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Abstract: UML has been widely used for modeling applications and it changes continuously. In this situation, it is 

reasonable to analyze its evolution. This paper presents an approach to analyzing the evolution of the UML 

metamodel by using complex network and information entropy technologies. The approach can provide 

insight into the constructive mechanism and future trends of UML, and potentially form the basis for 

eliciting improved or novel laws of UML evolution. The study is a contribution for analyzing the evolution 

of not only the UML metamodel but also other metamodels like the UML metamodel. 

1 INTRODUCTION 

Unified Modeling Language (UML) has been widely 

used for modeling applications in various fields and 

has been improving all along. 

Each version of UML has several metaclasses and 

a large number of relations between the metaclass, 

and thus UML is a complex body of knowledge.  

It is inevitable that the complex language has 

quality defects, because the design for UML is 

closely related to the cognitive ability of designers. 

The practice has proved that it is much harder to 

design good quality complex diagrammatic 

languages (such as UML).  

The defects result in a big trouble for building, 

understanding, and applying UML. Therefore, a 

quality assurance mechanism is necessary for 

solving the problems. The key part of the work is 

making certain the UML’s structure mechanism. 

There is little research on what is the well-

ordered structure of the UML metamodel. It is an 

important approach to analyzing the structure 

mechanism of the UML metamodel from an 

evolutionary point of view. 

In this paper, we use information entropy to 

analyze the evolution of the UML metamodel, since 

information entropy can provide theoretical 

underpinnings for software engineering in general 

(Clark et al, 2015). 

Currently, the crossover study of software 

engineering and complex network has obtained 

some achievements, and we also explore to use the 

achievements to analyze the evolution of the UML 

metamodel. 

The paper is structured as follows. Section 2 

presents our analyzing approach. Section 3 analyzes 

data calculated from the 11 versions of UML and 

our preliminary observed results. Section 4 further 

discusses the preliminary results and the problems 

needing to be solved further. Section 5 analyzes 

related work. Section 6 draws conclusions. 

2 ANALYZING APPROACH 

2.1 Structure of the UML Metamodel 

The UML metamodel is a complex body of 

knowledge. Typically, it consists of hundreds of 

metaclasses, a metaclass may have many properties, 

and there are complex relationships between 

metaclasses. Therefore, packages are used to 

organize the metamodel since the packages provide 

namespaces for the grouped elements.  

According to the UML XMI document, we 

unfold the package structure of the UML metamodel 

into a directed graph by parsing merge, include, and 

import relations between the packages, and obtain 
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one metaclass diagram (i.e. one directed graph) for 

calculating the UML metamodel.  

Moreover, we need to find an approach to 

analyzing in detail the distribution of the features of 

metaclasses (i.e. property, operation, and OCL 

expression) and the distribution of the relations 

between the metaclasses, and to exploring the 

evolution of the UML metamodel by using statistics, 

complex network, and information entropy 

technologies. 

2.2 Complex Network 

We obtain the directed graphs of the 11 versions of 

the UML metamodel, and each of them is a network, 

which consists of nodes (metaclasses) and directed 

edges (inheritances, and compositions, 

unidirectional and bidirectional associations).  

Each version of the UML metamodel all has 

several hundreds or even more than one thousand of 

features, and so is relations. Therefore, such a 

directed graph from the metamodel is complex, and 

it is complex network (Wang  et al. 2013). 

Using network and statistical methods to analyze 

software helps to reveal the essential characteristics 

of software, and lay a foundation for quantizing the 

complexity of software (He et al. 2008). Barabási 

think that complex network is an efficient tool for 

handling complex systems and that network 

topology (including calculated statistical properties) 

is closely related to the evolution of networks 

(Barabási,2009). We mainly apply degree 

distribution, network density, and average path 

length to analyze the UML metamodel and 

evolution, along with information entropy. 

2.3 Analysis of Entropies 

There are some relations between microstates of a 

system and its components: the number of 

microstates of a system increases with the number 

and complex of the components of the system 

(Silviu, 1977). 

Information theory uses an amount of 

information of a system to measure the degree of its 

structuralization or systematization, and advocates 

that increasing information can order chaotic 

systems, in contrast, loss of information can bring 

chaos of systems. Moreover, the structure of a 

system affects its efficiency of information flow.  

One calculates an amount of information of a 

system by using information entropy, which is a 

measurement of the micro-disorder degree or the 

uncertain degree of the information of a system. Let 

p(xi) be a probability of xi occurring in a whole 

distribution for a system, and the information 

entropy of the system is 

-∑p(xi)log2 p(xi)，i=1,2,..n. 

One takes the UML metamodel as a system and 

continually modifies its structure or order degree. 

While modifying, it receive negentropy or positive 

entropy from outside. Therefore, it is far away 

balance and its growth is not irreversible, since 

UML strives to model as many application fields as 

possible and such fields develop continuously. 

Moreover, the interaction between the components 

of the UML metamodel is nonlinear, i.e. not simply 

overlaying the functions of the components. 

According to the aforementioned characteristics 

of the UML metamodel, it is a dissipative structure 

system (Zhang and Vijay, 2012) and is evolutionary, 

and thus we measure it with information entropy. In 

the paper, the information entropy is a measurement 

of the space distribution and randomness of the 

structural components of the UML metamodel since 

the UML metamodel can be transformed into a size 

and complex directed graph. Ideally, the UML 

metamodel is well-formed and well-order, i.e. its 

entropy is as small as possible. 

According to information theory based on 

microscopic states, the microstates of the UML 

metamodel are its possible existing structural forms, 

and the number of the microstates of the metamodel 

is a key factor for the entropy of the metamodel. 

Therefore, the paper uses microstates to evaluate the 

order degree of the UML metamodel. Moreover, for 

multi-versions of the UML metamodel, it is 

necessary to analyze the change of the entropy of the 

property, operation, inheritance, association, 

composition, OCL expression, feature, and relation 

in the metamodel. 

2.3.1 Calculating the Entropy of Basic 
Components 

The features and relations between the metaclasses 

in the UML metamodel are basic components 

calculated, and the following algorithm is used to 

calculate their entropy: 
1. For a given component C, C∈{property, operation, 

OCL expression, generalization, association, 

composition}, and the UML metamodel M 

2. Set the total number of metaclasses of M be N 

3. num-set:={} 

4. FOR i:= 1 to N 

num-set:= num-set∪{the number of C of metaclass 

ci} //calculating the distribution of the number of C 

(e.g. property) of metaclasses of M 
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5. FOR each j∈num-set { 

5.1. f[j]:=0  // recording the number of the 

metaclasses which the number of C of is j 

5.2. FOR i:= 1 to N { 

IF the number of C of metaclass ci = j THEN 

f[j]:=f[j]+1 

ci.C.absolute-frequency:=f[j]  // set absolute 

frequency on C of ci be f[j] 

ci.C.self-information:=-log2(ci.C.absolute-

requency/N)  //calculating self-information of ci 

on C 

} 

} 

6. The entropy on C of M is 

- 
n

i

((ci.C.absolute-frequency/N)× ci.C.self-

information)  

2.3.2 Calculating the Utility of the UML 
Metamodel 

The utility of the UML metamodel is the efficiency 

of the directed graph. Here, the paper focuses on the 

communication efficiency validity and communica-

tion quality validity of the directed graph since both 

indexes can figure the utility (Zhang and 

Vijay,2012). 

By the aid of information entropy theory based 

on microscopic states (Zhang and Vijay,2012), the 

structure validity of a system 

R = 1 – H/H* 

Where H and H* is the structure entropy and the 

max structure entropy of the system, respectively. 

The bigger R is, the better the structure of the system 

is, since H should be as small as possible according 

to the aforementioned information entropy theory. 

Concretely, here H is classified to communica-

tion efficiency entropy and communication quality 

entropy.  

The communication efficient validity of a system 

indicates the velocity of information communication 

between all components of the system, and it is 

related to the distance of propagation. The measure 

of the uncertainty of communication efficient 

validity is the communication efficiency entropy of 

the system. 

The communication quality validity of a system 

indicates the accuracy of information communica-

tion between all components of the system, and it is 

related to the number of these components (i.e. the 

more the components are, the more the chance of the 

introduction of communication error is) and to the 

affinity within components (i.e. connectivity of 

relations between components). The measure of the 

uncertainty of communication quality validity of a 

system is the communication quality entropy of the 

system. 

According to aforementioned definitions, we can 

see that communication efficiency entropy and 

communication quality entropy can be used to 

evaluate the manageability and understandability of 

the UML metamodel. 

(a) Calculating communication efficient validity 

According to the definition of communication 

efficient validity, the greater the path length between 

two metaclasses is, the more difficult the 

understanding their relation is. 

Communication efficient validity of the UML 

metamodel 
Rt= 1 - Ht/Ht

*, 

where Ht is communication efficient entropy of the 

UML metamodel, and Ht
* is its max communication 

efficient entropy. 

Set the UML metamodel have n metaclasses, Lij 

be the sum of path lengths between metaclasses i 

and j, and then the total efficient microstates of the 

UML metamodel 

 L = 
 

n

i

n

j1 1

Lij, and Ht
*= log2 L. 

The probability of occurring efficient microstates 

between metaclasses i and j 

pij= Lij /L, and Ht=
 

n

i

n

j1 1

-pijlog2pij. 

(b) Calculating communication quality validity 

The more the number of needed metaclasses for 

defining a metaclass is, the bigger the error 

possibility for defining the metaclass is.  

Communication quality validity of the UML 

metamodel 
Rq =1- Hq/Hq*, 

where Hq is communication quality entropy of 

the UML metamodel, and Hq* is max 

communication quality entropy. 

Set the UML metamodel have n metaclasses, Di 

be the out degree of metaclass i (i.e. the number of 

needed direct metaclasses for defining i), and then 

the total communication quality microstates 

(interconnection) between all metaclasses of the 

UML metamodel 
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D = 


n

i 1

 Di, and Hq
*= log2 D. 

The probability of occurring quality microstates 

of metaclasses i  

pi= Di/D, and Hq=


n

i 1

-pilog2pi. 

(c) Calculating the utility of the UML 

metamodel 

The utility of the UML metamodel =ɑRt + ß Rq 

where ɑ and ß are weights, and ɑ+ ß=1. The bigger 

the utility is, the better the ordering degree of the 

UML metamodel is. 

3 PRELIMINARY RESULTS 

We obtain basic data from 11 versions of UML and 

analyze the data by using statistics, complex 

network, and entropy technologies. 

3.1 Statistical Analysis of Basic 
Components 

3.1.1 Scale 

The UML metamodel contains basic components: 

class, property, operation, OCL expression, 

association, inheritance, and composition. The 

previous four basic components are collectively 

called feature, and latter three are collectively called 

relation. One usually concerns the number of them 

and the trend of their evolutions, see Figure 1. 

 

Figure 1: Evolution of basic elements of 11 versions of the 

UML metamodel. 

The scales of almost all basic components of 

early versions of the UML metamodel are 

increasing, and the scales of class, associations, 

inheritances, property, and composition all trend 

toward leveling out after UML 2.1.1 except for scale 

of property in UML 2.2. 

OCL expression and operation help to formalize 

the semantics of UML, their scales also are 

increasing except that the scale of OCL expressions 

jumps in UML 2.0 . 

3.1.2 Distribution of Basic Components 

In the UML metamodel, for a given feature or 

relation (e.g. property or composition), the number 

of the metaclasses that have the feature or relation 

may be 0, 1, 2, …, and these numbers seems like it 

should follow a skewed distribution, because the 

probability distributions of structural components of 

OO software tends to follow skewed distributions 

with long tails (Valverde and Sol´e, 2007), since the 

basic components of the UML metamodel is similar 

to ones of OO software. In fact, the obtained 

distributions of each kind of components are 

irregular. This indicates that UML designers do not 

use the smaller numbers of properties and relations 

to define the metaclasses. 

Figure 2 shows the evolution trend of the means 

of the basic components of 11 versions of UML. 

 

Figure 2: Evolution trend of means of the basic 

components. 

The scales of the basic components all trend 

toward leveling out after UML 2.0 except for scales 

of operations and OCL expressions in UML 2.5. 

Indeed, UML 2.5 designers increase the operations 

and OCL expressions in order to enhance UML 

static semantics. 

Figure 2 shows that the average scale of the 

properties and inheritances in all versions remain 

stable and the values are small. The reason for this 

should be that UML designers usually follow that a 

metaclass is defined with a few properties and 

inheritances for the sake of reusability and 

understanding. 

3.1.3 Information Entropy 

According to the algorithm for calculating entropy 

(See Section 2.3.2), we obtain the curves for entropy 

evolutions of the basic components from 11 versions 

of the UML metamodel in Figure 3. 
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Figure 3: Entropy evolutions of the basic components. 

In Figure 3, the entropy of the basic components 

since UML 2.0 all tends to changes little except for 

the entropy of operations and OCL expressions in 

UML 2.5. In practice, UML 2.5 increases the 

operations and OCL expressions. The observed 

result is compatible with that in Figure 2. 

3.2 Structural Analysis of Metamodels 

3.2.1 Degree Distribution 

Here, we discuss the in-degrees and out-degrees of 

the metaclasses. Obviously, the larger the degree of 

a metaclass is, the higher the influence of the 

metaclassis. Therefore, we focus on the degree 

distribution of the graph. 

Because early 3 version of UML metamodel is 

small scales and undergo a great deal of change, 

Figure 4 shows the distribution of in-degrees of the 

metaclasses of the UML metamodel from version 

2.0 to version 2.5.  

 

Figure 4: The distribution curves of the in-degrees of 

metaclasses from later 8 versions. 

The distribution curve of the in-degrees of 

metaclasses in UML 2.0 is obviously different with 

the others. The reason for this is that UML 2.0 has 

structural problems, and OMG (Object Management 

Group) declared the issue. 

The distribution curves of the in-degrees of the 

metaclasses of the other UML versions are bimodal, 

and are almost the same. This means the distribution 

probability of the in-degrees concentrated on two 

areas. 

Figure 5 show the distribution of out-degrees of 

the metaclasses from 11 versions of the UML 

metamodel.  

 

Figure 5: The distribution curves of the out-degrees of 

metaclasses. 

In Figure 5, the degrees of the previous three 

versions are obviously smaller than degrees of the 

later ones. 

Many of the metaclasses in each version of the 

UML metamodel devote themselves to define a very 

few other metaclasses, and the curves follow long 

tail distribution.  

3.2.2 Network Density 

Network density characterizes the complexity of a 

network structure. The greater network density is, 

the more difficult understanding and maintaining it 

is.  

Set a version of the UML metamodel (i.e. a 

directed graph) have N nodes and M edges, its 

network density ρ=M/(N*(N-1)), i.e. the ratio of the 

number of its actual edges to the largest possible 

edges. Figure 7 shows the evolution trend of 

network densities of 11 versions of the UML 

metamodel. 

 

Figure 6: Evolution trend of network densities of 11 

versions of the UML metamodel. 

In the current trend, since UML 2.0, network 

densities stabilize, M≈0.0054N*(N-1), i.e.  M(t)～

N
ɑ
(t), 1<ɑ<2, where t is time. This means that the 

evolution of the networks follows densification 

power law. 

The densification power law means that, on the 

one hand, a directed graph will become more and 

more densification, but on the other hand, the graph 
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still is actually sparse with comparing a unity 

coupling network for the graph (Wang et al. 2013). 

With increase of modeling requirements, N should 

increase, and M should increase even more. This 

will result in that the UML metamodels are larger 

and more complex, and seriously impact that one 

learns and maintains it, etc. Therefore, it is necessary 

to build UML profiles as required, instead of 

complicating the basic UML metamodel, i.e. 

restraining the increase of N, just like what OMG 

advocates. 

3.2.3 Average Path Length of Network 

UML metaclasses are defined step-by-step, and each 

modeling element (i.e. a metaclass which in-degree 

is 0), which are used by end-modelers, depends on 

the metaclasses locating to one or several directed 

paths. Obviously, the long dependency paths 

increase the degree of difficulty to manage and 

understand the whole UML metamodel. Therefore, 

we use the average path length of network to assess 

the efficiency for learning the UML metamodel. 

For a directed graph for a version of the UML 

metamodel, we take the sum of path lengths of a 

given modeling element to all end metaclasses as the 

path length for defining the modeling element. 

Figure 7. shows the average path lengths of 11 

versions of the UML metamodel. 

 

Figure 7: The average path lengths of 11 versions of the 

UML metamodel. 

Figure 7 shows that the average path lengths of 

early UML metamodels increase since the sizes of 

the metamodes become bigger, and ones of the other 

UML metamodels are bigger since the metamodels 

all are big in size. It is worthwhile to note that the 

average path lengths of the last several metamodels 

almost changes a little since the metamodels hold 

steady.  

This means that learning a modeling element 

needs learning about dozens of metaclasses. 

According to the “Seven, Plus or Minus Two” rule 

(George, 1956), which is instructive to understand a 

concept with reasonable sizes to a certain extent, 

current the UML metamodel is obviously not easy to 

learn. 

3.2.4 Utility of an UML Metamodel 

According to the algorithm in Section 2.3.2, we 

obtain the utility of 11 versions of the UML meta-

model by setting ɑ and ß all be 0.5, see Figure 9.  

 

Figure 8: Curves for the utility of 11 versions of the UML 

metamodel. 

In Figure 8, the communication quality validity, 

communication efficient validity, and utility of early 

versions of UML metamodel are almost higher than 

ones of later versions. The reason for this is that the 

early versions far away from user requirements, 

even after they are to come into the service, they still 

have defects on correctness, precision, conciseness, 

consistency, and understandability.  

Since UML 2.0, the communication quality 

validity, communication efficient validity, and utility 

converge to a relatively small range of values (i.e. 

have cohesiveness to large extent), respectively. 

This indicates that these versions all are mature and 

stable to a large extent, since they have been applied 

and improved for a long time. On the other hand, for 

the later versions, their communication quality 

validity and communication efficient validity all are 

small, and so is their utility. Such small values 

indicate that these versions of UML metamodel are 

still less than satisfactory, and they need to be 

further improved since the bigger the three values is, 

the better the structure of the UML metamodel is. 

For other values for ɑ and ß, the values of the 

related utilities all are in the interval [0.08,0.22] 

since UML 2.0, and the related trend lines are the 

same as that in Figure 9 in essence. Therefore, the 

above conclusion still is true. 

4 DISCUSSION 

Figures 1 to 3 show that the scale of the metamodel 
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of UML 2.0 swells first, the later versions have a 

little change. For basic components except for the 

operations and OCL expressions in UML 2.5, their 

scales and entropies from UML 2.0 to UML 2.4.1 

change slightly, see Figures 2 and 3. As mentioned, 

the explanation for the increases of the operations 

and OCL expressions in UML 2.5 is that formal 

OCL expressions can enrich UML static semantics 

and reduce ambiguity. 

The current evolution trend of network densities 

in Figure 6 is stable, and this is the effort of OMG 

on using profiles as soon as possible instead of 

extending UML, i.e. the OMG has benefitted from 

the pursuit. 

The current the communication quality validities, 

communication efficient validities, and utilities of 

the UML metamodel all change slightly, and the 

result accords with the aforementioned results. 

However, their values all are small, and such small 

values indicate that these versions of the UML 

metamodel still need to be further improved. 

In figure 4, the distribution curves of the in-

degrees of the metaclasses of the other UML 

versions are bimodal, that is, the distribution 

probability of the in-degrees concentrated on two 

areas. The reason needs to be further explored.  

In figure 5, the distribution curves of the out-

degrees of the metaclasses of each version of the 

UML metamodel follow long tail distribution, and 

the distribution results from structure of the UML 

metamodel. First the UML defines a great many of 

the simple foundational language constructs 

required, then the constructs are used to define the 

user level constructs required for UML step by step. 

OMG always follows the principle: the 

incrementally defining the UML metamodel and 

reusing the foundational language constructs for 

defining the modeling elements of UML and other 

modeling languages. 

The average path lengths since UML 2.0 are 

more than 25 (see Figure 7), and this means that 

current versions of the UML metamodel are 

obviously not easy to learn. How to increase the 

comprehensibility of UML is a big challenge. 

Enriching a metaclass with information (e.g. adding 

the number of basic components) to a certain extent 

may be a measure. 

The results in Section 3 also obviously shows 

that, with the evolution of the UML metamodel, the 

number of their components swells and their 

structure gets complicated during early evolution, 

and the degree of their change becomes small during 

later evolution. 

The UML metamodel is used to define modeling 

elements. Specifically, a modeling element, out-

degree of which is 0, is defined with a series of 

subsequent metaclasses up to end-metaclasses, in-

degree of which all are 0, and there may be several 

definition paths for the modeling element. 

Therefore, it is improper to calculate average 

shortest path lengths of the directed graph for the 

UML metamodel. Since average shortest path length 

is a property of the small world network (Valverde 

and Sol´e, 2007), the directed graphs are different 

with the small world network. 

5 RELATED WORK 

To some degree, the UML metamodel is similar to 

ordinary OO class models, and some of the measure 

technologies for the class models can be used to 

measure the UML metamodel. Bansiya and Davis 

(2002) collect data from class models of some 

software frameworks with successive versions 

according to their nine OO metrics, and then 

calculate the change between different versions of a 

framework. Mattsson and Bosch present a method 

(1999), which is similar to Bansiya’s method, that 

can measure the change between different versions 

of a framework, and includes six hypotheses for 

assessing stability of a framework. Valverde  and 

Sol´e deeply study hierarchical small-worlds in OO 

software architecture based on complex network 

theory (2007). However, indeed the UML 

metamodel, as a new kind of the body of knowledge, 

is different from ordinary class models, and these 

studies involve few characteristics of the UML 

metamodel. 

For the studies on the quality of metamodels, 

typical some focus on UML. The existing studies 

focus on the design expectations of UML 

(Weigert,2000; Douglass,1998; Siau and Cao, 2002). 

However, these design expectations have not explicit 

definitions, without concrete solutions. Ma et al. 

(2013) define a quality model and present an 

operable measuring mechanism to assess the quality 

of metamodels, without a main focus on 

evolutionary. 

Some studies use entropies to assess software. 

The studies help to our work, but are not direct 

related to the UML metamodel. Hassan and Holt 

(2003) use information entropy to deeply research 

the chaos phenomenon of software, and find that the 

information entropy of software becomes bigger and 

bigger in the evolution process of the software; this 

makes the increases of the difficulty in that 
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developers maintain the software. Using entropy 

principle, Gaudan, et al (2008) present a measure 

method of OO software reliability, and the method 

misses important OO concepts such as associations. 

Moreover, Yu, et al (2008) present an approach to 

measuring the component cohesion based on 

structure entropy and Zhang, et al (2011) analyze 

system coupling by measuring the entropy of 

modules. The later two works apply entropy to 

measure systems, but they aim at component and 

entity respectively, not metaclass. 

6 CONCLUSIONS 

For large and complex the UML metamodel, the 

paper presents an approach to analyzing its evolution 

to make certain its structure mechanism by using 

statistics, complex network, and information entropy 

technologies. 

The study of the paper can provide the guides to 

develop, measure, and refactory not only the UML 

metamodel but also other metamodels like the UML 

metamodel, and lays a foundation for further 

exploring the structure mechanisms of large and 

complex the metamodels like the UML metamodel 

with good quality. 

The paper analyses the basic components and 

structure of the UML metamodel, and reveal only 

some structural properties. This means that further 

analysis is needed. 
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