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Abstract: This paper presents an intelligent approach to support engineers with performing computational simulation 

of new developments and prototypes. With multiple interacting physical effects and large three dimensional 

models the choice of the right solution strategy is crucial for a correct solution and an acceptable calculation 

time. The presented multi-agent system can solve these simulation tasks using distributed heterogeneous 

computation resources with the objective to reduce the calculation time. An important factor for the criterion 

time is the choice of the linear solver. Here a case-based reasoning concept is introduced to improve the 

decisions in the multi-agent system. Allowing each agent to solve its problem part by using appropriate 

solution methods, a decentralized architecture with autonomous software agents is provided.  

1 INTRODUCTION 

Nowadays, our daily life becomes more and more 

affected by intelligent assistance systems. Industrial 

automation systems interact with each other to build 

individual products (Jazdi, 2014), kitchen devices are 

communicating with each other (Blasco et al., 2014), 

and cars are driving autonomously (Zhang et al., 

2016). These things assist their users based on 

improving automation technology. Even if the things 

are built and run automatically, their development 

must be done by an engineer. 

In times of workforce deficits in the engineering 

domain and an ever shorter time to market, engineers 

have to manage many tasks. When developing a new 

system, they have to check different approaches. Due 

to missing time decide must be based on their 

experiential knowledge. This results in missing better 

solutions. Therefore, they need support in form of 

software tools and assistance systems. Up to now 

there are only a few assistance systems to support the 

development processes of systems by creating new 

solutions on their own. One of these is Depias (Beyer 

et al., 2016). It allows an engineer to plan a logistic 

system, finding different possible compositions, and 

comparing them. Other concepts deliver methods to 

generate code from models (Mozumdar et al., 2008) 

or to automatically manage system requirements 

(Lambersky, 2012). None of these approaches can be 

used to develop a whole system yet, but they support 

partially the engineering process. Another part of the 

development process that is becoming more and more 

important are simulations (Clement et al., 2017). 

Simulations are used to analyze, optimize, and 

understand system behaviors. They are also able to 

assist at virtual commissioning and test verification.  

An important type of simulations are so-called 

multiphysics simulations for which different tools 

exist. However most simulation tools are made for 

single physics problems. All these tools need a huge 

amount of computing power and time plus expertise. 

These multiphysics problems become even bigger 

due to the necessity of more detailed simulations. 

Hence the systems become more complex and the 

environment has to be considered (Tolk, 2016). That 

is why this paper shows an approach of how to solve 
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multiphysics problems in parallel using software 

agents inspired by the contract net protocol.  

After the motivation and the introduction, chapter 

2 describes multiphysics simulation and existing 

approaches for parallelization. Afterwards 

possibilities to decompose multiphysics problems are 

given. The last part of chapter 2 introduces the 

software agents and the concept to simulate the parts 

in parallel. The procedure of this agent-based system 

is shown in chapter 3 using an example. In chapter 4 

a concept to improve the effectivity of the decisions 

within the multi-agent system using case-based 

reasoning is presented. Finally a conclusion and an 

outlook are given in chapter 5. 

2 DECOMPOSITION OF 

MULTIPHYSICS PROBLEMS 

FOR PARALLEL SIMULATION 

To simulate multiphysics problems in a decentralized 

way an approach to decompose the problem is 

introduced. Therefore an introduction to multiphysics 

simulation is given before the flexible and self-

organizing agent concept is presented. 

2.1 Multiphysics Simulation 

A multiphysics simulation analyzes relations between 

different domains and their effects among 

themselves. This is getting more and more important, 

since model driven engineering and virtual 

commissioning are significant topics today (Boschert 

and Rosen, 2016). This simulations are used to 

predict and to understand the behavior of a system, 

often before building it. Thus a geometrical model of 

the system is built. The included physical laws are 

represented by partial differential equations or 

integral equations. To simulate physical effects, the 

model is discretized using e.g. the finite element 

method (FEM) or the boundary element method 

(BEM) (Gupta, 2002). Software tools such as 

COMSOL Multiphysics (Dickinson et al., 2014) are 

used. For solving the resulting linear equation system 

different solvers exists. Some use direct methods and 

others iterative ones. Direct methods mount the 

matrix by a sequence of calculation steps. In iterative 

methods, the results will be approximated until the 

convergence criterion is reached.  

To estimate which configuration is better suited 

for a simulation task, experiential knowledge is 

needed. And even then it is often impossible to 

predict the best configuration before the simulation. 

There are solvers that deliver for nearly every task a 

simulation result and others that are good for only a 

few ones but do these simulation in just a fraction of 

time with less computational effort. 

In order to meet the increasingly larger and more 

complex models, the computational effort can be 

spread over several distributed computers. Next to 

classical high performance computing on a 

supercomputer, there are other approaches to run 

simulations in parallel on distributed heterogeneous 

computing resources. In many approaches there is a 

static decomposition before the simulation or the 

simulation tool is made for exactly this use case. So 

each one can just be used for very specific problem 

setups. To solve different kinds of multiphysics 

simulations in parallel, there must be a more general 

attempt to decompose a multiphysics problem. A 

more general approach is presented in (Vázquez et al., 

2016). The code Alya works on already discretized 

models. But here, every partial problem must have the 

same discretization and is calculated with the same 

code. As computing resource a super computer is 

used, but super computers are expensive.  

However, if a model is updated in the presented 

approaches, for example by adding a new physical 

domain, everything must be simulated again and the 

configuration must be updated, too. That is why in 

this paper a more flexible approach is introduced, 

which uses idle and already existing personal 

computers (PC) and servers. 

2.2 Decomposition of Multiphysics 

Problems 

With the decomposition of multiphysics problems, 

there are two goals that should be reached. The first 

goal is to enable calculation resources with less 

calculation power to assist in the distributed 

simulation process, for example if they don’t have 

enough memory to load the problem or if they just 

have the ability to simulate parts like the heat transfer 

but not electromagnetic waves. The second goal is to 

use different methods to get a better result in shorter 

time. In some cases it can be an opportunity to 

simulate different areas or different physical effects 

with different methods and configurations (Buchau et 

al., 2003; Fetzer et al., 1999). Some approaches to 

decompose a problem for distributed calculation is 

shown in Figure 1. 

To reduce the computational effort for one 

resource, there is the possibility to simulate the 

physical effects separately. This works on most 

weakly coupled problems. Another possibility to 

reduce the computational effort is to cut the model in 

Intelligent and Distributed Solving of Multiphysics Problems Coordinated by Software Agents - An Intelligent Approach for Decentralized
Simulations

201



parts. To reduce the calculation time various 

simulation configuration like the solver or the method 

(FEM, BEM) can be evaluated. 

 

Figure 1: Objectives and approaches for decomposition of 

multiphysics simulation problems. 

When no coupling between the physical effects 

exists, parallel calculation is trivial. Considering uni- 

or bidirectional coupling between the physics, 

information must be exchanged during the 

simulation. For this exchange an intelligent resource 

management is needed. One approach for this are 

agent-based systems. 

2.3 Agent-based Concept for a 

Distributed System 

To simulate the coupled problem parts on distributed 

calculation resources software agents are used to 

manage the solution process. Software agents are 

autonomous software units able to interact with the 

environment and communicate with each 

other (Jennings and Wooldridge, 1996). The ability to 

communicate is used to exchange information 

between coupled problem parts. Therefore, the agents 

use an agent communication language (ACL) based 

on the guidelines of the Foundation for Intelligent 

Physical Agents (FIPA, 2002). The ACL is based on 

the human speech act and allows to structure 

conversations. So, there is the possibility to add in 

addition to an identifier a performative to a message, 

such as INFORM, PROPOSE, AGREE, and many 

others. 

To manage the solving process next to an agent 

management system (AMS) that cares for the 

message transport and the directory facilitator (DF) as 

yellow pages, three kinds of agents are developed: a 

coordination, a calculation and a report agent. The 

report agent that provides state news from all agents 

received by messages isn’t regarded in the further 

paper because it isn’t necessary for the calculations. 

2.3.1 Coordination Agent 

In the multi-agent system (MAS) there is one 

coordination agent that manages the simulation 

process. It gets the simulation task from the user and 

informs the other agents about the new model and the 

decomposition possibilities. It also supervises the 

distribution process among the agents and decides 

about the offers made by the calculation agents. With 

the coordination agent’s graphical user interface, it is 

possible to stop simulations or to update the model. 

This can be used to integrate another physical effect. 

2.3.2 Calculation Agent 

The MAS contains many calculation agents. The 

calculation agents have the task to do the partial 

simulations. Thus they have the knowledge of the 

necessary steps to simulate a model. A calculation 

agent can have different abilities depending on the 

calculation resource on which it runs and the 

simulation software that is installed. Based on these 

abilities they bid for the part problems they want to 

simulate. Additional and redundant calculations are 

also supported to speed up the process. As soon as a 

calculation agent received the confirmation to a 

partial problem it starts the calculation using various 

software packages. To guarantee global convergence, 

which means the fulfillment of all constraints rising 

from couplings between partial problems, it 

exchanges results with other agents involved. 

Relevant results from other agents are considered in 

their own solutions. If the local convergence criterion 

is reached and no changes in the relevant results 

occur, the partial problem is terminated. When all 

partial problems are terminated, the global solution is 

completed. The calculation agents also provide 

interim results and the result to the user. 

3 AN EXAMPLE ON 

DISTRIBUTED AGENT-BASED 

SIMULATION 

In this chapter the solving procedure of the prototype 

is illustrated using a realistic example. The prototype 

implements the agents using the framework JADE 

(Java Agent Developing framework) (Bellifemine et 

al., 2007). Next to the presented agents in chapter 2.4, 

an AMS and a DF are used. As bidirectional coupled 

multiphysics problem microwave and dielectric 
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heating is used for demonstration. Here a lossy 

dielectric medium (water) in a waveguide is 

considered. Hence the time harmonic electromagnetic 

wave equation (EMW) and the heat transfer (HT) are 

regarded. The underlying system of differential 

equations is given by 

∇ × ∇ × �⃗� − 𝑘2�⃗� = 𝑖𝜔𝜇0𝐽  

−∇ ⋅ 𝜅∇𝑇 = 𝜎‖�⃗� ‖
2
, 

with the electric field �⃗� , the electric current density 𝐽 , 
the temperature field T, the angular frequency ω, and 

the thermal conductivity κ. Taking temperature 

dependent conductivity 𝜎 and permittivity 𝜖𝑟 into 

account the wave number 𝑘 reads 

𝑘2 = −𝑖𝜔𝜇0(𝜎(𝑇) + 𝑖𝜔𝜖0𝜖𝑟(𝑇)), 

With the vacuum permeability 𝜇0 and the vacuum 

permittivity 𝜖0.  

To simulate the problem three calculation 

resources are used, listed in table 1. The data 

exchange between the calculation resources uses 

LAN technology. The access to the simulation tools 

is realized by a Java interface. 

Table 1: Available calculation resources. 

PC 1 PC 2 PC 3 

16 GB RAM 8 GB RAM 8 GB RAM 

Intel® Core™ 

i7-3520M CPU 

@ 2.90 GHz 

Intel® Core™ 

i5 CPU 650 @ 

3.20 GHz 

Intel® Core™ 

i5 CPU 650 @ 

3.20 GHz 

tool for EMW tool for EMW tool for HT 

 

There are three phases for the MAS that are 

explained in the next sub-sections: initialization, 

decomposition, and solving. 

3.1 Initialization Phase 

First, all agents must be started. Each PC runs one 

calculation agent (CalcA). PC 3 also runs the AMS, 

the DF, and the coordination agent (CoordA). After 

starting, the CoordA connects with the software tool. 

The CoordA registers at the DF and starts the GUI, 

where the user can load a model. The CalcAs CA1, 

CA2, and CA3 on PC 1, PC 2, and PC3 connect with 

the software tools. Then they check the performance 

of their resource and register at the DF. Last the 

CalcAs look for the CoordA using the DF and 

subscribe, so that they will be informed when a new 

model is available. After this initialization phase is 

done, the MAS waits for the user to load a model.  

3.2 Decomposition Phase 

The goal of the decomposition phase is to manage the 

decomposition of a model and to distribute the parts 

to the system resources. The necessary 

communication between the agents for the example 

based on a dynamic allocation negotiation is shown 

in Figure 2. As soon as the user loads a new model, 

the coordination agent analyses it on splitting 

possibilities and informs the CalcAs that have 

subscribed. Now all agents aim to find the best 

allocation of the problem parts. To get an overview of 

the different problem parts, the CalcAs request a price 

list from the CoordA that contains the parts and the 

current biddings. Next the CalcAs have to make their 

decision on which part to bid depending on their 

abilities. The better the calculation power of a 

resource, the more money the agent has to bid on 

parts. Also dynamic abilities like utilization are 

considered. The CoordA checks the biddings and 

updates the price list if there is a higher bidding. It 

also informs the formerly highest bidder and the new 

highest bidder about the new list. As soon as an agent 

has its problem part it starts calculating.  

In this example the CA3 bids on the HT problem 

part. The other two CalcAs both bid on the EMW 

problem part. Therefore, they are overbidding each 

other as long as the one with the better resource gets 

the problem. However, the other agent is simulating 

the EMW part with other simulation configuration 

and tries to provide the result faster. 

With this procedure the most promising variants 

are computed on the best calculation resources. The 

phase is finished when all problem parts are allocated. 

If a model becomes updated, the new part is allocated 

the same way to the CalcAs. 

3.3 Solving Phase 

During the solving phase the agents simulate their 

partial problems. To take care of dependencies, the 

agents cooperate with each other. So the first step of 

this phase is, that every calculation agent informs all 

others about the start of its task. Then the calculation 

agents analyze which other problem part depends on 

their own one. Next they subscribe to the calculation 

agents that simulate the related parts. Here, the agent 

with the HT problem part is interested in all results 

about the EMW and the agents with the EMW 

problem parts are interested in the HT part. After the 

subscription, the agents start the calculations. 
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Figure 2: Communication during the decomposition phase. 

Because of the lack of a stationary heat source in 

the HT model, CA3 finishes soon and waits for results 

from the EMW part to incorporate them as Joule’s 

losses. When the first agent with the EMW problem 

finds a result, it checks if the tolerances are within the 

limits and if the result is already published. Here, it 

isn’t published yet, so it sends a message with the 

result information to the other agents. The other 

agents check if their partial problem depends on the 

results. Here CA3 requests the solution, since the 

temperature depends on the heat sources. Before 

publishing results that correspond to the convergence 

criterion, the agents check, if they aren’t already 

published. If so, they don’t publish them and just wait 

for further results that may change something within 

their own simulation. Once the convergence criterion 

is reached and no agent is calculating anymore, the 

simulation process is finished. 
During the calculations, the user is able to add 

further physical effects or couplings between them 

into the simulation. When doing so the existing 

solutions are reused as initial values. 

3.4 The Solution 

The graphic diagrams in figure 3 shows the 

simulation results for the electromagnetic wave and 

the heat transfer in the water. The solutions are 

presented by the agents, using a browser as graphic 

interface.  

Besides the decomposition based on physical 

domains, the introduced MAS is able to decompose 

the simulation task based on geometries. It is also able 

to use different software tools and numerical methods 

to get a good result (Grabmaier et al., 2016; Jüttner et 

al., 2017). Further decomposition in space and time is 

possible.  

The decision, which solver configuration has to be 

chosen if there is more than one resource capable to 

simulate it, is made by the calculation agents based 

on heuristics. Experienced engineers are able to 

choose a suitable solver configuration by regarding 

the model and the study. To imitate this human 

behavior, our MAS is expanded to learn from solved 

cases. Therefore a case-based reasoning approach is 

used. 

 

Figure 3: Simulation results of the calculation agents: Top 

electric field strength on the surface of the waveguide, 

Bottom left temperature inside the dielectric media, Bottom 

right Joules losses inside the dielectric media. 

4 USING CASE-BASED 

REASONING TO IMPROVE 

THE EFFICIENCY 

Case-based reasoning (de Mantaras, 2001) is used in 

the field of automated reasoning to use similar cases 

that are already solved to adapt the solution instead of 

building a new one from scratch. The case-based 

reasoning process is divided into four steps: 

• Retrieve: the new task is compared with the 

already solved tasks to find a similar one 

coordination

agent

CA3 (HT 
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CA2 (EMW 

software)
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INFORM: load-model

REQUEST: price-list

AGREE: price-list
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• Reuse: the solution of the similar already 

solved task is adapted for the current one 

• Revise: the new solution based on the 

adaption is valuated 

• Retain: the new case with its task and 

solution is saved to reuse it in the future 

The advantage of this method compared with neural 

networks is, that there is no need for an initial 

training. Solutions can be created using the 

conventional way, if there is no similar case that can 

be adapted. Neural networks are set up by a training 

data set while case-based reasoning approaches learn 

from case to case due to the increasing database. 

Thus, the algorithm used to compare the similarity 

must be created by an expert. Here this method is used 

to optimize the choice of the linear solver. Thus, the 

cases are the simulation models with their studies and 

the used solver configuration.  

4.1 Cases 

To learn from cases, these must be saved in a data 

base. Therefore, a structure is needed. Figure 4 shows 

the structure of the cases for multiphysics 

simulations, consisting of model properties, approach 

parameters, and a grading. 

 

Figure 4: Structure of multiphysics simulation cases. 

4.1.1 Model Properties for Comparison 

To reuse information about the solving process from 

already solved cases, there must be a possibility to 

compare them. This is made by the model properties. 

An important property is the discipline, like HT or 

EMW in the previous example. Considering EMW 

simulation many properties are evaluated, shown in 

table 2. The parameters are grouped in boundary 

conditions (BC), material properties (M), 

discretization and geometry (G). The parameters are 

represented by booleans, by integers or floats, and 

others that contain lists. All information are a priori 

available using the model description. 

Table 2: Model properties from electromagnetic waves 

problems. 

 property name type 

 hasPortIntegral boolean 

B
C

 hasPerfectlyMatchedLayers boolean 

isHermitian boolean 

G
 maxGeometricalDistance float 

minGeometricalDistance float 

d
is

cr
et

iz
at

io
n
 

shapeOrder integer 

minSizeOfElements float 

maxSizeOfElements float 

minSkewness float 

averageSkewness float 

minQualityOfElementAngle float 

averageQualityOfElementAngle float 

averageElementsPerPenetrationDepth float 

minElementsPerPenetrationDepth float 

numberOfDegreeOfFredoms integer 
M

 maxConductFact float 

waveNumber array 

maxImagWaveNumber float 

4.1.2 Approaches 

To reuse the simulation configuration of already 

calculated models, the information about how this old 

cases were simulated must be saved. Here, the used 

method, the software tool, and the solver 

configuration are stored. The solvers have different 

advantages and disadvantages, so there isn’t one that 

is the best in any case (Meister, 2015). Some are slow 

but solve the task in nearly any case, some are fast but 

need much memory and some cannot even guarantee 

to always find a solution. For the iterative applied 

solvers there is also the choice of a suitable 

preconditioner. The considered solver possibilities 

for the electromagnetic wave physic are shown in 

table 3. 

Table 3: Considered solver configurations for simulation. 

 Solver 

d
ir

ec
t MUMPS 

Pardiso 

Spooles 

it
er

at
iv

e 

BiCGStab + left preconditioning 

BiCGStab + right preconditioning 

GMRES + left preconditioning 

GMRES + right preconditioning 

preconditioned CG 
 

Since the solver choice doesn’t depend only on the 

model properties but also on the computation abilities 

5
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of the resource, this is also considered and saved 

together with the cases and their evaluations. 

4.1.3 Result Evaluation 

The evaluation of a case must be done after the 

simulation is finished. Even bad tries must be saved, 

so the configurations won’t be used again on a similar 

problem. The most important evaluation criterion is if 

the simulation was solved or not. Other criteria like 

the computation time must be compared relative to 

the computation abilities, like the random access 

memory of the resource. The best evaluation can be 

obtained by comparing different solver 

configurations and their results. 

4.2 Similarity to Other Cases 

Often examples on case-based reasoning are using 

only one attribute to compare cases. For the solver 

configuration in simulations, cases are more complex 

and can’t be described or compared by one parameter. 

As described in chapter 4.1.1 the properties 

additionally contain different kind of parameters. 

There are parameters that have to match exactly and 

parameters that should be in the same range to use the 

same solver configuration. To measure the similarity 

between a new case and the cases saved in the 

database, the algorithm must take this into account. A 

common function to name the similarity sim between 

two cases c1 and c2 with n different parameter and 

with the weights wi is given by 

sim(𝑐1, 𝑐2) =
∑ 𝑤𝑖

𝑛
𝑖=1

sim𝑖(𝑐1𝑖,𝑐2𝑖)

∑ 𝑤𝑖
𝑛
𝑖=1

 . 

simi is the similarity between the cases in one 

parameter. So multi-conditional cases are compared 

considering different kind of parameters. To create 

such an algorithm with appropriate weights a set of 

data is analyzed by an expert. 

Due to the decentralized architecture of the MAS, 

the data is distributed and must be collected as well 

as exchanged. This is done by our incooperation 

concept. 

4.3 Incooperation Concept 

The cases and the database must be integrated to the 

existing MAS. Thus, the database is cared for by a 

new agent, the case base agent. It manages the old 

cases and is able to present similar cases for received 

properties. Thus a message with the properties as 

content is send. To save new cases into the database, 

it can receive the cases by a new ACL message with 

the id new_case. Figure 5 shows the new structure of 

the MAS and the additionally needed communication 

ways.  

 

Figure 5: MAS with integrated case-based reasoning 

approach. 

The first step when using case-based reasoning for 

a new model is to find the model properties that are 

needed for the similarity measurement. Here, the 

coordination agent that receives the model from a 

user is responsible. It analyzes the model and sends 

the properties to the case base agent. If there are 

similar cases, it uses them for creating a prioritized 

price list as a basis for the bidding process. If there 

are no similar cases the previous concept is used for 

creating the price list. If there are just one or two cases 

yet, another configuration can be tried in the case that 

there are more calculation resources left. 

The calculation agents bid on the parts. Thus they 

check if they match the computation abilities for the 

parts and configurations in the price list. With this 

method the agents can decide on their own whether 

the case can be adapted for their current simulation 

tasks or not. After each simulation, the calculation 

agents evaluate the results by comparing their 

solutions and send the cases to the case base agent. 

With the presented incooperation concept, the 

data for each physical domain is collected and saved 

centrally but the agents keep their autonomy. The 

case-based reasoning assists them by the choice on 

which partial problem to bid. 

5 CONCLUSIONS 

In this paper a multi-agent system is presented, which 

is able to solve different multiphysics simulations on 

distributed computation resources. The basic 

functionality is shown on a microwave oven example, 

considering electromagnetic waves and the heat 

transfer. The MAS has also been successfully tested 

for further models. Because of the difficulties to 

choose the right solver configuration, a concept to 

7
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incorporate a case-based reasoning approach is given. 

The case-based reasoning is used to support the 

decisions made by the agents in concern of the solver 

configuration. This extension allows the MAS to 

learn like a human expert from model to model. The 

selection of an appropriate linear solver is only one 

approach where the proposed MAS collects 

knowledge. Further this approach can be extended to 

the more complicated case of nonlinear and/or time 

dependent problems. The MAS can be regarded as 

intelligent assistant system for multiphysics 

simulations. It enables inexperienced users to 

simulate complex problems on distributed, already 

available resources using proven software tools. 
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