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Abstract: Remote sensing through imaging forms the basis for non-invasive plant phenotyping and has numerous 

applications in fundamental plant science as well as in agriculture. Plant segmentation is a challenging task 

especially when the image background reveals difficulties such as the presence of algae and moss or, more 

generally when the background contains a large colour variability. In this work, we present a method based 

on the use of multiband images to construct a machine learning model that separates between the plant and 

its background containing soil and algae/moss. Our experiment shows that we succeed to separate plant parts 

from the image background, as desired. The method presents improvements as compared to previous methods 

proposed in the literature especially with data containing a complex background. 

1 INTRODUCTION 

Accurate segmentation of plants from the image 

background is the first step for the extraction of traits 

in phenotyping applications and precision agriculture. 

An intuitive approach that simplifies the task by 

covering the soil (Arend et al., 2016) could be the 

easiest solution making the segmentation 

straightforward; however, this solution is not 

practical in field applications. Moreover, it could 

perturb the gas exchange between the soil and the air 

in laboratory experiments. Image processing based on 

algorithms which succeed to overcome application-

specific difficulties offers solutions to extract plant 

traits. Image segmentation difficulties include: (a) 

large variability of the soil colour, (b) the presence of 

moss and algae with colours similar to the plant to 

segment, (c) the presence of non-green plant parts as 

flowers and/or yellow and brown parts of leaves of 

senescing plants or  in stressed plants, which can 

occur in phenotyping experiments under specific 

conditions. 

Previous work tackled this problem mainly by 

considering a classification problem on the colour 

space. Sharr (Sharr et al., 2016) presents four 

segmentation methods from different universities and 

research laboratories (Leibniz Institute of Plant 

Genetics and Crop Plant Research-IPK-Germany, 

Nottingham University-United Kingdom, Michigan 

State University-United States, and Wageningen 

University-Netherlands) in a challenge frame. The 

first method uses a 3D histogram cube to encode the 

probability for each observed pixel in the training 

data of belonging to the plant or background. The 

second method is based on a superpixel segmentation 

in Lab colour space as a first step, and thresholding of 

the superpixel image in the second step. In the third 

method, the foreground/background segmentation is 

done by a simple empirical threshold on the ‘a’ 

channel of the Lab colour space. The fourth method 

uses an artificial neural network (ANN) with one 

hidden layer for plant/background separation. In 

general, for all these methods and as mentioned in the 

paper (Sharr et al., 2016), the results show that “most 

methods perform well in separating plant from 

background, except when the background presents 

challenges” (Sharr et al., 2016). A similar approach 

using the watershed algorithm was also proposed in 

an earlier study for plant segmentation from 

background (Åstrand et al., 2006). 

In (De Vylder et al., 2012), the authors used the 

Expectation Maximization (EM) algorithm with the 

hue signal of the images to characterize two 

Gaussians distributions modeling the plant and the 
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Figure 1: System acquisition of Arabidopsis plants. 

background in the histogram. However, this method 

will also face difficulties when the hue signal of the 

plant and the background are similar. 

More recently, machine learning approaches have 

been used to segment plants from soil (Navarro et al., 

2016), but the images used were the Red-Green-Blue 

(RGB) and the Near Infra-Red (NIR) and the 

segmentation was done separately for the RGB and 

NIR. In this study, a comparison between three 

machine learning approaches (k-nearest neighbor 

(kNN), naive Bayes classifier (NBC), Support Vector 

Machine (SVM)) showed that SVM performed better 

for the NIR, while kNN segmentation was better for 

the colour images (RGB). 

The majority of algorithms cited above use either 

one channel or the three colour channels RGB except 

the fourth algorithm cited in (Sharr et al., 2016) that 

uses also an excessive green value (R,2G,B) with two 

texture features, and the machine learning approach 

in (Navarro et al., 2016) that uses the NIR signal. 

However, in phenotyping applications, more signals 

are generally acquired to observe the plant response 

to different wavelengths including fluorescence 

signals. In addition to their biological meaning, these 

data can also be useful for the plant segmentation. In 

our project, which is part of the TIMESCALE 

project-Horizon 2020, 14 bands are used to observe 

the plants’ responses to different environmental 

conditions. These bands are used in our segmentation 

approach as discussed below. In the next section, we 

present our acquisitions and the algorithm proposed 

for a better segmentation of the plant from a 

challenging background. In section 3, we evaluate our 

results and discuss the different methods. 

2 MATERIALS AND METHODS 

2.1 Materials and Data 

Our phenotyping platform is composed by a table, a 

robot, an acquisition system (lighting system,  filters 

and cameras) and software that automatically 

acquires images during a biological experiment. The 

acquisition system is composed by cameras and filters 

that allow acquisition at specific wavelengths. 

Chlorophyll fluorescence signals allow to study plant 

photosynthesis (Baker, 2008). The system flashes a 

specific wavelength in a very short interval of time 

and captures the emitted signal by the plant 

photosynthetic apparatus. Our system allows to 

measure these signals in different phases: an excited 

phase when the plant is under light and a non-excited 

phase when the plant is in darkness. Different bands 

are either directly acquired by the camera and the 

filter system or computed from the acquired bands. 

These signals and their biological interpretations are 

described in (Baker, 2008) and in (Gitelson et al., 

1999). For each acquisition, the robot moves the 

acquisitions system (cameras and filters) on top of a 

plate containing plants and acquires images. All 

bands can be acquired in less than 2 minutes, and we 

assume there is no modification of the scene during 

this short period of time (no shape or position 

variation). 

 

Figure 2: Acquisition of an Arabidopsis plant with 3 different bands of the system, the differentiation between  the plant and 

the algae/moss is difficult with each wavelength band shown. 
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Figure 3: Plant segmentation in presence of moss and algae: (a) Plant from our database, (b) Our automatic segmentation 

(RF), (c) Plant from the database of (Scharr, 2016), (d) Our automatic segmentation (SVM Gaussian). 

In our experiment, plants were imaged from day 5 

after sowing (Das 5) to Das 22. For the purpose of the 

biological experiment, some plants were under 

drought stress. The system generated approximate-

vely 30000 acquisitions (14 images each) for an 

experiment that takes 22 days. Each image contains 

36 plants.  

2.2 Method 

First, as a pre-processing step, the images were split 

into smaller images containing one plant each. We 

considered 115 images to form our database. If 

needed, images were downsized to have pixel to pixel 

correspondence between all bands. In addition to the 

14 bands registered, 6 more bands were computed: 

the HSV (3 bands that represent the colour images as 

Hue, Saturation and Value), and to include informa-

tion about the neighbors of a pixel, we also computed 

the median value in a 15 pixels large square (H15, 

S15 and V15) using a median filter. Altogether, 20 

features are available to characterize the plants and 

the background (soil, moss and algae) pixels in the 

image. 

In our approach, pixel classification is used as a 

method for plant segmentation. To overcome the 

difficulties of the plant separation from a complex 

background, supervised machine learning approaches 

bring a solution to have a specific model to a 

particular dataset. In fact, if the dataset contains 

plants with flowers, the model constructed will be 

different from a model constructed from plants with 

just leaves for example. Two main supervised 

machine learning approaches were used in this work, 

the support vector machine algorithm (SVM) and the 

random forest algorithm (RF).  

SVM is a supervised machine learning approach 

that was introduced by Vapnik and Cortes (Cortes and 

Vapnik, 1995). The method is based on two steps. In 

the first one (learning or training step), based on pre 

labelled samples, the algorithm constructs borders to 

separate data into classes (regions) defined by the 

predefined labels (figure 4.). It also ensures maximum 

margins between the borders and the samples in order 

to reduce errors when applying these borders to new 

data. In the second step (prediction step), the model 

(borders) is applied to the new data to predict the 

classes of  the new input. 

 

Figure 4: Training data representation in 3D: plant data in 

green and background data in red (only RGB colour 

features are represented). Dataset: Ara2013 (Scharr et al., 

2016), Number of images: 10/165. 

Random Forest (RF) algorithm (Breiman, 2001) 

is also a supervised algorithm. It is  based on the idea 

of using the decision trees where each tree is 

constructed using bootstrapped random variables. In 

each tree node, the decision is taken according to the 

best among random predictors. By generating 

multiple trees, the random forest algorithm is 

obtained. At the end of the algorithm, the forest (all 

the trees) takes a decision corresponding to the global 

vote of its trees.  

In order to construct our models with both 

methods, the pixel values are taken as features in 

order to use not only colours but also the fluorescent 

responses of the plants. In addition, to consider the 

presence of noise and to integrate an information 



 

about the neighbourhood of a pixel for the decision of 

its class, we include in the features the outputs of the 

median filter (size 15) on the channels H, S and V, so 

that a pixel having values corresponding to a plant but 

with neighbourhood values corresponding to the 

background, will not be considered automatically as 

a plant.  

In all, we obtain 20 features that could be used 

with our models  and the problem can be stated as 

looking for a classifier that allows predicting the 

labels from the available features (see eq 1). 11 

images were selected from our database to construct 

the models. 

Given  a set of 𝑛 labeled samples 𝑋, 

                 𝑋1..𝑛[𝑥
1. . 𝑥𝑚]1..𝑛 ↦ 𝑦1..𝑛                 (1) 

Look for 𝑓 that verifies:  𝑓(𝑋) = 𝑦 

with 𝑋 is the input vector, 𝑚 is the number of bands, 

𝑦 ∈ {−1,1} is the label and 𝑓 is the model to construct 

(the classifier). 

Using the SVM and the RF algorithms, we 

constructed different models in order to determine the 

best segmentation method for our application. Using 

the SVM, we built 3 models: the first one uses only 6 

features: H, S, V and H15, S15, V15 and has Gaussian 

kernels, the second uses the same 6 features with 

linear kernels and the third one uses all features (20) 

with linear kernels. The construction of an SVM 

model using all bands (20) and Gaussian kernels 

would generate time computation issues and was 

avoided in this work for this reason. With the RF 

algorithm, we constructed 2 models, the first one uses 

the 6 features previously cited (H, S, V and H15, S15, 

V15) and the second uses all features (20). The 

number of trees is 200 for both RF models. All in all, 

we have 5 models: 3 SVM models and 2 RF models. 

We also can distinguish our models as, 3 models 

using just 6 features and 2 models using all available 

features (20). Table 1, shows the evaluation of the 

results obtained with these different models in 

comparison to the ground truth segmentation made 

manually by an expert as it will be explained in the 

next section. 

3 RESULTS AND DISCUSSION 

To compare our method to the state of the art, we used 

the dataset Ara2013 containing 165 images and 

published in (Sharr et al., 2016). Since the database 

contains only RGB images, we trained our model 

with just  6 features (3 colours and 3 neighbors mean) 

for this test. Ten images where considered to 

construct the model. The sensitivity, the accuracy and 

the precision of our segmentation method using the 

SVM model with the Gaussian kernel are shown in 

figure 5. 

 

Figure 5: Performance of the method with the set of images 

described in (Sharr et al, 2016). Sensitivity, accuracy and 

precision are used for the evaluation. 

To make a comparison with the previous methods 

results, we used the Foreground-Background distance 

which measures the difference between the sum of the 

difference in the automatic and ground truth 

segmentation as mentioned and used in (Sharr et al., 

2016) (see eq 2), we obtained a result of 96,8 (3,4) 

which is similar to best reported results with the IPK-

Germany algorithm 96.3 (1.7). This result was 

expected since the dataset does not contain a large 

amount of images with algae and moss. Other 

methods (Nottingham-UK, MSU-USA, Wageningen-

Netherlands) reported in the paper provided 

respectively these results: 93.0 (4.2); 87.7 (3.6) and 

95.1 (2.0). 

𝐷(%) = 2|𝑃𝑠𝑒𝑔 ∩ 𝑃𝐺𝑇| (|𝑃𝑠𝑒𝑔| + |𝑃𝐺𝑇|)⁄     (2)  

with 𝐷 is the foreground-background distance, 𝑃𝑠𝑒𝑔  

is the automatic segmentation and 𝑃𝐺𝑇is the ground 

truth segmentation. 

In a second step of validation, we asked an 

independent expert to manually segment the plants in 

our images. The manual segmentation was done using 

the RGB channels and the segmentation of the other 

channels were obtained by applying the mask from 

the segmented one.  An evaluation of the automatic 

segmentation was done by computing the sensitivity, 

the accuracy and the  precision as shown in the 

equation 3: 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑃)⁄               (3) 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁) (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)⁄  



 

 

with TP, the true positive, TN true negative, FP the 

false positive and FN the false negative values of the 

data. This evaluation system measures the proportion 

of positive pixels that are correctly classified 

(sensitivity), gives an indication of the uniformity and 

the reproducibility of the classification (precision) 

and evaluates the proportion of the true results in 

comparison to the reference classification (accuracy). 

This evaluation system allows a better appreciation of 

the classification than the Foreground-Background 

distance (see eq. 2) used in (Sharr et al., 2016) as the 

latter  fuses the errors in the background and in the 

plants (foreground). 

Table 1: SVM and RF segmentations evaluation: mean 

values of sensitivity, accuracy and precision based on the 

comparison between the automatic segmentation and the 

expert segmentation. 

 Sensitivity Accuracy Precision 

SVM 6 
Bands linear 0.754903 0.959994 0.889562 

SVM 6 
Bands Gauss 0.870557 0.984172 0.994886 

SVM 20 
Bands linear 0.830052 0.982195 0.985209 

RF 6     
Bands 0.898015 0.986163 0.987321 

RF 20  
Bands 0.900721 0.987252 0.993303 

To evaluate the errors generated by manual 

segmentation, an intra-user segmentation evaluation 

was made. First, one manual image segmentation was 

taken as a gold standard. Then, 3 different 

segmentations of the same image were performed by 

the same user. The results showed a very small 

variability due to manual segmentation (sensitivity 

0.989426; precision 0.993021; accuracy 0.992546). 

For this reason, we can consider, with a high 

confidence, the expert manual segmentation of our 

data as a gold standard and a reference to the 

automatic approach. 

Globally, the constructed models gave good 

results, as shown in table 1 and figure 3. In the SVM 

models, the Gaussian kernels gave a better results even 

using just 6 bands, than the linear kernels. This can be 

explained by the fact that the problem is not linear. The 

reduction of the computation time by choosing linear 

kernels results in poorer sensitivity and even using all 

the bands, the results with linear kernels do not 

outperform the Gaussian kernels with just 6 bands. 

However, the use of all bands with linear SVM kernel 

makes notable increase of the segmentation 

performance when comparing to the same approach 

(SVM linear kernels) using just 6 bands (sensitivity 

varies from 0.7549 to 0.83; accuracy 0.959 to 0.982 

and precision 0.889 to 0.985). 

Comparing the SVMs and the RF approaches, 

both RF methods gave better results than the SVM 

methods, especially for the sensitivity that increases 

from 0.87 (best SVM: SVM with Gaussian kernel) to 

0.898 and 0.9. The use of all the 20 features increases 

slightly the sensitivity and the precision in the RF 

approach while this improvement is more 

considerable with the linear SVM approach as shown 

in table 1. 

 

Figure 6: Bands contribution into the Random Forest segmentation. 



In figure 6, the contribution of each band is 

evaluated in the construction of the RF model with all 

bands. The Green G, the Saturation S, and the 

Saturation neighbours S15 are among those who 

contribute the most but the highest contribution is 

made by the F11 fluorescence band. This band 

expresses the chlorophyll content of the plant as 

described in (Gitelson et al., 1999), which explains 

the high contribution of this band in the classification 

of plant versus soil  with no chlorophyll and algae and 

moss with different chlorophyll composition. The 

bands H15, S15 and V15 are also highly contributing 

to the RF models constructions. These bands could 

also be interpreted as noise reduced HSV signals, and 

we can notice that the contribution of S15 was even 

bigger than the contribution of S which indicates the 

importance of its use. 

4 CONCLUSIONS 

As a conclusion, both used supervised machine 

learning algorithms: SVM and RF approaches 

succeeded to provide a useful tool for the plant 

segmentation in the presence of challenging 

background containing algae and moss. RF 

approaches gave better results than the SVM 

methods. The use of multiple bands showed that the 

performance of the algorithms improves the 

segmentation results especially with the SVM 

models. Within the RF approach, bands contribution 

to the final results vary and the highest contribution is 

the ratio fluorescence which highlights the role of 

these bands in such machine learning approaches. In 

addition, the neighbourhood information introduced 

by the channels H15, S15, and V15 contributed 

considerably to the construction of the model and to 

the improvement of the segmentation results. 

One limitation of this approach is that it is based 

on the expert knowledge constructing the data needed 

for training the model (supervised machine learning). 

In this sense, bad quality labelled image (a bad expert 

segmentation) will result in a bad model for 

segmentation. 

To avoid this dependence, we will develop, in 

future work, unsupervised models for the segmenta-

tion of the plants. Moreover, more features will be 

included in the classification parameters such as 

texture features to improve the segmentation results. 

We will also focus on the plant 3D acquisition to 

obtain more data (such as height and volume) 

describing its responses to the environment (drought, 

nutrients, biotic stress). These 3D information will 

also be helpful for the segmentation and the time 

tracking of individual plant leaves. 
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