, vacuum
cleaning, or swimming) activities. Especially sport
activities (e.g., basketball (Perše et al., 2009)), health
monitoring system (like sleep tracking (de Zambotti
et al., 2015) and patient care (Chen et al., 2014)) re-
cently gained attention in the research community.
Promising results for deep learning also stimulated
further research in the field of human activity recog-
nition. Studies already conducted using deep neu-
ral network outperformed traditional machine learn-
ing approaches.

2.1 Recognition of Sports Activities

Although research work in the field of human activ-
ity recognition traces back to the 90s (Polana and
Nelson, 1994) and assessed many fitness and sport
exercises, only little work about sport equipment of
gyms were published so far. Numerous studies fo-
cused the domain ”ambulation” (such as walking or
jogging), daily life (like reading or stretching), or up-
per body activities (e.g., chewing or speaking) (Lara
and Labrador, 2013). Interested readers are pointed
to the extensive survey on human activity recognition
published by Lara et al. (Lara and Labrador, 2013).
Prior work focused on placing multiple acceleration
sensors on several parts of the participant’s body
(Parkka et al., 2006; Subramanya et al., 2012). This
setup were capable of identifying a wide range of ac-
tivities, such as running, walking, or climbing stairs.
However, they require users to wear multiple propri-
etary sensors distributed across his body. To come
around these limitations, other studies conducted ex-
periments where only a single accelerometer mea-
sures the activities (Lee, 2009; Long et al., 2009).
With the constantly growing availability of mobile
and wearable devices over the last years, ”ubiquitous
sensing” (Lara and Labrador, 2013) comes into fo-
cus. Consequently, several investigations assessed the
use of these widely available mobile devices for HAR.
(Ravi et al., 2005; Lester et al., 2006).
Tapia et al. (Tapia et al., 2007) presented a real-time
algorithm for automatic recognition of physical activ-
ities and partly their intensities. They utilized five tri-
axial accelerometers and a heart rate monitor to dif-
ferentiate 30 physical gymnasium activities from 21
participants. For recognizing activity types with their
intensity, the authors obtained a recognition accuracy
of 94.6 % using subject-dependent and 56.3 % using
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subject-independent training.
Velloso et al. (Velloso et al., 2013) dealt in their work
with the qualitative activity recognition of weight lift-
ing exercises. Their goal was the recognition of cor-
rect and false execution as well as providing feedback
to the user. For a 10-fold cross validation, their ap-
proach scored a precision of 98.03%. For leave-one-
subject-out cross validation it scored 78.2%.

2.2 Machine Learning vs. Deep
Learning

Deep learning is by no means a new technology, the
recent progress in GPU based data processing gave
new possibilities to apply deep learning to a wide va-
riety of problems. This section provides an overview
over the recent research results and classification ac-
curacy in deep activity recognition.
Yang et al. (Yang et al., 2015) proposed a con-
volutional neural network (CNN) with 17 layer and
rectified linear units (ReLU) as activation function.
Alsheikh et al. (Alsheikh et al., 2016) applied the
deep learning paradigm to triaxial accelerometers
and presented a hybrid approach of deep belief net-
work (DBN) and hidden Markov models (called DL-
HMM) for sequential activity recognition. The au-
thors showed that deep models outperform shallow
ones, more layers will enhance the recognition ac-
curacy, and overcomplete representations are advan-
tageous. Ordóñez et al. (Ordóñez and Roggen,
2016) proposed an 8 layer deep architecture based
on the combination of convolutional and long short-
term memory (LSTM) recurrent layers, called Deep-
ConvLSTM. Once trained in a full-supervised man-
ner, DeepConvLSTM directly works on raw data with
only minimal pre-processing required. Wang (Wang,
2016) proposed a continuous autoencoder (CAE) as a
novel stochastic neural network as well as a new fast
stochastic gradient descent (FSGD) algorithm to up-
date the gradients of the CAE. The FSGD is capable
of achieving a 0.3 % error rate after just 180 epochs
of training. Wang then applies time and frequency do-
main feature extract (TFFE) to extract feature vectors,
followed by PCA to end up with a 42 dimensional fea-
ture vector. This feature vector is then fed into a DBN
composed of stacked CAEs. The DBN consist of 6
layers (2 CAEs and a BP layer) and is trained in a
semi-supervised manner. Ronaoo and Cho (Ronaoo
and Cho, 2015) proposed to utilize CNNs to classify
activities. Their experiments showed that increasing
the number of convolutional layers increased perfor-
mance, but the complexity of the derived features de-
creased with every additional layer. Zeng et al. (Zeng
et al., 2014) proposed a method based on Convolu-

tional Neural Networks (CNN), which can capture lo-
cal dependency and scale invariance of a signal. They
use a 6-layer deep CNN (input - convolution - max-
pooling - fully connected - fully connected - softmax).

3 METHODOLOGY OF THE
SPORT ACTIVITY
RECOGNITION PROCESS

The exercises sensed in our experiment consists of
rotation, magnetic field and acceleration of different
body part. The accelerometer sensor data from phone
and watch needs to be preprocessed before the data
can be classified by machine learning approaches.
Furthermore, sensor data is noisy and passing the raw
data to the learning algorithms negatively effect the
accuracy of the recognition.

3.1 Preprocessing

The orientation of devices affects the accelerometer
sensor data (Thiemjarus, 2010). To standardize the
sensor data regarding the underlying coordinate sys-
tem, a rotation matrix was calculated using gyroscope
and magnetometer sensor data. This rotation ma-
trix was then used to transform the acceleration val-
ues from device coordinate to fixed word’s coordinate
system.
The sensor data from phone and watch contains noise
and outliers. The reason are the sensors’ inaccuracy
and noise in the sensors’ signals as well as some unex-
pected behavior of the users during the exercise. Re-
moving these noise element from sensor data proved
to produce better recognition results for human ac-
tivities (Wang et al., 2011). A median filter of order
three was applied to the sensor data to remove impulse
noise (Thiemjarus, 2010).

3.2 Feature Extraction

Data was collected with sample rate of 30 Hz for all
sensors. From this data, a specific set of features is ex-
tracted from each segment using a sliding window ap-
proach without inter-window gaps for segmentation.
Four different window sizes, 1.5, 2, 2.5 and 3 seconds
were used here.
A features vector were calculated on each sensor data
segment in two domain, namely the time and fre-
quency domain. Mean, Minimum, Maximum, Range,
Standard Deviation, and Root-Mean-Square were cal-
culated for time domain features. To calculate fea-
tures in the frequency domain first we transformed the
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signal to frequency domain using Fast Fourier Trans-
form (Cooley et al., 1969). The dominant and the
second dominant frequencies were extracted from the
transformed signal.
For each feature 4 values are calculated, one for each
axis Ax, Ay, Az and the fourth component as magni-
tude component calculated by

√
x2 + y2 + z2. These

features were extracted for each sensor and for each
device. Thus, we used a feature vector of 192 values
to define the feature space of exercises (2 device types
× 4 components × 8 features × 3 sensors). Each
window size in the sliding window corresponds to a
feature vector which describes one repetition of the
exercise. For deep learning, data from the segmented
windows were passed as input without any feature ex-
traction.

4 EXPERIMENTAL SETUP

The conducted experiments focused on collecting
data of activities from sport equipment of Unifit gym
located at the Technical University Kaiserslautern.
The data was used to build two datasets for evaluation
the performance of the system: an impersonal (user-
independent) and a hybrid personalized model.

4.1 Devices

We used Samsung Galaxy phone along with the Sam-
sung Gear Live smart watch to collect sensor data
from participants. A standalone Android application
was developed for the wear and a mobile Android
application was developed for the phone. The data
was collected with the constant frequency of 30Hz.
The smartphone was placed on a west band and at-
tached to the participant’s west aligned to the right
side. The smartwatch was worn on the left hand.
This arrangement facilitates the data with information
of hand movements and the lower body movements.
Sensors in the devices record different aspects of the
movement like acceleration, magnetic field, rate of
turn and orientation of sensor frame with respect to
earth.

4.2 Participants

The data was collected from 23 participants. 20 male
and three female participants took part in the experi-
ment. The dataset consists of data from participants
with novice, intermediate and expert level of exercise.
Each exercise has been performed in two till three sets
with 10 till 15 repetitions in each set. Table 1 shows
the demographics of exercise participation.

Table 1: Demographies of participants in experiment.

Attribute Novice Intermediate Expert
Age (years) 23-28 22-29 26-30
Height (cm) 168-184 166-199 166-175
Weight (kg) 67-83 62-95 65-69

4.3 Activities

According to the fitness trainers working in the unifit
gym, the most common gym exercises were chosen
for this research work. Table 2 shows the details of
performed exercises, number of participants for each
exercise and total number of sets. These exercises
include movement of different combinations of body
parts. These exercises were performed with the sport
equipment located in unifit gym.

Table 2: Experiment participation.

Exercises Participants Total sets
Abdominal Exercise 19 38

Back Extension 18 38
Chest Press 19 38

Fly 20 44
Lat Pull 16 30

Overhead Press 19 41
Pull Down 13 25
Rear Delt 18 38

Rotary Torso 17 36

5 DATASET

The conducted experiments results in a dataset con-
taining sensor readings of 23 participants with nine
common gym exercises. The total recording of 211.57
minutes contains 328 exercise set, each with 10 to 15
reputation. The data was collected in the form of CSV
files which contains values in x, y and z axis for each
sensor along with the timestamps. For each activity
the data was recorded in six CSV files, one for each
sensor and three for each device. Each CSV file con-
tains additional information about the participant such
as height, weight, age and gender. This personal in-
formation about the participant is useful to build a hy-
brid personalized models. CSV file name is in ’Ran-
domID ExeciseName DateTime Device Sensor’ for-
mate and gives information about device and sensor
type.
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6 EVALUATION

To evaluate the classification performance of differ-
ent machine learning algorithms for our dataset, three
different evaluation approaches were used: Partici-
pant separation and K-fold cross validation for imper-
sonal models as well as a hybrid personalized mod-
els. The classification performance was evaluated for
four most common traditional machine learning algo-
rithms. k-nearest neighbor with k=2 and k=5, Support
Vector Machine with linear and polynomial kernels,
Naive Bayes algorithm with Gaussian and Bernoulli
probabilities and decision tree.

6.1 Participant Separation

For the evaluation of the impersonal model, data of
19 participant for training and data of four participant
were used as test data. Table 3 shows the classifica-
tion results as f-measure score for different machine
learning algorithms. Linear SVM, Naive Bayes with
Gaussian probability and decision tree algorithms per-
formed best with window size 2.0 and 2.5 seconds.
The maximum recognition score of 80% was achieved
by decision tree and Naive Bayes classifier. Table 4
shows the confusion matrix for decision tree for win-
dow size 2.5 seconds.

Table 3: F-measure for different window sizes.

Models W=1.5 s W=2.0 s W=2.5 s W=3.0 s
KNN (K=2) 61 62 63 63
KNN (K=5) 61 62 63 63
Linear SVM 77 77 79 76

SVM Polynomial 69 68 67 67
Naive Bayes Gaussian 77 79 80 80
Naive Bayes Bernoulli 33 34 36 37

Decision tree 75 80 78 80

Table 4: Decision tree with window size 2.5 seconds (Par-
ticipant separation).
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Abdominal
Exercise

10291 447 294 4 53 35 0 9 228 0.97

Back
Extension

111 17404 22 40 194 17 1 15 905 0.95

Chest Press 98 73 10037 127 118 285 126 150 553 0.89
Fly 11 0 0 8630 0 223 0 68 2251 0.89
Lat Pull 3 1 528 51 2631 1255 959 31 240 0.31
Overhead
Press

1 0 269 45 1162 8540 574 12 99 0.70

Pull Down 15 82 68 37 4146 1758 3831 12 166 0.67
Rear Delt 0 0 43 552 58 4 249 14206 0 0.98
Rotary
Torso

110 345 0 196 8 1 14 67 16981 0.79

Precision 0.91 0.93 0.87 0.77 0.46 0.80 0.38 0.94 0.96

6.2 Cross Validation

To further evaluate the performance of the impersonal
model, leave-one-out cross validation is applied. The
value was chosen according to the number of partici-
pant and average number of sets for exercises (Baum-
bach and Dengel, 2017). As the dataset contains data
from 23 participants and average sets performed for
each exercises are two, we used 46-fold cross valida-
tion here. Table 5 shows the performance measure
for different machine learning algorithms for cross
validation. Same as for participant separation, lin-
ear SVM and decision tree performed best with maxi-
mum f-measure score of 80%. Table 6 shows the final
confusion matrix for linear SVM as the average of the
classification results from 26 iterations.

Table 5: F-measure for different window sizes for 46 fold
cross validation.

Models W=1.5 s W=2.0 s W=2.5 s W=3.0 s
KNN (K=2) 60 68 60 68
KNN (K=5) 60 68 60 68
Linear SVM 80 80 79 79

SVM Polynomial 68 74 68 75
Naive Bayes Gaussian 75 72 74 74
Naive Bayes Bernoulli 35 30 35 32

Decision tree 78 79 77 79

Table 6: Linear SVM with window size 2.0 seconds (46-
Fold cross validation).
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Exercise

727 17 17 5 1 2 1 0 34 0.94

Back
Extension

3 835 2 25 4 5 10 1 8 0.94

Chest Press 6 2 701 7 6 41 8 3 15 0.83
Fly 11 18 18 554 34 12 0 129 60 0.64
Lat Pull 6 7 1 17 407 21 65 40 9 0.67
Overhead
Press

3 4 42 11 22 574 39 0 7 0.84

Pull Down 1 0 34 12 112 25 307 0 6 0.70
Rear Delt 0 1 12 149 14 1 1 638 3 0.78
Rotary
Torso

14 5 14 88 9 5 8 12 1489 0.91

Precision 0.9 0.94 0.89 0.66 0.71 0.82 0.62 0.78 0.91

6.3 Personalized Models

In the work of Baumbach and Dengel (Baumbach and
Dengel, 2017), the qualitative analysis of pushup ex-
ercise showed that personalized models improves the
classification accuracy. To assess the performance of
a personalized models, we utilize a hybrid personal
model with a two phase process. In the first phase,
the learning models (M) were trained on data from 22
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participants and tested for one test participant (T). In
the second phase, a subset of data of the test partic-
ipant is used to train the models again. The data of
the test participant (T), was divided into two sets T1
and T2. The learning models (M) were again trained
using T1 and these newly trained models were tested
on data set T2. Table 7 shows the result of normal
and personalized models for window size 2.0 and 2.5
seconds. Results shows a significant increase in the
performance of all machine learning algorithms when
personalized models were used. Figure 1 shows the
comparison between normal and personalized model
in the form of bar charts.

Table 7: F-measure for different window sizes for hybrid
personalized model.

Models
Normal Personalized

w=2.0s w=2.5s w=2.0s w=2.5s
KNN (K=2) 30 30 82 81
KNN (K=5) 30 30 86 81
Linear SVM 90 62 88 85

SVM Polynomial 45 49 90 88
Naive Bayes Gaussian 84 86 87 88
Naive Bayes Bernoulli 29 26 33 33

Decision tree 64 66 87 91

7 DER - DEEP EXERCISE
RECOGNIZER

(Hammerla et al., 2016) showed a significant im-
provement of the classification accuracy for activity
recognition when deep learning algorithms were ap-
plied. This research work evaluated different deep
learning approaches such as Deep feed-forward net-
works, Convolutional networks and Recurrent net-
works using LSTM on three different datasets (Reiss
and Stricker, 2012; Chavarriaga et al., 2013; Bulling
et al., 2014). Neural networks with LSTM and CNN
outperformed in most of the cases. Our dataset con-
tains data in the form of time series, where the body
movement recorded at previous time stamps effects
the next time series value and thus, contributes to
the overall recognition accuracy. Using LSTM, the
network can exploit these temporal dependencies.
With these circumstances in mind, we developed a
deep neural network architecture using LSTM cells.
The deep neural network for our exercise recognition
(DER) consists of three hidden layers. Each hidden
layer consists of 150 LSTM cells. Dropout regulariza-
tion was used after each layer to prevent overfitting.
This deep neural architecture was again evaluated us-
ing participant separation, k-fold cross validation and

(a) w = 2.0 Seconds.

(b) w = 2.5 Seconds.

Figure 1: Comparison of Normal and Personalized Models.

personalized models. Table 8 shows the result of the
classification for our proposed approach. The maxi-
mum score for f-measure achieved by traditional ma-
chine learning algorithm was 80% while the deep net-
work increases the classification performance by 12%
with maximum accuracy of 92%. Figure 9 shows the
confusion matrix for window size 2.5 Seconds.

Table 8: Results for deep neural network for classification.

Evaluation Method W=2.0 s W=2.5 s
Participant Separation 91 92

46-Fold Cross Validation 91 91
Personalized Models 81 82

8 CONCLUSION & FUTURE
WORK

In this paper, activity recognition for sport equipment
in modern gyms are assessed by applying different
machine learning algorithms and deep learning mod-
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Table 9: Deep Exercise Recognizer with LSTM (window
size = 2.5 seconds).
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Abdominal
Exercise

10935 45 85 700 4 70 312 439 0 0.91

Back
Extension

293 12716 48 118 103 19 51 298 22 0.95

Chest Press 61 49 12121 14 9 41 2 128 2 0.96
Fly 135 43 0 11802 59 26 50 881 0 0.78
Lat Pull 0 46 5 116 7780 253 66 82 651 0.89
Overhead
Press

7 9 178 13 56 10379 0 2 19 0.94

Pull Down 325 303 31 601 37 0 10893 220 0 0.96
Rear Delt 310 116 71 1683 21 40 26 24867 32 0.92
Rotary
Torso

0 24 51 96 636 176 0 62 6416 0.90

Precision 0.87 0.93 0.98 0.91 0.86 0.97 0.88 0.92 0.86

els. The results showed that learning approaches can
recognize different exercise types like pull down or
chest press. Among machine learning models, deci-
sion tree, linear SVM and Naive bayes with Gaussian
kernel performs best with a maximum accuracy of 80
percent. Furthermore, we proposed a deep neural net-
work for our exercise recognition (DER) consisting of
three hidden layers with each hidden layer having of
150 LSTM cells. DER outperformed traditional ma-
chine learning techniques with a maximum accuracy
of 92 percent. Additionally, we made the collected
dataset for our evaluation publicly available in order
to support and encourage further research.
The main drawback is the confusion between exer-
cises for the same body part, i.e., fly and rear delt as
well as lat pull, overhead press, and pull down. Since
mainly exercises for the same body part are affected,
other sensors producing more information could help
the recognition system differentiating between these
exercises.
Most important is conducting of larger experiments
in order to perform more robust evaluation. This in-
cludes experiments with not only more people, but
also more women and different levels of athletic (pro-
fessional and non-professional participants). This
work could be further extended by incorporating more
sensors (e.g. heart rate sensor) or by examining the
effects of changes to the location of sensors on the
exerciser’s body. In the same way, participant specific
attributes, such as height, weight, age, or gender, can
be fit into the models in order to assess if these kind of
physical information per participant leads to an higher
recognition accuracy.
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