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Abstract: In iterative and incremental development approaches, there is great interest in delivering system releases on-

budget, but raising stakeholders’ satisfaction as much as possible. In the field of Search Based Software 

Engineering (SBSE), such a problem is known as the Next Release Problem (NRP), which is handled in 

existing proposals by reformulating the requirements selection process as an optimization problem solved 

by metaheuristics, providing a set of recommendations with the highest customers’ satisfactions as well as 

the lowest development costs. Despite their contributions, most of current proposals do not address software 

risks, which represent a key aspect that can deeply impact on project cost and stakeholders’ satisfaction. In 

such a direction, this paper proposes a multi-objective, risk-based approach for the NRP problem, in which a 

risk analysis is incorporated to estimate the impact of software risks in development cost and stakeholders’ 

satisfaction. Experimental results reveal the efficiency and practical applicability of the proposed approach. 

1 INTRODUCTION 

In software project planning and management, 

budget constraints apply on every iteration of all 

software projects (Scacchi, 2001). Thus, in order to 

deliver a system release on-budget when the total 

cost of candidate requirements exceeds the available 

budget, project managers face the problem of 

deciding on which requirements should be 

prioritized for the next release. Besides the effort on 

negotiating such requirements with stakeholders, it 

is also required to balance trade-offs among critical 

aspects, such as budget, requirements costs, 

customers’ preferences and their importance, 

keeping costs under control and raising the 

satisfaction for all stakeholders. 

In such a scenario, the software requirements 

selection process represents a complex, challenging 

and error-prone task, in which the adoption of 

manual, ad-hoc approaches are impractical due to 

the large amount of correlated data and conflicts of 

interest among stakeholders. Besides, the effort for 

conciliating and balancing trade-offs turns out to be 

harder as the set of requirements becomes larger. 

As a mean to lighten the complexity, effort and 

mistakes, information related to requirements and 

stakeholders must be made computable by 

automated, systematic decision-making approaches. 

As one of the first approaches, the cost-importance 

model (Karlsson and Ryan, 1997) aims to minimize 

costs and delivery time, as well as to maximize the 

satisfaction level perceived by stakeholders. 

Later, the software requirements selection 

process was represented as an optimization problem 

known as the Next Release Problem (NRP) (Bagnall 

et al., 2001). In the SBSE field, several proposals 

characterize and solve the NRP problem from 

different and complimentary viewpoints (Huhe and 

Greer, 2003; Baker et al., 2006; Colares et al., 2009; 

Durillo et al., 2011a; Li et al., 2014), evolving from 

a single-objective to a multi-objective perspective. 

In the former, proposals focus on finding the better 

solution that keeps project budget under control and 

raises stakeholders’ satisfaction. In the latter, a pre-

allocated budget constraint is discarded in favor of 

offering not only a single solution but a set of good 

solutions, providing different recommendations that 

produce the highest stakeholders’ satisfaction as 

well as the lowest development cost, known as the 

Pareto Front, in which the set of solutions cannot be 

improved in any dimension without degradation in 

another (Zitzler and Thiele, 1999). 

Despite contributions, such proposals do not 

address software risks, which can deeply impact on 

requirements costs and stakeholders’ satisfaction. 
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Hence, the integration of risk analysis sounds to be 

an insightful contribution to the NRP formulation, 

which can be reinforced by the fact that the adoption 

or lack of risk management is a key reason for 

software project success (Alam, 2014) or failure 

(Verner et al., 2008), respectively. 

In such a direction, this paper proposes a multi-

objective, risk-based approach for the NRP problem, 

called SR2 (Selection of Requirements based on 

Software Risks), in which a risk analysis is 

incorporated for estimating the impact of risks on 

requirements costs and stakeholders’ satisfaction. In 

SR2, candidate requirements are associated to 

identified risks, which in turn are related to risk 

mitigation techniques. Then, based on risks 

probability and severity, together with the cost of 

applying mitigation techniques, SR2 estimates the 

impact of risks on both requirements costs and 

stakeholders’ satisfaction. By exploring the widely 

adopted multi-objective optimization algorithm 

NSGA-II, experimental results based on two semi-

real datasets reveal the potential efficiency and 

practical applicability of the proposed approach. 

The remainder of this paper is organized as 

follows. Section 2 presents fundaments related to 

multi-objective optimization. Section 3 presents SR2 

in detail. In Section 4, a case study with two datasets 

is presented. Section 5 discusses related work. Then, 

Section 6 presents final reflexions and future work. 

2 FUNDAMENTS 

For a Multi-objective Optimization Problem (MOP), 

let �⃗�∗ = [𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗ ] be a vector of decision 

variables that minimizes the vector of objective 

functions 𝑓(�⃗�) = [𝑓1(�⃗�), 𝑓2(�⃗�), … , 𝑓𝑘(�⃗�)]𝑇, in which 

�⃗� = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇 is the vector of decision variables. 

Any point �⃗� defines a solution and the set of all 

solutions shapes the search space Ω (Durillo et al., 

2011a). The main goal of a MOP relies on finding a 

set of good enough or even optimal solutions that 

minimize the objective functions 𝑓(�⃗�). In MOPs, 

Pareto dominance is defined by comparing a given 

solution in relation to all others found so far. Thus, a 

solution �⃗�′ is said to dominate a solution �⃗�′′, denoted 

by �⃗�′ ≼ �⃗�′′, if and only if ∀𝑖=1,2⋯,𝑘(𝑓𝑖(�⃗�′) ≤ 𝑓𝑖(�⃗�′′)) 

and ∃𝑖=1,2,⋯,𝑘(𝑓𝑖(�⃗�′) < 𝑓𝑖(�⃗�′′)), meaning that �⃗�′ has a 

lower or equal objective score for all objective 

functions, but there is at least one in which �⃗�′ has a 

lower score in contrast to �⃗�′′. 

The set of solutions that are non-dominated by 

any other solution in the whole search space Ω is 

defined as the Pareto Optimal Set, represented by 

𝑃∗ = {�⃗� ∈ Ω | ∄�⃗�′ ∈ Ω, �⃗�′ ≼ �⃗�}. Thus, Pareto optimal 

solutions are non-dominated solutions. In MOPs, the 

search for the optimal set 𝑃∗ is the main goal, which 

is represented as a Pareto Front, defined as the set 

𝑃𝐹∗ = {𝑓(�⃗�) | �⃗� ∈ 𝑃∗}. In large search spaces, an 

approximation of the optimal set 𝑃∗ is desired. 

Besides this optimality feature, solutions should 

not be concentrated on a single region of the search 

space or too scattered. A uniform spread among the 

Pareto front is a desirable quality for multi-objective 

optimization algorithms (Durillo et al., 2011a). In 

this regard, two quality indicators can be used to 

measure both desirable features for a set of good 

solutions: Hypervolume and Spread. Both quality 

indicators require the optimal set 𝑃∗, but due to 

computational complexity it is not always possible 

to find such a set. In such cases, a reference front 

with best-known solutions is a usual approximation. 

Hypervolume (𝐻𝑉) evaluates solutions 

convergence and distribution in relation to the 

optimal front (Zitzler and Thiele, 1999). Considering 

a set of non-dominated solutions 𝑄 = {�⃗�1, �⃗�2, … , �⃗�𝑛}, 

𝐻𝑉(𝑄) can be estimated by building hypercubes 

using objective function values of each solution as 

coordinates in relation to a reference point �⃗�𝑤, which 

is a vector built with the worst possible solution for 

each objective. Eq. 1 provides the hypervolume 

expression, in which each hypercube 𝑣𝑖 has the 

reference point �⃗�𝑤 and the solution �⃗�𝑖 as the 

diagonal corners of the hypercube. 

𝐻𝑉(𝑄) = 𝑣𝑜𝑙𝑢𝑚𝑒 (⋃ 𝑣𝑖
|𝑄|
𝑖=1 )  (1) 

In turn, the normalized hypervolume (𝐻𝑉𝑅) is 

defined as 𝐻𝑉𝑅 = 𝐻𝑉(𝑄) 𝐻𝑉(𝑃∗)⁄ , reaching a 

maximum value of one when the non-dominated 

solutions 𝑄 nears the optimal set 𝑃∗ (Deb, 2001). In 

contrast, a low value means either solutions far from 

𝑃∗ or clustered in a small region of the search space. 

Spread (∆) denotes how well non-dominated 

solutions 𝑄 = {�⃗�1, �⃗�2, … , �⃗�𝑛} are distributed among 

the Pareto Front (Deb, 2001), as defined in Eq. 2. 

The terms 𝑑𝑓 and 𝑑𝑙 define the Euclidian distance 

between the first/last optimal solutions in 𝑃∗ and the 

first/last solutions �⃗�1 and �⃗�𝑛 in 𝑄. In between, the 

terms 𝑑𝑖 represent the Euclidian distance between all 

consecutive solutions �⃗�𝑖 and �⃗�𝑖+1 in 𝑄, which define 

𝑁 − 1 intervals. Finally, the term �̅� denotes the mean 

distance between all consecutive solutions in 𝑄. A 

spread value near zero means that the first/last points 

in 𝑄 are near the respective points in 𝑃∗ and the 

distances between consecutive solutions in 𝑄 are 

near �̅�, reaching a near-perfect distribution. 
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∆ =
(𝑑𝑓+𝑑𝑙+∑ |𝑑𝑖−�̅�|𝑁−1

𝑖=1 )

(𝑑𝑓+𝑑𝑙+(𝑁−1)∙�̅�)
  (2) 

3 PROPOSED APPROACH 

In the NRP context, as shown in Fig. 1, SR2 is a 

three-layered, automated, multi-objective, risk-based 

approach for selecting software requirements, in 

which a software risk analysis estimates risks impact 

on development cost and stakeholders’ satisfaction. 

Recommending
Requirements Impact

Recommending
Requirements

Requirements Impact Evaluation

Search-Based Requirements Selection

Requirements Overhead

Recommending
Requirements Overhead

Requirements Overhead Evaluation

Requirements Impact

 

Figure 1: Three-layered architecture of the SR2 approach. 

3.1 Requirements Impact 

The phase Recommending Requirements Impact 

estimates a penalty to be applied to each software 

requirement when guessing customers’ satisfaction. 

To do that, it is assumed that software risks 

associated to requirements imply an impact on their 

implementation. In SR2, software requirements are 

represented by the set 𝑅𝑄 =  {𝑟𝑞1, 𝑟𝑞2, … , 𝑟𝑞𝑛}, where 

each 𝑟𝑞𝑖 denotes a candidate requirement for the 

next release. In turn, software risks are denoted by 

the set 𝑅𝐾 =  {𝑟𝑘1, 𝑟𝑘2, … , 𝑟𝑘𝑚}, where each 𝑟𝑘𝑗 

represents a risk that can arise during the project. 

Usually, a risk is defined as a material or 

financial loss, or any other event that must be 

avoided (Boehm, 1991). Every risk is associated 

with severity and probability values, which indicates 

respectively the negative consequences of the risk 

event and the likelihood of such undesirable event. 

Considering the difficulty of associating accurate 

values, a fuzzy-driven notation is adopted. As shown 

in Table 1, linguistic terms classify probability and 

severity as discrete numerical values according a 

five-point Likert scale (Bannerman, 2008), whose 

values are in 𝐹𝑇 =  {0.05, 0.25, 0.50, 0.75, 0.95}. 

Table 1: Risk probability and severity. 

Term very low low medium high very high 

Value 0.05 0.25 0.50 0.75 0.95 

In SR2, the risks probability is represented by the 

set 𝑅𝐾𝑃 = { 𝑟𝑘𝑝𝑗  | ∃𝑟𝑘𝑗 ∈ 𝑅𝐾, 𝑟𝑘𝑝𝑗 ∈ 𝐹𝑇 } and in 

turn, the risks severity is characterized by the set 

𝑅𝐾𝑆 = { 𝑟𝑘𝑠𝑗  | ∃𝑟𝑘𝑗 ∈ 𝑅𝐾, 𝑟𝑘𝑠𝑗 ∈ 𝐹𝑇 }. 

As a mean to represent risks traceability, each 

requirement 𝑟𝑞𝑖 might be associated with zero, one 

or several risks 𝑟𝑘𝑗. Thus, the relationship defined by 

𝑅𝑇𝑅𝑄,𝑅𝐾 = {𝑟𝑡𝑖,𝑗  | ∃𝑟𝑞𝑖 ∈ 𝑅𝑄, ∃𝑟𝑘𝑗 ∈ 𝑅𝐾, 𝑟𝑡𝑖,𝑗 ∈ {0, 1}} 

characterizes such a traceability, in which 𝑟𝑡𝑖,𝑗 

denotes the traceability between requirement 𝑟𝑞𝑖 and 

risk 𝑟𝑘𝑗, assuming a value of one or zero to indicate 

its existence or not, respectively. 

Based on every involved concept, the 

requirements impact is represented by the set 

𝐼𝑀𝑃 = { 𝑖𝑚𝑝𝑖  | ∃𝑟𝑞𝑖 ∈ 𝑅𝑄, 𝑖𝑚𝑝𝑖 ∈ ℝ }, where each 

term 𝑖𝑚𝑝𝑖 can be estimated by Eq. 3, representing 

the impact of all risks on requirement 𝑟𝑞𝑖. Note that 

Eq. 3 establishes the relation among the following 

terms: (i) the traceability 𝑟𝑡𝑖,𝑗 among requirement 𝑟𝑞𝑖 

and its associated risks 𝑟𝑘𝑗; and (ii) the risk severity 

𝑟𝑘𝑠𝑗 associated to traced risks 𝑟𝑘𝑗. 

𝑖𝑚𝑝𝑖 = ∑ 𝑟𝑘𝑠𝑗 ∙ 𝑟𝑡𝑖,𝑗𝑟𝑘𝑗 ∈ 𝑅𝐾   (3) 

3.2 Requirements Overhead 

Then, the phase Recommending Requirements 

Overhead estimates a penalty to be applied to each 

software requirement when assessing development 

cost. To do that, it is assumed that mitigation 

techniques adopted for reducing/eliminating risks 

consequences lead to an overhead on requirements 

implementation. In SR2, mitigation techniques are 

represented by the set 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑞}, each one 

possessing an associated cost. Technique costs are 

denoted by the set 𝑇𝐶 =  {𝑡𝑐𝑘 | ∃𝑡𝑘 ∈ 𝑇, 𝑡𝑐𝑘 > 0}. 

Each mitigation technique can help in mitigating 

one or more software risks. Such a technique 

traceability is represented in SR2 by the relationship 

𝑇𝑇𝑅𝐾,𝑇 = {𝑡𝑡𝑗,𝑘 | ∃𝑟𝑘𝑗 ∈ 𝑅𝐾, ∃𝑡𝑘 ∈ 𝑇, 𝑡𝑡𝑗,𝑘 ∈ {0, 1}}. Each 

𝑡𝑡𝑗,𝑘 associates risk 𝑟𝑘𝑗 to technique 𝑡𝑘, assuming 

values equal to zero/one to indicate the 

absence/presence of the association. Mitigation 

techniques are classified as preventive and 

corrective. In the former, it attempts to avoid risk 

occurrence, being applied regardless of the risk 

event happens or not. In the latter, it attempts to 

mitigate or eliminate risk consequence, being 

applied after occurring the risk event. 

Based on such related concepts, requirements 

overhead is represented in SR2 by 𝑂𝑉𝑅𝑅𝑄,𝑅𝐾,𝑇 =

{ 𝑜𝑣𝑟𝑖,𝑗,𝑘 |  ∃𝑟𝑞𝑖 ∈ 𝑅𝑄, ∃𝑟𝑘𝑗 ∈ 𝑅𝐾, ∃𝑡𝑘 ∈ 𝑇, 𝑜𝑣𝑟𝑖,𝑗,𝑘 ∈ ℝ }, 

where each term 𝑜𝑣𝑟𝑖,𝑗,𝑘 can be estimated by Eq. 4, 
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representing the overhead of technique 𝑡𝑘 related to 

risk 𝑟𝑗, which in turn is related to requirement 𝑟𝑞𝑖. 

Note that Eq. 4 estimates the overhead based on the 

cost 𝑡𝑐𝑘 of applying technique 𝑡𝑘 factored by the 

probability 𝑡𝑝𝑗,𝑘 of applying technique 𝑡𝑘 for 

avoiding or mitigating risk 𝑟𝑘𝑗. In turn, the 

probability 𝑡𝑝𝑗,𝑘 is given by Eq. 5, in which the cost 

for preventive techniques is fully considered as they 

are applied regardless of risk events happen or not, 

and the cost for corrective techniques depends on 

risk probabilities (𝑟𝑘𝑝𝑗) as they are not applied until 

the uncertain occurrence of risk events. 

𝑜𝑣𝑟𝑖,𝑗,𝑘 =  𝑟𝑡𝑖,𝑗 ∙  𝑡𝑡𝑗,𝑘 ∙  𝑡𝑐𝑘 ∙  𝑡𝑝𝑗,𝑘 (4) 

𝑡𝑝𝑗,𝑘 = {
1    𝑖𝑓 𝒑𝒓𝒆𝒗𝒆𝒏𝒕𝒊𝒗𝒆 𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒,

 𝑟𝑘𝑝𝑗 𝑖𝑓 𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒊𝒗𝒆 𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒
 (5) 

3.3 Requirements Recommendation 

Now, based on the multi-objective genetic algorithm 

NSGA-II (Deb et al., 2002), the phase 

Recommending Requirements selects requirements, 

in which risks impose an impact on customers’ 

satisfaction and an overhead on requirements costs, 

producing a set of recommendations for the software 

requirements to be implemented in the next. release. 
Due to space limit, the following discussion does 

not detail NSGA-II, but has the focus on the 

evaluation of candidate solutions, based on two 

fitness functions that assess customers’ satisfaction 

and requirements cost, as shown in Fig. 2. 
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Figure 2: Recommending Requirements. 

In the SR2 proposal, customers are represented 

by the set 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑝}, each one defining a set 

of requirements preferences, called customers 

preference, which is denoted by the relationship 

𝑆𝑈,𝑅𝑄 = {𝑠𝑙,𝑖  | ∃𝑢𝑙 ∈ 𝑈, ∃𝑟𝑞𝑖 ∈ 𝑅𝑄 , 𝑠𝑙,𝑖 ∈ [0, 1]}, where 

each term 𝑠𝑙,𝑖 can assume values in the interval 

[0, 1] ∈ ℝ. In order to deal with conflicts of interest 

among customers, SR2 adopts the concept of 

customers importance, which is denoted by the set  

𝐸 =  { 𝑒𝑙 | ∃𝑢𝑙 ∈ 𝑈, 𝑒𝑙 ∈ (0, 1] }, indicating how 

important each customer is to the business strategy 

of the development organization. Each term 𝑒𝑙 can 

assume values in the interval (0, 1] ∈ ℝ. 

Besides, in order to evaluate the next release 

cost, requirements cost is represented in SR2 by the 

set 𝑅𝑄𝐶 =  {𝑟𝑞𝑐𝑖  | ∃𝑟𝑞𝑖 ∈ 𝑅𝑄, 𝑟𝑞𝑐𝑖 > 0}, where each 

𝑟𝑞𝑐𝑖 represents the development cost associated to 

requirement 𝑟𝑞𝑖 based on estimations produced by 

the development team. 

Finally, it is known that just a subset of candidate 

requirements 𝑅𝑄 will be selected for next release. As 

such, each possible recommended solution is 

defined in the proposed approach by the set 𝑋 =
{ 𝑥𝑖  | ∃𝑟𝑞𝑖 ∈ 𝑅𝑄, 𝑥𝑖 ∈ {0, 1} }, where each term 𝑥𝑖 

assumes values equal to one/zero, denoting that 

requirement 𝑟𝑞𝑖 has been chosen or not. 

3.3.1 Satisfaction Evaluation 

The satisfaction level (𝑆𝑋) can be estimated by 

Eq. 6, indicating the satisfaction perceived by 

customers for candidate solution 𝑋. It is modelled by 

the total sum for each customer 𝑢𝑙 and requirement 

𝑟𝑞𝑖, considering the product among the following 

terms: (i) the preference level 𝑠𝑙,𝑖 that customer 𝑢𝑙 

has in relation to requirement 𝑟𝑞𝑖; (ii) the importance 

level 𝑒𝑙 that the development organization assigned 

to customer 𝑢𝑙; (iii) the impact 𝑖𝑚𝑝𝑖 associated to 

requirement 𝑟𝑞𝑖; and (iv) the selector 𝑥𝑖 that 

represents the selection or not of requirement 𝑟𝑞𝑖. 

𝑚𝑎𝑥   𝑆𝑋 = ∑ ∑  𝑠𝑙,𝑖 ∙ 𝑒𝑙 ∙ 𝑖𝑚𝑝𝑖 ∙ 𝑥𝑖𝑟𝑞𝑖 ∈ 𝑅𝑄𝑢𝑙 ∈ 𝑈   (6) 

Note that impact 𝑖𝑚𝑝𝑖 associated to requirement 

𝑟𝑞𝑖 is estimated in a way that the higher the severity 

associated to related risks, the higher the impact. 

Thus, SR2 adopts the premise that software processes 

must first deal with most critical risks as a mean to 

maximize the chances of the software project be 

successful, as usually perceived in real projects that 

focus on most critical risks (Alam, 2014). 

3.3.2 Cost Evaluation 

The cost level (𝐶𝑋) can be estimated by Eq. 7, 

indicating the total cost for implementing a 

candidate solution 𝑋. It is modelled by the total sum 

among the development cost 𝑟𝑞𝑐𝑖 and the risk 

management cost 𝑟𝑘𝑐𝑖 for each requirement 𝑟𝑞𝑖. As 

defined, risk management cost represents a penalty 

in the total cost of the next release, which is a typical 

strategy in real software projects dealing with risks 

(Bannerman, 2008). As defined in Eq. 8, risk 

management cost 𝑟𝑘𝑐𝑖 is given by the total sum of 

risk management cost 𝑟𝑘𝑐𝑖,𝑗 for each risk 𝑟𝑘𝑗 related 

to requirement 𝑟𝑞𝑖. 
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𝑚𝑖𝑛  𝐶𝑋 = ∑ (𝑟𝑞𝑐𝑖 + 𝑟𝑘𝑐𝑖) ∙ 𝑥𝑖𝑟𝑞𝑖 ∈ 𝑅𝑄   (7) 

𝑟𝑘𝑐𝑖 = ∑ 𝑟𝑘𝑐𝑖,𝑗𝑟𝑘𝑗 ∈ 𝑅𝐾   (8) 

Remember that a mitigation technique 𝑡𝑘 can be 

associated to one or more risks 𝑟𝑘𝑗. Thus, the cost 

𝑡𝑐𝑘 of applying technique 𝑡𝑘 can be shared among all 

associated risks 𝑟𝑘𝑗. In Eq. 9, risk management cost 

𝑟𝑘𝑐𝑖,𝑗 is defined by the ratio between the following 

terms: (i) the total sum of the overhead 𝑜𝑣𝑟𝑖,𝑗,𝑘 of 

applying each technique 𝑡𝑘 related to risk 𝑟𝑘𝑗 and 

requirement 𝑟𝑞𝑖, and (ii) the number of times 𝑡𝑎𝑘 

that technique 𝑡𝑘 is applied in all requirements 𝑟𝑞𝑖 

and risks 𝑟𝑘𝑗. Now, considering the term 𝑡𝑎𝑘, as 

defined in Eq. 10, it denotes the number of times 

that technique 𝑡𝑘 is applied in all combinations 

among requirements and risks (𝑟𝑡𝑖,𝑗) and also among 

such risks and the technique (𝑡𝑡𝑗,𝑘) in question. 

𝑟𝑘𝑐𝑖,𝑗 = ∑ 𝑜𝑣𝑟𝑖,𝑗,𝑘 𝑡𝑎𝑘⁄𝑡𝑘 ∈ 𝑇   (9) 

𝑡𝑎𝑘 = ∑ ∑  𝑥𝑖 ∙ 𝑟𝑡𝑖,𝑗 ∙ 𝑡𝑡𝑗,𝑘𝑟𝑘𝑗 ∈ 𝑅𝐾𝑟𝑞𝑖 ∈ 𝑅𝑄   (10) 

Once satisfaction 𝑆𝑋 and cost 𝐶𝑋 are estimated for 

all evaluated solutions, NSGA-II tries to find a good 

enough set of recommended solutions, as much as 

possible near the Pareto optimality. Note that the 

problem faced by the development organization is to 

find a set of recommended solutions that maximizes 

the satisfaction function 𝑆𝑋 (Eq. 6) and minimizes 

the cost function 𝐶𝑋 (Eq. 7). 

4 RESULTS AND DISCUSSIONS 

The proposed approach has been evaluated using 

two semi-real datasets (Karim and Ruhe, 2014). The 

first one comprises 25 requirements and 8 customers 

regarding a Release Planner tool. The second one 

includes 50 requirements and 4 customers regarding 

a project for Microsoft Word. Both datasets make 

available data concerning requirements cost, 

customers preference as well as importance. The 

remainder of the required input data related to risks 

and mitigation techniques were synthetically 

estimated based on other information available from 

datasets. It is important to say that 4 software risks 

and 4 mitigation techniques were gathered for the 

first dataset, while 8 software risks and 6 mitigation 

techniques were deduced for the second dataset. 

As already mentioned, SR2 adopts the multi-

objective optimization algorithm NSGA-II (Deb et 

al., 2002). The rationale is mainly based on a 

systematic review (Pitangueira et al., 2015), which 

points out that NSGA-II is the most used algorithm 

in multi-objective NRP proposals. Also, it is 

common to find that competing algorithms use 

NSGA-II results as a benchmark to validate their 

own results. NSGA-II adopts an elitist approach, in 

which non-dominated and diversity solutions are 

favoured. Note that, although NSGA-II defines the 

replacement operator of a genetic algorithm, it is still 

needed to choose mutation, crossover and selection 

operators. In all experiments, NSGA-II was tuned 

with flipping mutation with a probability of 1/n, 

where 𝑛 is the number of requirements. Besides, it 

adopts uniform crossover with a rate of 90% and 

binary tournament selection. 

As a mean to evaluate the quality of the 

NSGA-II findings, a random search was also 

adopted to provide a sanity check (Harman et al., 

2012). To assess search capabilities of both 

NSGA-II and random search, each experiment 

performs 100 independent runs, achieving a good 

confidence in results. Also, the Wilcoxon test was 

used considering a confidence interval of 95%. 

The parametrization of both algorithms is 

described in Table 2, tuned through successive 

calibrations tests. As can be seen, the population size 

for each experiment is quadrupled in relation to the 

number of candidate requirements. Regarding the 

number of generations, which is the NSGA-II stop 

criteria, it is configured considering the number of 

candidate requirements (𝑛) and the size of the search 

space (2𝑛), calibrated by the expression 5 ∙ 𝑛 ∙ 2𝑛/25. 

Table 2: Parametrization for experiments. 

 NSGA-II Random Search 

Experiment I (25 requirements) 

Population 100 - 

Generations 250 - 

Evaluated Solutions 25.000 25.000 

Experiment II (50 requirements) 

Population 200 - 

Generations 1.000 - 

Evaluated Solutions 200.000 200.000 

Experiments were evaluated using normalized 

hypervolume (𝐻𝑉𝑅) and spread (∆). Remember that 

such quality indicators require some knowledge 

about the Pareto/reference fronts. In Experiment I, 

considering the reduced size of the search space 

defined by 25 requirements, the Pareto Front was 

discovered using an exhaustive search, finding 105 

non-dominated solutions. In Experiment II, it was 

not possible to perform an exhaustive search due to 

the large search space defined by 50 requirements. 

Thus, Experiment II adopts just a reference front, 

obtained from intensively repeated runs of the case, 

finding 386 non-dominated solutions. 
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All algorithms (NSGA-II, random search and 

exhaustive search) have been implemented in Java 

using the jMetal framework (Durillo and Nebro, 

2011b), running on a microcomputer equipped with 

a Quad-Core Intel i5 2400 processor and 8GB of 

DDR3 RAM, instantiated with 4 concurrent threads. 

Obtained results have been compiled in Table 3. 

Considering hypervolume in Experiment I, NSGA-II 

provided an excellent value of 9,97e-01, indicating 

that solutions are very close to those in the Pareto 

Front, obtained through an exhaustive search. In 

contrast, the random search obtained a not-so-good 

value of 4,51e-01, indicating that solutions are very 

far from those in the Pareto Front. 

The same observed behaviour holds true for 

Experiment II. However, it can be noted a significant 

increase in the gap among the hypervolume achieved 

by NSGA-II and the random search, indicating that 

even worse results have been found in the random 

search due to the augmented search space. 

Table 3: HVR, spread and execution time. 

 Experiment I Experiment II 

 HVR - Mean and standard deviation 

NSGA-II 𝟗, 𝟗𝟕𝒆 − 𝟎𝟏𝟏,𝟕𝒆−𝟎𝟐 𝟗, 𝟗𝟖𝐞 − 𝟎𝟏𝟏,𝟔𝒆−𝟎𝟒 

Random Search 4,51e − 011,5𝑒−01 2,83𝑒 − 011,1𝑒−01 

 Spread - Mean and standard deviation 

NSGA-II 𝟑, 𝟓𝟒𝒆 − 𝟎𝟏𝟐,𝟏𝒆−𝟎𝟐 𝟑, 𝟕𝟓𝒆 − 𝟎𝟏𝟐,𝟐𝒆−𝟎𝟐 

Random Search 6,74𝑒 − 018,5𝑒−02 7,41𝑒 − 015,1𝑒−02 

 Execution time 

NSGA-II 𝟎′𝟎𝟗′′ 𝟐′𝟎𝟏′′ 

Random Search 0′08′′ 𝟏′𝟓𝟗′′ 

Regarding the spread indicator, as evinced in 

Table 3, in both experiments, NSGA-II always 

outperforms the random search, finding non-

dominated solutions with better uniform distribution 

along the search space. 

Considering execution time, it can be perceived 

in Table 3 that both algorithms have similar 

performance, which is a positive feature for 

NSGA-II, since its recommended solutions are much 

better than those provided by the random search. To 

emphasize the excellent performance and quality of 

results provided by NSGA-II, it is important to say 

that the exhaustive search has taken 38’09’’ to find 

the optimal set, while NSGA-II has taken just 0’09’’ 

to find solutions very close to the Pareto Front. 

Fig. 3 and Fig. 4 illustrate the recommended 

solutions for NSGA-II and the random search, 

compared to Pareto/reference fronts in experiments I 

and II, respectively. In both cases, the illustrated 

results are the best 𝐻𝑉𝑅 value found among all 

executions. As can be inferred, differently from the 

random search, NSGA-II has a trend of finding 

solutions very close to Pareto or reference front. 

 

Figure 3: Results for experiment I. 

 

Figure 4: Results for experiment II. 

As another quality indicator, Table 4 evinces that 

NSGA-II obtained a higher number of solutions in 

the Pareto and reference fronts, respectively. In 

Experiment I, NSGA-II obtained almost the whole 

population as non-dominated solutions in the Pareto 

front, which was in average a value of 97,8 

solutions. Similarly, in Experiment II, NSGA-II also 

produced a considerable number of non-dominated 

solutions in the reference front, in average a value of 

164 solutions. Note that the random search almost 

does not found solutions in both fronts. 

Table 4: Number of solutions found in fronts. 

 Experiment I Experiment II 

NSGA-II 𝟗, 𝟕𝟖𝒆 + 𝟎𝟏𝟎,𝟏𝟒𝒆+𝟎𝟏 𝟏, 𝟔𝟒𝐞 + 𝟎𝟐𝟎,𝟓𝟒𝒆+𝟎𝟏 

Random Search 0,06e + 000,23𝑒+00 0,00𝑒 + 000,00𝑒+00 

5 RELATED WORK 

SBSE has been successfully applied in many 

activities throughout the software lifecycle. More 

recently, NRP proposals have evolved from a single 

to multi-objective perspective. 
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Among the related work, the proposal by Bagnall 

et al. (2001) is a noteworthy one because it 

introduces the NRP problem and launches the 

concept of requirements dependencies as an acyclic 

graph, denoting the requirements and their 

prerequisites. This dependency relation is defined as 

transitive. In other words, if requirement 𝑟𝑞𝑎 is 

dependent on another 𝑟𝑞𝑏, which in turn depends on 

another 𝑟𝑞𝑐, then 𝑟𝑞𝑎 also depends on 𝑟𝑞𝑐. Despite 

the importance of requirements dependencies, SR2 

focuses mainly on incorporating a risk-based 

analysis. However, considering existing proposals 

that regard dependencies (Bagnall et al., 2001; 

Durillo et al., 2011a), it is not difficult to evolve the 

proposed approach for including dependencies as 

part of the evaluation of customers’ satisfaction and 

requirements costs. 

On the same direction of the proposed approach, 

Ruhe and Greer (2003) introduce an iterative model 

dealing with software risks, in which a set of various 

releases 𝑚 is recommended. However, unlike the 

proposed approach, this proposal deals with risks as 

a constraint, defining a limit level that should not be 

exceeded. Thus, unlike the approach proposed 

herein, risks in this proposal do not impact directly 

on customers’ satisfaction or requirements costs. 

In (Colares et al., 2009), an iterative risk analysis 

approach for the NRP problem is also presented. It 

assumes that the most critical risks should be 

delivered on earlier releases of the software product, 

but it does not go into detail regarding the values 

calculated for risks. Each risk is represented in the 

interval [1, 5] ∈ ℕ. Besides, a penalty is applied when 

critical risks are selected in later iterations. That is, 

the greater the iteration number, the higher the 

estimated penalty. Like the SR2 proposal, it defines 

the notion of representing risks associated to 

requirements. Therefore, similar to the proposed 

approach, if a critical-risk requirement is selected on 

a later release, its evaluation becomes progressively 

worse. However, differently, it deals with risks as a 

constraint, but not as a factor that impacts on 

customers’ satisfaction and requirements costs. It is 

important to note that other proposals (Brasil et al., 

2011; Saraiva et al., 2016) also adopt a risk function 

similar to that presented in (Colares et al., 2009). 

Dantas et al. (2015) also address a release 

planning problem for a multiple number of releases. 

Differently from previous proposals (Colares et al., 

2009; Brasil et al., 2011; Saraiva et al., 2016), the 

risk associated to a software requirement is directly 

inserted as a penalty into the objective function, 

instead of defining a separate objective function for 

evaluating such risks. However, in a way similar to 

such proposals, the penalty estimated for risks is also 

reduced when a critical-risk requirement is allocated 

into earlier releases. On the one hand, similar to SR2, 

the risks associated to selected requirements directly 

affect the satisfaction level perceived by customers. 

This is because the objective function also regards 

the importance value assigned by customers to all 

requirements. However, on the other hand, 

differently from SR2, the cost constraint does not 

reflect the impact of risks. 

In the proposal by Li et al. (2014), risk is dealt as 

a probability of exceeding the budget by a defined 

margin, with values inversely proportional to the 

total cost. Differently, in SR2, the risk management 

costs are more accurately gathered from the risk 

management process, in which the costs associated 

to mitigation techniques must be estimated. 

Yang et al. (2006) integrate a set of pre-existing 

software components in a single system. The main 

challenge is to define the components that provide 

the lowest risk levels, but provide best performance 

for each expected functionality. It defines the risk 

level as the product between risk probability and 

severity, which are estimated based on code 

inspection and application context, instead of during 

a risk management analysis, as proposed herein. 

6 CONCLUDING REMARKS 

In this paper, a new approach for the multi-objective 

NRP problem has been presented, reshaping both the 

cost and satisfaction objective functions to address 

risks. Experiments with two semi-real datasets have 

been presented, in which the proposed approach, 

exploring the NSGA-II algorithm, has obtained a 

higher number of recommended solutions closer to 

Pareto and reference fronts, and besides has also 

produced non-dominated solutions better distributed. 

Different validity threats can arise in 

experiments. Concerning internal threats, it is a 

vulnerability the adoption of semi-real datasets. 

Despite the calibration being empirically obtained, a 

fine-tuning parametrization would lead to better 

recommendations in more complex scenarios. 

Applying other metaheuristics is attractive to 

contrast findings in terms of formulation suitability, 

solutions quality, processing cost, and ease of 

understanding and usability. 

Regarding external threats, experiments 

considered 25 and 50 requirements. Replications and 

adaptations on a wider range of datasets with more 

requirements, risks, mitigation techniques and 

customers are desirable to achieve generalized 
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findings, allowing to identify sources of biases. 

Indeed, the results should be applicable to situations 

where similar assumptions are held. Otherwise, SR2 

needs to be adapted accordingly, for instance in a 

context with interdependent requirements. 

In relation to construct threats, SR2 adopts 

concepts and information models which have been 

successfully applied in related work. The 

assumptions and rationale in this paper made sense 

for the type of experiments discussed, however, the 

formulation might change in the case that different 

abstractions for risks are perceived and adopted. 

Referring to conclusion threats, as a mean to 

counter the stochastic nature of search techniques 

and ensure a fair comparison, NSGA-II and random 

search strategies were performed multiple 

independent runs for each experiment, overcoming 

randomness inherent in such strategies. In 

complement, a more valuable statistical analysis 

needs to be conducted, measuring statistical 

similarities and differences among MOP algorithms. 

Thus, regarding future work, SR2 ought to be 

evaluated in real, large-scale software projects, 

mitigating some validity threats, without introducing 

synthetical data. As another future but already 

started initiative, SR2 is under evaluation using 

different MOP algorithms, such as SPEA2 and 

MOCell. Other possible branch for SR2 could be to 

reshape risk probability and severity into fuzzy 

functions, instead of relying upon fuzzy-terms 

statically mapped to specific values, leading to better 

manipulation of inherent uncertainties related to risk 

priority and severity. 
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