
Analysis of the Evolution of the UML Metamodel

Zhiyi Ma1,2, Huihong He3, Jinyang Liu2,4 and Xiao He5
1School of Electronics Engineering & Computer Science, Peking University, Beijing, China

2Key laboratory of High Confidence Software Technologies (Peking University), Ministry of Education, Beijing, China
3National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing, China

4Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
5School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China

Keywords: Evolution, UML Metamodel, Entropy, Measure.

Abstract: UML has been widely used for modeling applications and it changes continuously. In this situation, it is

reasonable to analyze its evolution. This paper presents an approach to analyzing the evolution of the UML

metamodel by using complex network and information entropy technologies. The approach can provide

insight into the constructive mechanism and future trends of UML, and potentially form the basis for

eliciting improved or novel laws of UML evolution. The study is a contribution for analyzing the evolution

of not only the UML metamodel but also other metamodels like the UML metamodel.

1 INTRODUCTION

Unified Modeling Language (UML) has been widely

used for modeling applications in various fields and

has been improving all along.

Each version of UML has several metaclasses and

a large number of relations between the metaclass,

and thus UML is a complex body of knowledge.

It is inevitable that the complex language has

quality defects, because the design for UML is

closely related to the cognitive ability of designers.

The practice has proved that it is much harder to

design good quality complex diagrammatic

languages (such as UML).

The defects result in a big trouble for building,

understanding, and applying UML. Therefore, a

quality assurance mechanism is necessary for

solving the problems. The key part of the work is

making certain the UML’s structure mechanism.

There is little research on what is the well-

ordered structure of the UML metamodel. It is an

important approach to analyzing the structure

mechanism of the UML metamodel from an

evolutionary point of view.

In this paper, we use information entropy to

analyze the evolution of the UML metamodel, since

information entropy can provide theoretical

underpinnings for software engineering in general

(Clark et al, 2015).

Currently, the crossover study of software

engineering and complex network has obtained

some achievements, and we also explore to use the

achievements to analyze the evolution of the UML

metamodel.

The paper is structured as follows. Section 2

presents our analyzing approach. Section 3 analyzes

data calculated from the 11 versions of UML and

our preliminary observed results. Section 4 further

discusses the preliminary results and the problems

needing to be solved further. Section 5 analyzes

related work. Section 6 draws conclusions.

2 ANALYZING APPROACH

2.1 Structure of the UML Metamodel

The UML metamodel is a complex body of

knowledge. Typically, it consists of hundreds of

metaclasses, a metaclass may have many properties,

and there are complex relationships between

metaclasses. Therefore, packages are used to

organize the metamodel since the packages provide

namespaces for the grouped elements.

According to the UML XMI document, we

unfold the package structure of the UML metamodel

into a directed graph by parsing merge, include, and

import relations between the packages, and obtain

356
Ma, Z., He, H., Liu, J. and He, X.
Analysis of the Evolution of the UML Metamodel.
DOI: 10.5220/0006571303560363
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 356-363
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

one metaclass diagram (i.e. one directed graph) for

calculating the UML metamodel.

Moreover, we need to find an approach to

analyzing in detail the distribution of the features of

metaclasses (i.e. property, operation, and OCL

expression) and the distribution of the relations

between the metaclasses, and to exploring the

evolution of the UML metamodel by using statistics,

complex network, and information entropy

technologies.

2.2 Complex Network

We obtain the directed graphs of the 11 versions of

the UML metamodel, and each of them is a network,

which consists of nodes (metaclasses) and directed

edges (inheritances, and compositions,

unidirectional and bidirectional associations).

Each version of the UML metamodel all has

several hundreds or even more than one thousand of

features, and so is relations. Therefore, such a

directed graph from the metamodel is complex, and

it is complex network (Wang et al. 2013).

Using network and statistical methods to analyze

software helps to reveal the essential characteristics

of software, and lay a foundation for quantizing the

complexity of software (He et al. 2008). Barabási

think that complex network is an efficient tool for

handling complex systems and that network

topology (including calculated statistical properties)

is closely related to the evolution of networks

(Barabási,2009). We mainly apply degree

distribution, network density, and average path

length to analyze the UML metamodel and

evolution, along with information entropy.

2.3 Analysis of Entropies

There are some relations between microstates of a

system and its components: the number of

microstates of a system increases with the number

and complex of the components of the system

(Silviu, 1977).

Information theory uses an amount of

information of a system to measure the degree of its

structuralization or systematization, and advocates

that increasing information can order chaotic

systems, in contrast, loss of information can bring

chaos of systems. Moreover, the structure of a

system affects its efficiency of information flow.

One calculates an amount of information of a

system by using information entropy, which is a

measurement of the micro-disorder degree or the

uncertain degree of the information of a system. Let

p(xi) be a probability of xi occurring in a whole

distribution for a system, and the information

entropy of the system is

-∑p(xi)log2 p(xi)，i=1,2,..n.

One takes the UML metamodel as a system and

continually modifies its structure or order degree.

While modifying, it receive negentropy or positive

entropy from outside. Therefore, it is far away

balance and its growth is not irreversible, since

UML strives to model as many application fields as

possible and such fields develop continuously.

Moreover, the interaction between the components

of the UML metamodel is nonlinear, i.e. not simply

overlaying the functions of the components.

According to the aforementioned characteristics

of the UML metamodel, it is a dissipative structure

system (Zhang and Vijay, 2012) and is evolutionary,

and thus we measure it with information entropy. In

the paper, the information entropy is a measurement

of the space distribution and randomness of the

structural components of the UML metamodel since

the UML metamodel can be transformed into a size

and complex directed graph. Ideally, the UML

metamodel is well-formed and well-order, i.e. its

entropy is as small as possible.

According to information theory based on

microscopic states, the microstates of the UML

metamodel are its possible existing structural forms,

and the number of the microstates of the metamodel

is a key factor for the entropy of the metamodel.

Therefore, the paper uses microstates to evaluate the

order degree of the UML metamodel. Moreover, for

multi-versions of the UML metamodel, it is

necessary to analyze the change of the entropy of the

property, operation, inheritance, association,

composition, OCL expression, feature, and relation

in the metamodel.

2.3.1 Calculating the Entropy of Basic
Components

The features and relations between the metaclasses

in the UML metamodel are basic components

calculated, and the following algorithm is used to

calculate their entropy:
1. For a given component C, C∈{property, operation,

OCL expression, generalization, association,

composition}, and the UML metamodel M

2. Set the total number of metaclasses of M be N

3. num-set:={}

4. FOR i:= 1 to N

num-set:= num-set∪{the number of C of metaclass

ci} //calculating the distribution of the number of C

(e.g. property) of metaclasses of M

Analysis of the Evolution of the UML Metamodel

357

5. FOR each j∈num-set {

5.1. f[j]:=0 // recording the number of the

metaclasses which the number of C of is j

5.2. FOR i:= 1 to N {

IF the number of C of metaclass ci = j THEN

f[j]:=f[j]+1

ci.C.absolute-frequency:=f[j] // set absolute

frequency on C of ci be f[j]

ci.C.self-information:=-log2(ci.C.absolute-

requency/N) //calculating self-information of ci

on C

}

}

6. The entropy on C of M is

-
n

i

((ci.C.absolute-frequency/N)× ci.C.self-

information)

2.3.2 Calculating the Utility of the UML
Metamodel

The utility of the UML metamodel is the efficiency

of the directed graph. Here, the paper focuses on the

communication efficiency validity and communica-

tion quality validity of the directed graph since both

indexes can figure the utility (Zhang and

Vijay,2012).

By the aid of information entropy theory based

on microscopic states (Zhang and Vijay,2012), the

structure validity of a system

R = 1 – H/H*

Where H and H* is the structure entropy and the

max structure entropy of the system, respectively.

The bigger R is, the better the structure of the system

is, since H should be as small as possible according

to the aforementioned information entropy theory.

Concretely, here H is classified to communica-

tion efficiency entropy and communication quality

entropy.

The communication efficient validity of a system

indicates the velocity of information communication

between all components of the system, and it is

related to the distance of propagation. The measure

of the uncertainty of communication efficient

validity is the communication efficiency entropy of

the system.

The communication quality validity of a system

indicates the accuracy of information communica-

tion between all components of the system, and it is

related to the number of these components (i.e. the

more the components are, the more the chance of the

introduction of communication error is) and to the

affinity within components (i.e. connectivity of

relations between components). The measure of the

uncertainty of communication quality validity of a

system is the communication quality entropy of the

system.

According to aforementioned definitions, we can

see that communication efficiency entropy and

communication quality entropy can be used to

evaluate the manageability and understandability of

the UML metamodel.

(a) Calculating communication efficient validity

According to the definition of communication

efficient validity, the greater the path length between

two metaclasses is, the more difficult the

understanding their relation is.

Communication efficient validity of the UML

metamodel
Rt= 1 - Ht/Ht

*,

where Ht is communication efficient entropy of the

UML metamodel, and Ht
* is its max communication

efficient entropy.

Set the UML metamodel have n metaclasses, Lij

be the sum of path lengths between metaclasses i

and j, and then the total efficient microstates of the

UML metamodel

 L =

n

i

n

j1 1

Lij, and Ht
*= log2 L.

The probability of occurring efficient microstates

between metaclasses i and j

pij= Lij /L, and Ht=

n

i

n

j1 1

-pijlog2pij.

(b) Calculating communication quality validity

The more the number of needed metaclasses for

defining a metaclass is, the bigger the error

possibility for defining the metaclass is.

Communication quality validity of the UML

metamodel
Rq =1- Hq/Hq*,

where Hq is communication quality entropy of

the UML metamodel, and Hq* is max

communication quality entropy.

Set the UML metamodel have n metaclasses, Di

be the out degree of metaclass i (i.e. the number of

needed direct metaclasses for defining i), and then

the total communication quality microstates

(interconnection) between all metaclasses of the

UML metamodel

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

358

D =

n

i 1

 Di, and Hq
*= log2 D.

The probability of occurring quality microstates

of metaclasses i

pi= Di/D, and Hq=

n

i 1

-pilog2pi.

(c) Calculating the utility of the UML

metamodel

The utility of the UML metamodel =ɑRt + ß Rq

where ɑ and ß are weights, and ɑ+ ß=1. The bigger

the utility is, the better the ordering degree of the

UML metamodel is.

3 PRELIMINARY RESULTS

We obtain basic data from 11 versions of UML and

analyze the data by using statistics, complex

network, and entropy technologies.

3.1 Statistical Analysis of Basic
Components

3.1.1 Scale

The UML metamodel contains basic components:

class, property, operation, OCL expression,

association, inheritance, and composition. The

previous four basic components are collectively

called feature, and latter three are collectively called

relation. One usually concerns the number of them

and the trend of their evolutions, see Figure 1.

Figure 1: Evolution of basic elements of 11 versions of the

UML metamodel.

The scales of almost all basic components of

early versions of the UML metamodel are

increasing, and the scales of class, associations,

inheritances, property, and composition all trend

toward leveling out after UML 2.1.1 except for scale

of property in UML 2.2.

OCL expression and operation help to formalize

the semantics of UML, their scales also are

increasing except that the scale of OCL expressions

jumps in UML 2.0 .

3.1.2 Distribution of Basic Components

In the UML metamodel, for a given feature or

relation (e.g. property or composition), the number

of the metaclasses that have the feature or relation

may be 0, 1, 2, …, and these numbers seems like it

should follow a skewed distribution, because the

probability distributions of structural components of

OO software tends to follow skewed distributions

with long tails (Valverde and Sol´e, 2007), since the

basic components of the UML metamodel is similar

to ones of OO software. In fact, the obtained

distributions of each kind of components are

irregular. This indicates that UML designers do not

use the smaller numbers of properties and relations

to define the metaclasses.

Figure 2 shows the evolution trend of the means

of the basic components of 11 versions of UML.

Figure 2: Evolution trend of means of the basic

components.

The scales of the basic components all trend

toward leveling out after UML 2.0 except for scales

of operations and OCL expressions in UML 2.5.

Indeed, UML 2.5 designers increase the operations

and OCL expressions in order to enhance UML

static semantics.

Figure 2 shows that the average scale of the

properties and inheritances in all versions remain

stable and the values are small. The reason for this

should be that UML designers usually follow that a

metaclass is defined with a few properties and

inheritances for the sake of reusability and

understanding.

3.1.3 Information Entropy

According to the algorithm for calculating entropy

(See Section 2.3.2), we obtain the curves for entropy

evolutions of the basic components from 11 versions

of the UML metamodel in Figure 3.

Analysis of the Evolution of the UML Metamodel

359

Figure 3: Entropy evolutions of the basic components.

In Figure 3, the entropy of the basic components

since UML 2.0 all tends to changes little except for

the entropy of operations and OCL expressions in

UML 2.5. In practice, UML 2.5 increases the

operations and OCL expressions. The observed

result is compatible with that in Figure 2.

3.2 Structural Analysis of Metamodels

3.2.1 Degree Distribution

Here, we discuss the in-degrees and out-degrees of

the metaclasses. Obviously, the larger the degree of

a metaclass is, the higher the influence of the

metaclassis. Therefore, we focus on the degree

distribution of the graph.

Because early 3 version of UML metamodel is

small scales and undergo a great deal of change,

Figure 4 shows the distribution of in-degrees of the

metaclasses of the UML metamodel from version

2.0 to version 2.5.

Figure 4: The distribution curves of the in-degrees of

metaclasses from later 8 versions.

The distribution curve of the in-degrees of

metaclasses in UML 2.0 is obviously different with

the others. The reason for this is that UML 2.0 has

structural problems, and OMG (Object Management

Group) declared the issue.

The distribution curves of the in-degrees of the

metaclasses of the other UML versions are bimodal,

and are almost the same. This means the distribution

probability of the in-degrees concentrated on two

areas.

Figure 5 show the distribution of out-degrees of

the metaclasses from 11 versions of the UML

metamodel.

Figure 5: The distribution curves of the out-degrees of

metaclasses.

In Figure 5, the degrees of the previous three

versions are obviously smaller than degrees of the

later ones.

Many of the metaclasses in each version of the

UML metamodel devote themselves to define a very

few other metaclasses, and the curves follow long

tail distribution.

3.2.2 Network Density

Network density characterizes the complexity of a

network structure. The greater network density is,

the more difficult understanding and maintaining it

is.

Set a version of the UML metamodel (i.e. a

directed graph) have N nodes and M edges, its

network density ρ=M/(N*(N-1)), i.e. the ratio of the

number of its actual edges to the largest possible

edges. Figure 7 shows the evolution trend of

network densities of 11 versions of the UML

metamodel.

Figure 6: Evolution trend of network densities of 11

versions of the UML metamodel.

In the current trend, since UML 2.0, network

densities stabilize, M≈0.0054N*(N-1), i.e. M(t)～

N
ɑ
(t), 1<ɑ<2, where t is time. This means that the

evolution of the networks follows densification

power law.

The densification power law means that, on the

one hand, a directed graph will become more and

more densification, but on the other hand, the graph

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

360

still is actually sparse with comparing a unity

coupling network for the graph (Wang et al. 2013).

With increase of modeling requirements, N should

increase, and M should increase even more. This

will result in that the UML metamodels are larger

and more complex, and seriously impact that one

learns and maintains it, etc. Therefore, it is necessary

to build UML profiles as required, instead of

complicating the basic UML metamodel, i.e.

restraining the increase of N, just like what OMG

advocates.

3.2.3 Average Path Length of Network

UML metaclasses are defined step-by-step, and each

modeling element (i.e. a metaclass which in-degree

is 0), which are used by end-modelers, depends on

the metaclasses locating to one or several directed

paths. Obviously, the long dependency paths

increase the degree of difficulty to manage and

understand the whole UML metamodel. Therefore,

we use the average path length of network to assess

the efficiency for learning the UML metamodel.

For a directed graph for a version of the UML

metamodel, we take the sum of path lengths of a

given modeling element to all end metaclasses as the

path length for defining the modeling element.

Figure 7. shows the average path lengths of 11

versions of the UML metamodel.

Figure 7: The average path lengths of 11 versions of the

UML metamodel.

Figure 7 shows that the average path lengths of

early UML metamodels increase since the sizes of

the metamodes become bigger, and ones of the other

UML metamodels are bigger since the metamodels

all are big in size. It is worthwhile to note that the

average path lengths of the last several metamodels

almost changes a little since the metamodels hold

steady.

This means that learning a modeling element

needs learning about dozens of metaclasses.

According to the “Seven, Plus or Minus Two” rule

(George, 1956), which is instructive to understand a

concept with reasonable sizes to a certain extent,

current the UML metamodel is obviously not easy to

learn.

3.2.4 Utility of an UML Metamodel

According to the algorithm in Section 2.3.2, we

obtain the utility of 11 versions of the UML meta-

model by setting ɑ and ß all be 0.5, see Figure 9.

Figure 8: Curves for the utility of 11 versions of the UML

metamodel.

In Figure 8, the communication quality validity,

communication efficient validity, and utility of early

versions of UML metamodel are almost higher than

ones of later versions. The reason for this is that the

early versions far away from user requirements,

even after they are to come into the service, they still

have defects on correctness, precision, conciseness,

consistency, and understandability.

Since UML 2.0, the communication quality

validity, communication efficient validity, and utility

converge to a relatively small range of values (i.e.

have cohesiveness to large extent), respectively.

This indicates that these versions all are mature and

stable to a large extent, since they have been applied

and improved for a long time. On the other hand, for

the later versions, their communication quality

validity and communication efficient validity all are

small, and so is their utility. Such small values

indicate that these versions of UML metamodel are

still less than satisfactory, and they need to be

further improved since the bigger the three values is,

the better the structure of the UML metamodel is.

For other values for ɑ and ß, the values of the

related utilities all are in the interval [0.08,0.22]

since UML 2.0, and the related trend lines are the

same as that in Figure 9 in essence. Therefore, the

above conclusion still is true.

4 DISCUSSION

Figures 1 to 3 show that the scale of the metamodel

Analysis of the Evolution of the UML Metamodel

361

of UML 2.0 swells first, the later versions have a

little change. For basic components except for the

operations and OCL expressions in UML 2.5, their

scales and entropies from UML 2.0 to UML 2.4.1

change slightly, see Figures 2 and 3. As mentioned,

the explanation for the increases of the operations

and OCL expressions in UML 2.5 is that formal

OCL expressions can enrich UML static semantics

and reduce ambiguity.

The current evolution trend of network densities

in Figure 6 is stable, and this is the effort of OMG

on using profiles as soon as possible instead of

extending UML, i.e. the OMG has benefitted from

the pursuit.

The current the communication quality validities,

communication efficient validities, and utilities of

the UML metamodel all change slightly, and the

result accords with the aforementioned results.

However, their values all are small, and such small

values indicate that these versions of the UML

metamodel still need to be further improved.

In figure 4, the distribution curves of the in-

degrees of the metaclasses of the other UML

versions are bimodal, that is, the distribution

probability of the in-degrees concentrated on two

areas. The reason needs to be further explored.

In figure 5, the distribution curves of the out-

degrees of the metaclasses of each version of the

UML metamodel follow long tail distribution, and

the distribution results from structure of the UML

metamodel. First the UML defines a great many of

the simple foundational language constructs

required, then the constructs are used to define the

user level constructs required for UML step by step.

OMG always follows the principle: the

incrementally defining the UML metamodel and

reusing the foundational language constructs for

defining the modeling elements of UML and other

modeling languages.

The average path lengths since UML 2.0 are

more than 25 (see Figure 7), and this means that

current versions of the UML metamodel are

obviously not easy to learn. How to increase the

comprehensibility of UML is a big challenge.

Enriching a metaclass with information (e.g. adding

the number of basic components) to a certain extent

may be a measure.

The results in Section 3 also obviously shows

that, with the evolution of the UML metamodel, the

number of their components swells and their

structure gets complicated during early evolution,

and the degree of their change becomes small during

later evolution.

The UML metamodel is used to define modeling

elements. Specifically, a modeling element, out-

degree of which is 0, is defined with a series of

subsequent metaclasses up to end-metaclasses, in-

degree of which all are 0, and there may be several

definition paths for the modeling element.

Therefore, it is improper to calculate average

shortest path lengths of the directed graph for the

UML metamodel. Since average shortest path length

is a property of the small world network (Valverde

and Sol´e, 2007), the directed graphs are different

with the small world network.

5 RELATED WORK

To some degree, the UML metamodel is similar to

ordinary OO class models, and some of the measure

technologies for the class models can be used to

measure the UML metamodel. Bansiya and Davis

(2002) collect data from class models of some

software frameworks with successive versions

according to their nine OO metrics, and then

calculate the change between different versions of a

framework. Mattsson and Bosch present a method

(1999), which is similar to Bansiya’s method, that

can measure the change between different versions

of a framework, and includes six hypotheses for

assessing stability of a framework. Valverde and

Sol´e deeply study hierarchical small-worlds in OO

software architecture based on complex network

theory (2007). However, indeed the UML

metamodel, as a new kind of the body of knowledge,

is different from ordinary class models, and these

studies involve few characteristics of the UML

metamodel.

For the studies on the quality of metamodels,

typical some focus on UML. The existing studies

focus on the design expectations of UML

(Weigert,2000; Douglass,1998; Siau and Cao, 2002).

However, these design expectations have not explicit

definitions, without concrete solutions. Ma et al.

(2013) define a quality model and present an

operable measuring mechanism to assess the quality

of metamodels, without a main focus on

evolutionary.

Some studies use entropies to assess software.

The studies help to our work, but are not direct

related to the UML metamodel. Hassan and Holt

(2003) use information entropy to deeply research

the chaos phenomenon of software, and find that the

information entropy of software becomes bigger and

bigger in the evolution process of the software; this

makes the increases of the difficulty in that

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

362

developers maintain the software. Using entropy

principle, Gaudan, et al (2008) present a measure

method of OO software reliability, and the method

misses important OO concepts such as associations.

Moreover, Yu, et al (2008) present an approach to

measuring the component cohesion based on

structure entropy and Zhang, et al (2011) analyze

system coupling by measuring the entropy of

modules. The later two works apply entropy to

measure systems, but they aim at component and

entity respectively, not metaclass.

6 CONCLUSIONS

For large and complex the UML metamodel, the

paper presents an approach to analyzing its evolution

to make certain its structure mechanism by using

statistics, complex network, and information entropy

technologies.

The study of the paper can provide the guides to

develop, measure, and refactory not only the UML

metamodel but also other metamodels like the UML

metamodel, and lays a foundation for further

exploring the structure mechanisms of large and

complex the metamodels like the UML metamodel

with good quality.

The paper analyses the basic components and

structure of the UML metamodel, and reveal only

some structural properties. This means that further

analysis is needed.

ACKNOWLEDGMENTS

The work supported by the National Natural Science

Foundation of China (No. 61672046).

REFERENCES

Barabási, A. (2009). Scale-Free networks: A decade and

beyond. Science, 325(5939):412−413.

Bansiya, J. & Davis, C, G. (2002). A hierarchical model

for object-oriented design quality assessment. IEEE

Transaction of Software Engineering, 28(1): 4–17.

Clark, D., Feldt, R., Poulding, S., & Yoo, S. (2015).

Information Transformation: An Underpinning Theory

for Software Engineering. In Proceedings of the 37th

International Conference on Software Engineering -

Volume 2, Pages 599-602.

Douglass, B. P. (1998). UML for systems engineering.

Computer Design’s: Electronic Systems Technology

and Design, 37(11), 44–49.

Gaudan, S., Motet, G., & Auriol, G. (2008). Metrics for

Object-Oriented Software Reliability Assessment -

Application to a Flight Manager. In Seventh European

Dependable Computing Conference,.13-24.

George, A. M. (1956). The Magical Number Seven, Plus

or Minus Two: Some Limits on Our Capacity for

Processing Information. The Psychological Review,

vol. 63, 81-97.

Hassan, A. E., & Holt, R. C. (2003). Studying the chaos of

code developmeng. In 10th Working Conference on

Reverse Engineering, 123-133.

He, K. Q., Ma, Y. T., Liu J., Li, B., & Peng, R. (2008).

Software Networks. Beijing: Science Press.

Ma, Z, Y. He, X. & Liu, C. (2013). Assessing the Quality

of Metamodels. Frontiers of Computer Science, 7(4),

558-570.

Mattsson, M. & Bosch, J. (1999). Characterizing stability

in evolving frameworks. In Proceedings of the 29th

International Conference on Technology of Object-

Oriented Languages and Systems, 118–130.

OMG. (2011). Uml Infrastructure specification. OMG

Document Number: formal/2011-08-05.

Siau, K. & Cao, Q. (2002). How complex is the unified

modeling language? Advanced topics in database

research, 294–306.

Silviu, G. (1977). Inforamtion theory with Applications.

McGraw Hill.

Valverde, S., Ferrer-Cancho, R., &Sol´e, R. V. (2002).

Scale-Free Networks from Optimal Design, Europhys.

Lett, vol. 60, 512-517.

Valverde, S., & Sol´e, R.V. (2007). Hierarchical small-

worlds in software architecture. Arxiv preprint,

arXiv:cond-mat/0307278.

Wang, X., Li, X., & Chen, G.(2013). Network Science: An

Introduction. Higher Education Press.

Weigert, T. (2000). UML 2.0 RFI response overview.

OMG Document ad/00-01-07.

Yu, Y., Li, T., Zhao, N., & Dai, F. (2008). An Approach to

Measuring the Component Cohesion Based on

Structure Entropy. In Second International Symposium

on Intelligent Information Technology Application,

697-700.

Zhang, J., & Vijay, P. (2012). Information Entropy:

Theory and Applications. China Water Power Press.

Zhang, Y., Zhou, H., Duan, Q., Liao, Y., Liu, J. & He, Z.

(2011). Quantitative Analysis of System Coupling. In

Eighth International Conference on Fuzzy Systems

and Knowledge Discovery, 2358-2362.

Analysis of the Evolution of the UML Metamodel

363

