
A Multi-Objective, Risk-based Approach for

Selecting Software Requirements

Aruan G. Amaral and Gledson Elias
Informatics Center, Federal University of Paraíba, João Pessoa, Brazil

Keywords: Multi-Objective Evolutionary Computing, Software Requirements, Risk Management.

Abstract: In iterative and incremental development approaches, there is great interest in delivering system releases on-

budget, but raising stakeholders’ satisfaction as much as possible. In the field of Search Based Software

Engineering (SBSE), such a problem is known as the Next Release Problem (NRP), which is handled in

existing proposals by reformulating the requirements selection process as an optimization problem solved

by metaheuristics, providing a set of recommendations with the highest customers’ satisfactions as well as

the lowest development costs. Despite their contributions, most of current proposals do not address software

risks, which represent a key aspect that can deeply impact on project cost and stakeholders’ satisfaction. In

such a direction, this paper proposes a multi-objective, risk-based approach for the NRP problem, in which a

risk analysis is incorporated to estimate the impact of software risks in development cost and stakeholders’

satisfaction. Experimental results reveal the efficiency and practical applicability of the proposed approach.

1 INTRODUCTION

In software project planning and management,

budget constraints apply on every iteration of all

software projects (Scacchi, 2001). Thus, in order to

deliver a system release on-budget when the total

cost of candidate requirements exceeds the available

budget, project managers face the problem of

deciding on which requirements should be

prioritized for the next release. Besides the effort on

negotiating such requirements with stakeholders, it

is also required to balance trade-offs among critical

aspects, such as budget, requirements costs,

customers’ preferences and their importance,

keeping costs under control and raising the

satisfaction for all stakeholders.

In such a scenario, the software requirements

selection process represents a complex, challenging

and error-prone task, in which the adoption of

manual, ad-hoc approaches are impractical due to

the large amount of correlated data and conflicts of

interest among stakeholders. Besides, the effort for

conciliating and balancing trade-offs turns out to be

harder as the set of requirements becomes larger.

As a mean to lighten the complexity, effort and

mistakes, information related to requirements and

stakeholders must be made computable by

automated, systematic decision-making approaches.

As one of the first approaches, the cost-importance

model (Karlsson and Ryan, 1997) aims to minimize

costs and delivery time, as well as to maximize the

satisfaction level perceived by stakeholders.

Later, the software requirements selection

process was represented as an optimization problem

known as the Next Release Problem (NRP) (Bagnall

et al., 2001). In the SBSE field, several proposals

characterize and solve the NRP problem from

different and complimentary viewpoints (Huhe and

Greer, 2003; Baker et al., 2006; Colares et al., 2009;

Durillo et al., 2011a; Li et al., 2014), evolving from

a single-objective to a multi-objective perspective.

In the former, proposals focus on finding the better

solution that keeps project budget under control and

raises stakeholders’ satisfaction. In the latter, a pre-

allocated budget constraint is discarded in favor of

offering not only a single solution but a set of good

solutions, providing different recommendations that

produce the highest stakeholders’ satisfaction as

well as the lowest development cost, known as the

Pareto Front, in which the set of solutions cannot be

improved in any dimension without degradation in

another (Zitzler and Thiele, 1999).

Despite contributions, such proposals do not

address software risks, which can deeply impact on

requirements costs and stakeholders’ satisfaction.

338
Amaral, A. and Elias, G.
A Multi-Objective, Risk-based Approach for Selecting Software Requirements.
DOI: 10.5220/0006555503380346
In Proceedings of the 10th International Conference on Agents and Artificial Intelligence (ICAART 2018) - Volume 2, pages 338-346
ISBN: 978-989-758-275-2
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Hence, the integration of risk analysis sounds to be

an insightful contribution to the NRP formulation,

which can be reinforced by the fact that the adoption

or lack of risk management is a key reason for

software project success (Alam, 2014) or failure

(Verner et al., 2008), respectively.

In such a direction, this paper proposes a multi-

objective, risk-based approach for the NRP problem,

called SR2 (Selection of Requirements based on

Software Risks), in which a risk analysis is

incorporated for estimating the impact of risks on

requirements costs and stakeholders’ satisfaction. In

SR2, candidate requirements are associated to

identified risks, which in turn are related to risk

mitigation techniques. Then, based on risks

probability and severity, together with the cost of

applying mitigation techniques, SR2 estimates the

impact of risks on both requirements costs and

stakeholders’ satisfaction. By exploring the widely

adopted multi-objective optimization algorithm

NSGA-II, experimental results based on two semi-

real datasets reveal the potential efficiency and

practical applicability of the proposed approach.

The remainder of this paper is organized as

follows. Section 2 presents fundaments related to

multi-objective optimization. Section 3 presents SR2

in detail. In Section 4, a case study with two datasets

is presented. Section 5 discusses related work. Then,

Section 6 presents final reflexions and future work.

2 FUNDAMENTS

For a Multi-objective Optimization Problem (MOP),

let �⃗�∗ = [𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗] be a vector of decision

variables that minimizes the vector of objective

functions 𝑓(�⃗�) = [𝑓1(�⃗�), 𝑓2(�⃗�), … , 𝑓𝑘(�⃗�)]𝑇, in which

�⃗� = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇 is the vector of decision variables.

Any point �⃗� defines a solution and the set of all

solutions shapes the search space Ω (Durillo et al.,

2011a). The main goal of a MOP relies on finding a

set of good enough or even optimal solutions that

minimize the objective functions 𝑓(�⃗�). In MOPs,

Pareto dominance is defined by comparing a given

solution in relation to all others found so far. Thus, a

solution �⃗�′ is said to dominate a solution �⃗�′′, denoted

by �⃗�′ ≼ �⃗�′′, if and only if ∀𝑖=1,2⋯,𝑘(𝑓𝑖(�⃗�′) ≤ 𝑓𝑖(�⃗�′′))

and ∃𝑖=1,2,⋯,𝑘(𝑓𝑖(�⃗�′) < 𝑓𝑖(�⃗�′′)), meaning that �⃗�′ has a

lower or equal objective score for all objective

functions, but there is at least one in which �⃗�′ has a

lower score in contrast to �⃗�′′.

The set of solutions that are non-dominated by

any other solution in the whole search space Ω is

defined as the Pareto Optimal Set, represented by

𝑃∗ = {�⃗� ∈ Ω | ∄�⃗�′ ∈ Ω, �⃗�′ ≼ �⃗�}. Thus, Pareto optimal

solutions are non-dominated solutions. In MOPs, the

search for the optimal set 𝑃∗ is the main goal, which

is represented as a Pareto Front, defined as the set

𝑃𝐹∗ = {𝑓(�⃗�) | �⃗� ∈ 𝑃∗}. In large search spaces, an

approximation of the optimal set 𝑃∗ is desired.

Besides this optimality feature, solutions should

not be concentrated on a single region of the search

space or too scattered. A uniform spread among the

Pareto front is a desirable quality for multi-objective

optimization algorithms (Durillo et al., 2011a). In

this regard, two quality indicators can be used to

measure both desirable features for a set of good

solutions: Hypervolume and Spread. Both quality

indicators require the optimal set 𝑃∗, but due to

computational complexity it is not always possible

to find such a set. In such cases, a reference front

with best-known solutions is a usual approximation.

Hypervolume (𝐻𝑉) evaluates solutions

convergence and distribution in relation to the

optimal front (Zitzler and Thiele, 1999). Considering

a set of non-dominated solutions 𝑄 = {�⃗�1, �⃗�2, … , �⃗�𝑛},

𝐻𝑉(𝑄) can be estimated by building hypercubes

using objective function values of each solution as

coordinates in relation to a reference point �⃗�𝑤, which

is a vector built with the worst possible solution for

each objective. Eq. 1 provides the hypervolume

expression, in which each hypercube 𝑣𝑖 has the

reference point �⃗�𝑤 and the solution �⃗�𝑖 as the

diagonal corners of the hypercube.

𝐻𝑉(𝑄) = 𝑣𝑜𝑙𝑢𝑚𝑒 (⋃ 𝑣𝑖
|𝑄|
𝑖=1) (1)

In turn, the normalized hypervolume (𝐻𝑉𝑅) is

defined as 𝐻𝑉𝑅 = 𝐻𝑉(𝑄) 𝐻𝑉(𝑃∗)⁄ , reaching a

maximum value of one when the non-dominated

solutions 𝑄 nears the optimal set 𝑃∗ (Deb, 2001). In

contrast, a low value means either solutions far from

𝑃∗ or clustered in a small region of the search space.

Spread (∆) denotes how well non-dominated

solutions 𝑄 = {�⃗�1, �⃗�2, … , �⃗�𝑛} are distributed among

the Pareto Front (Deb, 2001), as defined in Eq. 2.

The terms 𝑑𝑓 and 𝑑𝑙 define the Euclidian distance

between the first/last optimal solutions in 𝑃∗ and the

first/last solutions �⃗�1 and �⃗�𝑛 in 𝑄. In between, the

terms 𝑑𝑖 represent the Euclidian distance between all

consecutive solutions �⃗�𝑖 and �⃗�𝑖+1 in 𝑄, which define

𝑁 − 1 intervals. Finally, the term �̅� denotes the mean

distance between all consecutive solutions in 𝑄. A

spread value near zero means that the first/last points

in 𝑄 are near the respective points in 𝑃∗ and the

distances between consecutive solutions in 𝑄 are

near �̅�, reaching a near-perfect distribution.

A Multi-Objective, Risk-based Approach for Selecting Software Requirements

339

∆ =
(𝑑𝑓+𝑑𝑙+∑ |𝑑𝑖−�̅�|𝑁−1

𝑖=1)

(𝑑𝑓+𝑑𝑙+(𝑁−1)∙�̅�)
 (2)

3 PROPOSED APPROACH

In the NRP context, as shown in Fig. 1, SR2 is a

three-layered, automated, multi-objective, risk-based

approach for selecting software requirements, in

which a software risk analysis estimates risks impact

on development cost and stakeholders’ satisfaction.

Recommending
Requirements Impact

Recommending
Requirements

Requirements Impact Evaluation

Search-Based Requirements Selection

Requirements Overhead

Recommending
Requirements Overhead

Requirements Overhead Evaluation

Requirements Impact

Figure 1: Three-layered architecture of the SR2 approach.

3.1 Requirements Impact

The phase Recommending Requirements Impact

estimates a penalty to be applied to each software

requirement when guessing customers’ satisfaction.

To do that, it is assumed that software risks

associated to requirements imply an impact on their

implementation. In SR2, software requirements are

represented by the set 𝑅𝑄 = {𝑟𝑞1, 𝑟𝑞2, … , 𝑟𝑞𝑛}, where

each 𝑟𝑞𝑖 denotes a candidate requirement for the

next release. In turn, software risks are denoted by

the set 𝑅𝐾 = {𝑟𝑘1, 𝑟𝑘2, … , 𝑟𝑘𝑚}, where each 𝑟𝑘𝑗

represents a risk that can arise during the project.

Usually, a risk is defined as a material or

financial loss, or any other event that must be

avoided (Boehm, 1991). Every risk is associated

with severity and probability values, which indicates

respectively the negative consequences of the risk

event and the likelihood of such undesirable event.

Considering the difficulty of associating accurate

values, a fuzzy-driven notation is adopted. As shown

in Table 1, linguistic terms classify probability and

severity as discrete numerical values according a

five-point Likert scale (Bannerman, 2008), whose

values are in 𝐹𝑇 = {0.05, 0.25, 0.50, 0.75, 0.95}.

Table 1: Risk probability and severity.

Term very low low medium high very high

Value 0.05 0.25 0.50 0.75 0.95

In SR2, the risks probability is represented by the

set 𝑅𝐾𝑃 = { 𝑟𝑘𝑝𝑗 | ∃𝑟𝑘𝑗 ∈ 𝑅𝐾, 𝑟𝑘𝑝𝑗 ∈ 𝐹𝑇 } and in

turn, the risks severity is characterized by the set

𝑅𝐾𝑆 = { 𝑟𝑘𝑠𝑗 | ∃𝑟𝑘𝑗 ∈ 𝑅𝐾, 𝑟𝑘𝑠𝑗 ∈ 𝐹𝑇 }.

As a mean to represent risks traceability, each

requirement 𝑟𝑞𝑖 might be associated with zero, one

or several risks 𝑟𝑘𝑗. Thus, the relationship defined by

𝑅𝑇𝑅𝑄,𝑅𝐾 = {𝑟𝑡𝑖,𝑗 | ∃𝑟𝑞𝑖 ∈ 𝑅𝑄, ∃𝑟𝑘𝑗 ∈ 𝑅𝐾, 𝑟𝑡𝑖,𝑗 ∈ {0, 1}}

characterizes such a traceability, in which 𝑟𝑡𝑖,𝑗

denotes the traceability between requirement 𝑟𝑞𝑖 and

risk 𝑟𝑘𝑗, assuming a value of one or zero to indicate

its existence or not, respectively.

Based on every involved concept, the

requirements impact is represented by the set

𝐼𝑀𝑃 = { 𝑖𝑚𝑝𝑖 | ∃𝑟𝑞𝑖 ∈ 𝑅𝑄, 𝑖𝑚𝑝𝑖 ∈ ℝ }, where each

term 𝑖𝑚𝑝𝑖 can be estimated by Eq. 3, representing

the impact of all risks on requirement 𝑟𝑞𝑖. Note that

Eq. 3 establishes the relation among the following

terms: (i) the traceability 𝑟𝑡𝑖,𝑗 among requirement 𝑟𝑞𝑖

and its associated risks 𝑟𝑘𝑗; and (ii) the risk severity

𝑟𝑘𝑠𝑗 associated to traced risks 𝑟𝑘𝑗.

𝑖𝑚𝑝𝑖 = ∑ 𝑟𝑘𝑠𝑗 ∙ 𝑟𝑡𝑖,𝑗𝑟𝑘𝑗 ∈ 𝑅𝐾 (3)

3.2 Requirements Overhead

Then, the phase Recommending Requirements

Overhead estimates a penalty to be applied to each

software requirement when assessing development

cost. To do that, it is assumed that mitigation

techniques adopted for reducing/eliminating risks

consequences lead to an overhead on requirements

implementation. In SR2, mitigation techniques are

represented by the set 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑞}, each one

possessing an associated cost. Technique costs are

denoted by the set 𝑇𝐶 = {𝑡𝑐𝑘 | ∃𝑡𝑘 ∈ 𝑇, 𝑡𝑐𝑘 > 0}.

Each mitigation technique can help in mitigating

one or more software risks. Such a technique

traceability is represented in SR2 by the relationship

𝑇𝑇𝑅𝐾,𝑇 = {𝑡𝑡𝑗,𝑘 | ∃𝑟𝑘𝑗 ∈ 𝑅𝐾, ∃𝑡𝑘 ∈ 𝑇, 𝑡𝑡𝑗,𝑘 ∈ {0, 1}}. Each

𝑡𝑡𝑗,𝑘 associates risk 𝑟𝑘𝑗 to technique 𝑡𝑘, assuming

values equal to zero/one to indicate the

absence/presence of the association. Mitigation

techniques are classified as preventive and

corrective. In the former, it attempts to avoid risk

occurrence, being applied regardless of the risk

event happens or not. In the latter, it attempts to

mitigate or eliminate risk consequence, being

applied after occurring the risk event.

Based on such related concepts, requirements

overhead is represented in SR2 by 𝑂𝑉𝑅𝑅𝑄,𝑅𝐾,𝑇 =

{ 𝑜𝑣𝑟𝑖,𝑗,𝑘 | ∃𝑟𝑞𝑖 ∈ 𝑅𝑄, ∃𝑟𝑘𝑗 ∈ 𝑅𝐾, ∃𝑡𝑘 ∈ 𝑇, 𝑜𝑣𝑟𝑖,𝑗,𝑘 ∈ ℝ },

where each term 𝑜𝑣𝑟𝑖,𝑗,𝑘 can be estimated by Eq. 4,

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

340

representing the overhead of technique 𝑡𝑘 related to

risk 𝑟𝑗, which in turn is related to requirement 𝑟𝑞𝑖.

Note that Eq. 4 estimates the overhead based on the

cost 𝑡𝑐𝑘 of applying technique 𝑡𝑘 factored by the

probability 𝑡𝑝𝑗,𝑘 of applying technique 𝑡𝑘 for

avoiding or mitigating risk 𝑟𝑘𝑗. In turn, the

probability 𝑡𝑝𝑗,𝑘 is given by Eq. 5, in which the cost

for preventive techniques is fully considered as they

are applied regardless of risk events happen or not,

and the cost for corrective techniques depends on

risk probabilities (𝑟𝑘𝑝𝑗) as they are not applied until

the uncertain occurrence of risk events.

𝑜𝑣𝑟𝑖,𝑗,𝑘 = 𝑟𝑡𝑖,𝑗 ∙ 𝑡𝑡𝑗,𝑘 ∙ 𝑡𝑐𝑘 ∙ 𝑡𝑝𝑗,𝑘 (4)

𝑡𝑝𝑗,𝑘 = {
1 𝑖𝑓 𝒑𝒓𝒆𝒗𝒆𝒏𝒕𝒊𝒗𝒆 𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒,

 𝑟𝑘𝑝𝑗 𝑖𝑓 𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒊𝒗𝒆 𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒
 (5)

3.3 Requirements Recommendation

Now, based on the multi-objective genetic algorithm

NSGA-II (Deb et al., 2002), the phase

Recommending Requirements selects requirements,

in which risks impose an impact on customers’

satisfaction and an overhead on requirements costs,

producing a set of recommendations for the software

requirements to be implemented in the next. release.
Due to space limit, the following discussion does

not detail NSGA-II, but has the focus on the

evaluation of candidate solutions, based on two

fitness functions that assess customers’ satisfaction

and requirements cost, as shown in Fig. 2.

Satisfaction
Evaluation

Cost
Evaluation

Integrated
Cost-Satisfaction

Evaluation

Satisfaction
Level

Cost
Level

Software
RequirementsCustomers

Requirements
Impact

Recommended
Solutions

Customers
Importance

Customers
Preference

Requirements
Overhead

Requirements
Cost

Software
Risks

Risks
Traceability

Techniques
Traceability

Mitigation
Techniques

Figure 2: Recommending Requirements.

In the SR2 proposal, customers are represented

by the set 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑝}, each one defining a set

of requirements preferences, called customers

preference, which is denoted by the relationship

𝑆𝑈,𝑅𝑄 = {𝑠𝑙,𝑖 | ∃𝑢𝑙 ∈ 𝑈, ∃𝑟𝑞𝑖 ∈ 𝑅𝑄 , 𝑠𝑙,𝑖 ∈ [0, 1]}, where

each term 𝑠𝑙,𝑖 can assume values in the interval

[0, 1] ∈ ℝ. In order to deal with conflicts of interest

among customers, SR2 adopts the concept of

customers importance, which is denoted by the set

𝐸 = { 𝑒𝑙 | ∃𝑢𝑙 ∈ 𝑈, 𝑒𝑙 ∈ (0, 1] }, indicating how

important each customer is to the business strategy

of the development organization. Each term 𝑒𝑙 can

assume values in the interval (0, 1] ∈ ℝ.

Besides, in order to evaluate the next release

cost, requirements cost is represented in SR2 by the

set 𝑅𝑄𝐶 = {𝑟𝑞𝑐𝑖 | ∃𝑟𝑞𝑖 ∈ 𝑅𝑄, 𝑟𝑞𝑐𝑖 > 0}, where each

𝑟𝑞𝑐𝑖 represents the development cost associated to

requirement 𝑟𝑞𝑖 based on estimations produced by

the development team.

Finally, it is known that just a subset of candidate

requirements 𝑅𝑄 will be selected for next release. As

such, each possible recommended solution is

defined in the proposed approach by the set 𝑋 =
{ 𝑥𝑖 | ∃𝑟𝑞𝑖 ∈ 𝑅𝑄, 𝑥𝑖 ∈ {0, 1} }, where each term 𝑥𝑖

assumes values equal to one/zero, denoting that

requirement 𝑟𝑞𝑖 has been chosen or not.

3.3.1 Satisfaction Evaluation

The satisfaction level (𝑆𝑋) can be estimated by

Eq. 6, indicating the satisfaction perceived by

customers for candidate solution 𝑋. It is modelled by

the total sum for each customer 𝑢𝑙 and requirement

𝑟𝑞𝑖, considering the product among the following

terms: (i) the preference level 𝑠𝑙,𝑖 that customer 𝑢𝑙

has in relation to requirement 𝑟𝑞𝑖; (ii) the importance

level 𝑒𝑙 that the development organization assigned

to customer 𝑢𝑙; (iii) the impact 𝑖𝑚𝑝𝑖 associated to

requirement 𝑟𝑞𝑖; and (iv) the selector 𝑥𝑖 that

represents the selection or not of requirement 𝑟𝑞𝑖.

𝑚𝑎𝑥 𝑆𝑋 = ∑ ∑ 𝑠𝑙,𝑖 ∙ 𝑒𝑙 ∙ 𝑖𝑚𝑝𝑖 ∙ 𝑥𝑖𝑟𝑞𝑖 ∈ 𝑅𝑄𝑢𝑙 ∈ 𝑈 (6)

Note that impact 𝑖𝑚𝑝𝑖 associated to requirement

𝑟𝑞𝑖 is estimated in a way that the higher the severity

associated to related risks, the higher the impact.

Thus, SR2 adopts the premise that software processes

must first deal with most critical risks as a mean to

maximize the chances of the software project be

successful, as usually perceived in real projects that

focus on most critical risks (Alam, 2014).

3.3.2 Cost Evaluation

The cost level (𝐶𝑋) can be estimated by Eq. 7,

indicating the total cost for implementing a

candidate solution 𝑋. It is modelled by the total sum

among the development cost 𝑟𝑞𝑐𝑖 and the risk

management cost 𝑟𝑘𝑐𝑖 for each requirement 𝑟𝑞𝑖. As

defined, risk management cost represents a penalty

in the total cost of the next release, which is a typical

strategy in real software projects dealing with risks

(Bannerman, 2008). As defined in Eq. 8, risk

management cost 𝑟𝑘𝑐𝑖 is given by the total sum of

risk management cost 𝑟𝑘𝑐𝑖,𝑗 for each risk 𝑟𝑘𝑗 related

to requirement 𝑟𝑞𝑖.

A Multi-Objective, Risk-based Approach for Selecting Software Requirements

341

𝑚𝑖𝑛 𝐶𝑋 = ∑ (𝑟𝑞𝑐𝑖 + 𝑟𝑘𝑐𝑖) ∙ 𝑥𝑖𝑟𝑞𝑖 ∈ 𝑅𝑄 (7)

𝑟𝑘𝑐𝑖 = ∑ 𝑟𝑘𝑐𝑖,𝑗𝑟𝑘𝑗 ∈ 𝑅𝐾 (8)

Remember that a mitigation technique 𝑡𝑘 can be

associated to one or more risks 𝑟𝑘𝑗. Thus, the cost

𝑡𝑐𝑘 of applying technique 𝑡𝑘 can be shared among all

associated risks 𝑟𝑘𝑗. In Eq. 9, risk management cost

𝑟𝑘𝑐𝑖,𝑗 is defined by the ratio between the following

terms: (i) the total sum of the overhead 𝑜𝑣𝑟𝑖,𝑗,𝑘 of

applying each technique 𝑡𝑘 related to risk 𝑟𝑘𝑗 and

requirement 𝑟𝑞𝑖, and (ii) the number of times 𝑡𝑎𝑘

that technique 𝑡𝑘 is applied in all requirements 𝑟𝑞𝑖

and risks 𝑟𝑘𝑗. Now, considering the term 𝑡𝑎𝑘, as

defined in Eq. 10, it denotes the number of times

that technique 𝑡𝑘 is applied in all combinations

among requirements and risks (𝑟𝑡𝑖,𝑗) and also among

such risks and the technique (𝑡𝑡𝑗,𝑘) in question.

𝑟𝑘𝑐𝑖,𝑗 = ∑ 𝑜𝑣𝑟𝑖,𝑗,𝑘 𝑡𝑎𝑘⁄𝑡𝑘 ∈ 𝑇 (9)

𝑡𝑎𝑘 = ∑ ∑ 𝑥𝑖 ∙ 𝑟𝑡𝑖,𝑗 ∙ 𝑡𝑡𝑗,𝑘𝑟𝑘𝑗 ∈ 𝑅𝐾𝑟𝑞𝑖 ∈ 𝑅𝑄 (10)

Once satisfaction 𝑆𝑋 and cost 𝐶𝑋 are estimated for

all evaluated solutions, NSGA-II tries to find a good

enough set of recommended solutions, as much as

possible near the Pareto optimality. Note that the

problem faced by the development organization is to

find a set of recommended solutions that maximizes

the satisfaction function 𝑆𝑋 (Eq. 6) and minimizes

the cost function 𝐶𝑋 (Eq. 7).

4 RESULTS AND DISCUSSIONS

The proposed approach has been evaluated using

two semi-real datasets (Karim and Ruhe, 2014). The

first one comprises 25 requirements and 8 customers

regarding a Release Planner tool. The second one

includes 50 requirements and 4 customers regarding

a project for Microsoft Word. Both datasets make

available data concerning requirements cost,

customers preference as well as importance. The

remainder of the required input data related to risks

and mitigation techniques were synthetically

estimated based on other information available from

datasets. It is important to say that 4 software risks

and 4 mitigation techniques were gathered for the

first dataset, while 8 software risks and 6 mitigation

techniques were deduced for the second dataset.

As already mentioned, SR2 adopts the multi-

objective optimization algorithm NSGA-II (Deb et

al., 2002). The rationale is mainly based on a

systematic review (Pitangueira et al., 2015), which

points out that NSGA-II is the most used algorithm

in multi-objective NRP proposals. Also, it is

common to find that competing algorithms use

NSGA-II results as a benchmark to validate their

own results. NSGA-II adopts an elitist approach, in

which non-dominated and diversity solutions are

favoured. Note that, although NSGA-II defines the

replacement operator of a genetic algorithm, it is still

needed to choose mutation, crossover and selection

operators. In all experiments, NSGA-II was tuned

with flipping mutation with a probability of 1/n,

where 𝑛 is the number of requirements. Besides, it

adopts uniform crossover with a rate of 90% and

binary tournament selection.

As a mean to evaluate the quality of the

NSGA-II findings, a random search was also

adopted to provide a sanity check (Harman et al.,

2012). To assess search capabilities of both

NSGA-II and random search, each experiment

performs 100 independent runs, achieving a good

confidence in results. Also, the Wilcoxon test was

used considering a confidence interval of 95%.

The parametrization of both algorithms is

described in Table 2, tuned through successive

calibrations tests. As can be seen, the population size

for each experiment is quadrupled in relation to the

number of candidate requirements. Regarding the

number of generations, which is the NSGA-II stop

criteria, it is configured considering the number of

candidate requirements (𝑛) and the size of the search

space (2𝑛), calibrated by the expression 5 ∙ 𝑛 ∙ 2𝑛/25.

Table 2: Parametrization for experiments.

 NSGA-II Random Search

Experiment I (25 requirements)

Population 100 -

Generations 250 -

Evaluated Solutions 25.000 25.000

Experiment II (50 requirements)

Population 200 -

Generations 1.000 -

Evaluated Solutions 200.000 200.000

Experiments were evaluated using normalized

hypervolume (𝐻𝑉𝑅) and spread (∆). Remember that

such quality indicators require some knowledge

about the Pareto/reference fronts. In Experiment I,

considering the reduced size of the search space

defined by 25 requirements, the Pareto Front was

discovered using an exhaustive search, finding 105

non-dominated solutions. In Experiment II, it was

not possible to perform an exhaustive search due to

the large search space defined by 50 requirements.

Thus, Experiment II adopts just a reference front,

obtained from intensively repeated runs of the case,

finding 386 non-dominated solutions.

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

342

All algorithms (NSGA-II, random search and

exhaustive search) have been implemented in Java

using the jMetal framework (Durillo and Nebro,

2011b), running on a microcomputer equipped with

a Quad-Core Intel i5 2400 processor and 8GB of

DDR3 RAM, instantiated with 4 concurrent threads.

Obtained results have been compiled in Table 3.

Considering hypervolume in Experiment I, NSGA-II

provided an excellent value of 9,97e-01, indicating

that solutions are very close to those in the Pareto

Front, obtained through an exhaustive search. In

contrast, the random search obtained a not-so-good

value of 4,51e-01, indicating that solutions are very

far from those in the Pareto Front.

The same observed behaviour holds true for

Experiment II. However, it can be noted a significant

increase in the gap among the hypervolume achieved

by NSGA-II and the random search, indicating that

even worse results have been found in the random

search due to the augmented search space.

Table 3: HVR, spread and execution time.

 Experiment I Experiment II

 HVR - Mean and standard deviation

NSGA-II 𝟗, 𝟗𝟕𝒆 − 𝟎𝟏𝟏,𝟕𝒆−𝟎𝟐 𝟗, 𝟗𝟖𝐞 − 𝟎𝟏𝟏,𝟔𝒆−𝟎𝟒

Random Search 4,51e − 011,5𝑒−01 2,83𝑒 − 011,1𝑒−01

 Spread - Mean and standard deviation

NSGA-II 𝟑, 𝟓𝟒𝒆 − 𝟎𝟏𝟐,𝟏𝒆−𝟎𝟐 𝟑, 𝟕𝟓𝒆 − 𝟎𝟏𝟐,𝟐𝒆−𝟎𝟐

Random Search 6,74𝑒 − 018,5𝑒−02 7,41𝑒 − 015,1𝑒−02

 Execution time

NSGA-II 𝟎′𝟎𝟗′′ 𝟐′𝟎𝟏′′

Random Search 0′08′′ 𝟏′𝟓𝟗′′

Regarding the spread indicator, as evinced in

Table 3, in both experiments, NSGA-II always

outperforms the random search, finding non-

dominated solutions with better uniform distribution

along the search space.

Considering execution time, it can be perceived

in Table 3 that both algorithms have similar

performance, which is a positive feature for

NSGA-II, since its recommended solutions are much

better than those provided by the random search. To

emphasize the excellent performance and quality of

results provided by NSGA-II, it is important to say

that the exhaustive search has taken 38’09’’ to find

the optimal set, while NSGA-II has taken just 0’09’’

to find solutions very close to the Pareto Front.

Fig. 3 and Fig. 4 illustrate the recommended

solutions for NSGA-II and the random search,

compared to Pareto/reference fronts in experiments I

and II, respectively. In both cases, the illustrated

results are the best 𝐻𝑉𝑅 value found among all

executions. As can be inferred, differently from the

random search, NSGA-II has a trend of finding

solutions very close to Pareto or reference front.

Figure 3: Results for experiment I.

Figure 4: Results for experiment II.

As another quality indicator, Table 4 evinces that

NSGA-II obtained a higher number of solutions in

the Pareto and reference fronts, respectively. In

Experiment I, NSGA-II obtained almost the whole

population as non-dominated solutions in the Pareto

front, which was in average a value of 97,8

solutions. Similarly, in Experiment II, NSGA-II also

produced a considerable number of non-dominated

solutions in the reference front, in average a value of

164 solutions. Note that the random search almost

does not found solutions in both fronts.

Table 4: Number of solutions found in fronts.

 Experiment I Experiment II

NSGA-II 𝟗, 𝟕𝟖𝒆 + 𝟎𝟏𝟎,𝟏𝟒𝒆+𝟎𝟏 𝟏, 𝟔𝟒𝐞 + 𝟎𝟐𝟎,𝟓𝟒𝒆+𝟎𝟏

Random Search 0,06e + 000,23𝑒+00 0,00𝑒 + 000,00𝑒+00

5 RELATED WORK

SBSE has been successfully applied in many

activities throughout the software lifecycle. More

recently, NRP proposals have evolved from a single

to multi-objective perspective.

0

2000

4000

6000

8000

10000

12000

0 15 30 45 60 75 90

C
o
st

Satisfaction

Optimal Front NSGA-II Random Search

0

50

100

150

200

250

300

350

0 20 40 60 80 100

C
o
st

Satisfaction
Reference Front NSGA-II Random Search

A Multi-Objective, Risk-based Approach for Selecting Software Requirements

343

Among the related work, the proposal by Bagnall

et al. (2001) is a noteworthy one because it

introduces the NRP problem and launches the

concept of requirements dependencies as an acyclic

graph, denoting the requirements and their

prerequisites. This dependency relation is defined as

transitive. In other words, if requirement 𝑟𝑞𝑎 is

dependent on another 𝑟𝑞𝑏, which in turn depends on

another 𝑟𝑞𝑐, then 𝑟𝑞𝑎 also depends on 𝑟𝑞𝑐. Despite

the importance of requirements dependencies, SR2

focuses mainly on incorporating a risk-based

analysis. However, considering existing proposals

that regard dependencies (Bagnall et al., 2001;

Durillo et al., 2011a), it is not difficult to evolve the

proposed approach for including dependencies as

part of the evaluation of customers’ satisfaction and

requirements costs.

On the same direction of the proposed approach,

Ruhe and Greer (2003) introduce an iterative model

dealing with software risks, in which a set of various

releases 𝑚 is recommended. However, unlike the

proposed approach, this proposal deals with risks as

a constraint, defining a limit level that should not be

exceeded. Thus, unlike the approach proposed

herein, risks in this proposal do not impact directly

on customers’ satisfaction or requirements costs.

In (Colares et al., 2009), an iterative risk analysis

approach for the NRP problem is also presented. It

assumes that the most critical risks should be

delivered on earlier releases of the software product,

but it does not go into detail regarding the values

calculated for risks. Each risk is represented in the

interval [1, 5] ∈ ℕ. Besides, a penalty is applied when

critical risks are selected in later iterations. That is,

the greater the iteration number, the higher the

estimated penalty. Like the SR2 proposal, it defines

the notion of representing risks associated to

requirements. Therefore, similar to the proposed

approach, if a critical-risk requirement is selected on

a later release, its evaluation becomes progressively

worse. However, differently, it deals with risks as a

constraint, but not as a factor that impacts on

customers’ satisfaction and requirements costs. It is

important to note that other proposals (Brasil et al.,

2011; Saraiva et al., 2016) also adopt a risk function

similar to that presented in (Colares et al., 2009).

Dantas et al. (2015) also address a release

planning problem for a multiple number of releases.

Differently from previous proposals (Colares et al.,

2009; Brasil et al., 2011; Saraiva et al., 2016), the

risk associated to a software requirement is directly

inserted as a penalty into the objective function,

instead of defining a separate objective function for

evaluating such risks. However, in a way similar to

such proposals, the penalty estimated for risks is also

reduced when a critical-risk requirement is allocated

into earlier releases. On the one hand, similar to SR2,

the risks associated to selected requirements directly

affect the satisfaction level perceived by customers.

This is because the objective function also regards

the importance value assigned by customers to all

requirements. However, on the other hand,

differently from SR2, the cost constraint does not

reflect the impact of risks.

In the proposal by Li et al. (2014), risk is dealt as

a probability of exceeding the budget by a defined

margin, with values inversely proportional to the

total cost. Differently, in SR2, the risk management

costs are more accurately gathered from the risk

management process, in which the costs associated

to mitigation techniques must be estimated.

Yang et al. (2006) integrate a set of pre-existing

software components in a single system. The main

challenge is to define the components that provide

the lowest risk levels, but provide best performance

for each expected functionality. It defines the risk

level as the product between risk probability and

severity, which are estimated based on code

inspection and application context, instead of during

a risk management analysis, as proposed herein.

6 CONCLUDING REMARKS

In this paper, a new approach for the multi-objective

NRP problem has been presented, reshaping both the

cost and satisfaction objective functions to address

risks. Experiments with two semi-real datasets have

been presented, in which the proposed approach,

exploring the NSGA-II algorithm, has obtained a

higher number of recommended solutions closer to

Pareto and reference fronts, and besides has also

produced non-dominated solutions better distributed.

Different validity threats can arise in

experiments. Concerning internal threats, it is a

vulnerability the adoption of semi-real datasets.

Despite the calibration being empirically obtained, a

fine-tuning parametrization would lead to better

recommendations in more complex scenarios.

Applying other metaheuristics is attractive to

contrast findings in terms of formulation suitability,

solutions quality, processing cost, and ease of

understanding and usability.

Regarding external threats, experiments

considered 25 and 50 requirements. Replications and

adaptations on a wider range of datasets with more

requirements, risks, mitigation techniques and

customers are desirable to achieve generalized

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

344

findings, allowing to identify sources of biases.

Indeed, the results should be applicable to situations

where similar assumptions are held. Otherwise, SR2

needs to be adapted accordingly, for instance in a

context with interdependent requirements.

In relation to construct threats, SR2 adopts

concepts and information models which have been

successfully applied in related work. The

assumptions and rationale in this paper made sense

for the type of experiments discussed, however, the

formulation might change in the case that different

abstractions for risks are perceived and adopted.

Referring to conclusion threats, as a mean to

counter the stochastic nature of search techniques

and ensure a fair comparison, NSGA-II and random

search strategies were performed multiple

independent runs for each experiment, overcoming

randomness inherent in such strategies. In

complement, a more valuable statistical analysis

needs to be conducted, measuring statistical

similarities and differences among MOP algorithms.

Thus, regarding future work, SR2 ought to be

evaluated in real, large-scale software projects,

mitigating some validity threats, without introducing

synthetical data. As another future but already

started initiative, SR2 is under evaluation using

different MOP algorithms, such as SPEA2 and

MOCell. Other possible branch for SR2 could be to

reshape risk probability and severity into fuzzy

functions, instead of relying upon fuzzy-terms

statically mapped to specific values, leading to better

manipulation of inherent uncertainties related to risk

priority and severity.

REFERENCES

Alam, I., 2014. Role of software metrices in identifying

the risk of project. International Journal of

Advancement in Engineering Technology,

Management & Applied Science, 1(1), 16-22.

Bagnall, A. J., Rayward-Smith, V. J. and Whittley, I. M.,

2001. The next release problem. Information and

Software Technology, 43(14), 883-890.

Baker, P., Harman, M., Steinhofel, K. and Skaliotis, A.,

2006. Search based approaches to component selection

and prioritization for the next release problem. In 22nd

IEEE International Conference on Software

Maintenance (ICSM 2006). Philadelphia: IEEE.

176-185.

Bannerman, P. L., 2008. Risk and risk management in

software projects: a reassessment. Journal of Systems

and Software, 81(12), 2118-2133.

Boehm, B., 1991. Software risk management: principles

and practices. IEEE Software, 8(1), 32-41.

Brasil, M. et al., 2011. A multiobjective optimization

approach to the software release planning with

undefined number of releases and interdependent

requirements. In International Conference on

Enterprise Information Systems (ICEIS 2011). Beijing:

Springer. 300-314.

Colares, F. et al., 2009. A new approach to the software

release planning. In 23rd Symposium on Software

Engineering (SBES 2009). Fortaleza: IEEE. 207-215.

Dantas, A., Yeltsin, I., Araújo, A. A. and Souza, J., 2015.

Interactive software release planning with preferences

base. In 7th International Symposium on Search-Based

Software Engineering (SSBSE 2015). Bergamo:

Springer. 341-346.

Deb, K., 2001. Multi-objective optimization using

evolutionary algorithms. 1st. ed. New York: John

Wiley & Sons.

Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T., 2002.

A fast and elitist multiobjective genetic algorithm:

NSGA-II. Transactions on Evolutionary Computing,

6(2), 182-197.

Durillo, J. et al., 2011a. A study of the bi-objective next

release problem. Empirical Software Engineering,

16(1), 29-60.

Durillo, J. and Nebro, A., 2011b. jMetal: a Java

framework for multiobjective optimization. Advances

in Engineering Software, 42(10), 760-771.

Harman, M., McMinn, P., Souza, J. T. and Yoo, S., 2012.

Search based software engineering: techniques,

taxonomy and tutorial. In Empirical Software

Engineering and Verification. Berlin: Springer. 1-59.

Huhe, G. and Greer, D., 2003. Quantitative studies in

software release planning under risk and resource

constraints. In International Symposium on Empirical

Software Engineering (ISESE 2003). Rome: IEEE.

262-271.

Karim, M. and Ruhe, G., 2014. Bi-objective genetic search

for release planning in support of themes. In

International Symposium on Search Based Software

Engineering (SSBSE 2014). Fortaleza: Springer.

123-137.

Karlsson, J. and Ryan, K., 1997. A cost-value approach

for prioritizing requirements. IEEE Software, 14(5),

67-74.

Li, L., Harman, M., Letier, E. and Zhang, Y., 2014.

Robust next release problem: handling uncertainty

during optimization. In Annual Conference on Genetic

and Evolutionary Computation (GECCO 2014).

Vancouver: ACM. 1247-1254.

Pitangueira, A. M., Maciel, R. S. P. and Barros, M., 2015.

Software requirements selection and prioritization

using SBSE approaches: a systematic review and

mapping of the literature. Journal of Systems and

Software, 103(C), 267-280.

Saraiva, R., Araújo, A. A., Dantas, A. and Souza, J., 2016.

A multiobjective approach based on interactive

optimization for release planning. In 7th Brazilian

Workshop on Search Based Software Engineering

(WESB 2016). Maringá: SBC. 31-40.

A Multi-Objective, Risk-based Approach for Selecting Software Requirements

345

Scacchi, W., 2001. Process models in software

engineering. In Marciniak, J. J. (ed.), Encyclopedia of

Software Engineering, 2nd ed. New York: John Wiley

and Sons. 993-1005.

Verner, J., Sampson, J. and Cerpa, N., 2008. What factors

lead to software project failure? In 2nd International

Conference on Research Challenges in Information

Science (RCIS 2008). Marrakech: IEEE. 71-80.

Yang, L., Jones, B. F. and Yang, S. H., 2006. Genetic

algorithm based software integration with minimum

software risk. Information and Software Technology,

48(3), 133-141.

Zhang, H., 2007. A redefinition of the project risk process:

using vulnerability to open up the event-consequence

link. International Journal of Project Management,

25(7), 694-701.

Zitzler, E and Thiele, L., 1999. Multi-objective

evolutionary algorithms: a comparative case study and

the strength pareto approach. IEEE Transactions on

Evolutionary Computation, 3(4), 257-271.

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

346

