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Abstract: This work addresses the issue of image classification and localization of human actions based on visual data
acquired from RGB sensors. Our approach is inspired by the success of deep learning in image classification.
In this paper, we describe our method and how the concept of Global Average Pooling (GAP) applies in the
context of semi-supervised class localization. We benchmark it with respect to Class Activation Mapping
initiated in (Zhou et al., 2016), propose a regularization over the GAP maps to enhance the results, and study
whether a combination of these two ideas can result in a better classification accuracy. The models are trained
and tested on the Stanford 40 Action dataset (Yao et al., 2011) describing people performing 40 different acti-
ons such as drinking, cooking or watching TV. Compared to the aforementioned baseline, our model improves
the classification accuracy by 5.3 percent points, achieves a localization accuracy of 50.3%, and drastically
diminishes the computation needed to retrieve the class saliency from the base convolutional model.

1 INTRODUCTION

Nowadays, as intelligent systems are getting more and
more deeply involved in our everyday life, machine
vision becomes incredibly important. Intelligent sys-
tems could greatly benefit from an ability to perceive
the human environment and its major actors, allowing
them to better understand what is happening around
them. A lot of work has been done in automatic image
labeling, namely ”image classification”, and in auto-
matic estimation of the position of a class in an image,
namely ”class localization” (LeCun et al., 2015) and
it can be applied in the context of human action classi-
fication and localization (see Figure 1). In this paper,
we consider that most of the proposed architectures
made an extensive use of supervision in the training
process when localization could have been inferred
from a lower amount of information.

Since 2006, deep learning has increasingly grown
in use to become the most successful approach in
image classification and localization. A vast majority
of networks used in this field are composed by a stack
of Convolutional Neural Network (CNN) layers, fol-
lowed by one or several Fully Connected layers (FC),
also referred as Dense layer, resulting in a prediction
vector. More recently, the Global Average Pooling

Figure 1: Examples of drinking action localization and sa-
liency retrieved with our approach Inception-GAP5-L1 (see
Section 3).

(GAP) method has been used at the last layers of se-
veral networks (He et al., 2016; Zhou et al., 2016)
to perform classification and have opened the possi-
bility to perform semi-supervised-localization, which
is defined here as inferring a class localization wit-
hout training on localization data but only on labels1,

1In contrast with weakly-supervised-localization lear-
ning which uses a reduced amount of data to train.

Moreaux, M., Lyubova, N., Ferrané, I. and Lerasle, F.
Mind the Regularized GAP, for Human Action Classification and Semi-supervised Localization based on Visual Saliency.
DOI: 10.5220/0006548303070314
In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2018) - Volume 4: VISAPP, pages
307-314
ISBN: 978-989-758-290-5
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

307



hence, without a need of extensive localization anno-
tation. This kind of approach is interesting as it is
costly to have human annotators drawing bounding
boxes around objects in dense datasets.

Global Average Pooling (GAP), a mathematical
operation performing the average of a matrix (descri-
bed in Section 3), was first presented as a structural
regularizer in NiN (Lin et al., 2013) and later used
in GoogLeNet (Szegedy and Liu, 2015). More re-
cently, it was used in ResNet (He et al., 2016) and
GoogLeNet-GAP (Zhou et al., 2016) before a fully
connected layer to perform object localization. In this
latter approach, it was preferred to max-pooling to
find all the discriminative parts of a class instead of
the most discriminative one.

In this work, we intend to increment the classifica-
tion and localization research based on the GAP met-
hods by proposing a modified architecture and some
naive regularizations. Section 2 reviews former work
published on this topic. Section 3 introduces both our
architecture and a naive regularization term used for
localization. Section 4, describes our evaluations and
the proposed network. Finally, Section 5 concludes
our work.

2 RELATED WORK

In the context of visual perception, many approaches
based on CNNs have been used in the last years to
perform real-time object localization. Most of the
successful approaches used fully-supervised learning
to tackle theses problems. This section reviews the
architectures that have been used first for supervised
and then for weakly or semi-supervised localization
in image processing in computer vision.

Fully-supervised Learning for Localization: In
recent literature, many architectures propose to per-
form image classification and localization, at the same
time, using fully-supervised learning. Models like
AlexNet (Krizhevsky et al., 2012), VGGNet (Simo-
nyan and Zisserman, 2014) and GoogLeNet (Szegedy
and Liu, 2015) use a stack of convolutional layers fol-
lowed by fully connected layers to predict the class
instance and its location in images, using, for in-
stance, a regression on the bounding box (Sermanet
et al., 2013). Throughout time, these models compe-
ted in ILSVRC2 (Simonyan and Zisserman, 2014) lo-
calization contest (won by (Krizhevsky et al., 2012)
and (Szegedy and Liu, 2015)). Other models, like
ResNet (He et al., 2016) introduced a similar appro-
ach, but with a GAP layer at the last convolutional

2Imagenet Large-Scale Visual Recognition Challenge

layer of their networks, and set a new record in the
ILSVRC 2014 localization contest. It is clear that, in
such contest, researchers are using maximum of avai-
lable resources for training their approaches, however,
we would like our models to be less reliant on large
amount of annotated data. This is our motivation to
move towards semi-supervised learning.

Weakly and Semi Supervised Learning for Lo-
calization: Some architectures are designed to per-
form weakly-supervised localization, for example,
the model proposed by Oquab et al. (Oquab et al.,
2015) is trained in two steps. First, a traditional CNN
model, finishing with a softmax layer, is trained on
cropped images to learn to recognize a class based on
a fixed receptive field. The weights learned at this
step are frozen and the second training step consists
in convolving this model to a larger image in order to
produce a matrix of softmax predictions. From this
matrix, a new network is learned to predict the class
localization. This network includes a global max-
pooling operation made to retrieve the maximum pro-
bability of a class being present in the image. We
took inspiration from this work as (a1) the first part
of the model is trained on images which do not in-
clude any contextual information (background remo-
ved at the cropping step) and (a2) the resulting model
produces a saliency map for every class present in an
image, based on a given receptive field. Even though,
we consider that (b1) the two-step learning can be re-
duced to one step, (b2) the global max-pooling is a
bottleneck operation to obtain a one-shot learning mo-
del and (b3) the model should be able to learn with a
lower amount of pre-processed inputs.

These b1, b2, and b3 points have been taken
into account in (Zhou et al., 2016) where the aut-
hors propose a one-shot semi-supervised method to
perform image classification and localization without
any annotation of localization. Their method, called
”GoogLeNet-GAP”, is a stack of CNNs ending with
a large amount of convolutional units where each out-
put map is averaged to a single value with Global
Average Pooling (GAP). The resulting values are then
fully connected to a softmax layer. We believe, that,
because of the GAP layer being fully connected to the
prediction layer, the last convolutional layer, which
is used for localization, shares too much information
with all the predictions resulting in an attention field
broader than needed.

In our approach, we aim at developing, first, one-
shot semi-supervised training for class localization as
in (Zhou et al., 2016). Second, we want to reduce the
attention field in our localization mechanism by remo-
ving the Dense layer following the GAP layer, in or-
der to have an attention model similar to (Oquab et al.,
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2015), and we refer to this modification as ”unsha-
red GAP layer”. Third, we would like our model
to decrease the computation, comparatively to (Zhou
et al., 2016), for retrieving the localization of the clas-
ses. Our models (eg. ”Inception-GAP5”) will be
compared to both ”GoogleLeNet-GAP”, introduced
in (Zhou et al., 2016), and ”Inception-GAP-Zhou”,
our implementation of the former.

3 OUR MODEL ARCHITECTURE

In our approach, the architecture is designed to per-
form semi-supervised learning for localization from a
classification problem (see Figure 2).

The proposed architecture follows the all-
convolutional trend observed in deep-learning and
push it forward removing every dense layer present
on the network. To do so, we select a deep learning
architecture whose structure and training procedure is
known (InceptionV3) as our base model, up until a
desired layer and add a new convolutional layer with
c ∗m kernels (c being the amount of classes in our
classification task, and m, the amount of kernels used
per class) followed by a GAP layer and m sums re-
sulting in c values, used as prediction values.

To build our model, we applied the recommendati-
ons given in (Zhou et al., 2016) for GoogLeNet (Sze-
gedy and Liu, 2015) to InceptionV3. Hence, our ar-
chitecture is composed by the initial stack of CNNs
(shown by the blue parallelepipeds in Figure 2) des-
cribed in (Szegedy et al., 2016) up until the layer
called Inception4e. Following the recommendations,
this layer is followed by a [3×3] convolutional layer
of stride 1 whose resulting matrix contains saliency
maps for each class (shown by orange squares in Fi-
gure 2). These maps are averaged with GAP, clustered
(summing them) in c values, one per class, and fed to
a softmax layer for classification.

If this model has m = 5 maps per layer per class,
we refer to it as ”Inception-GAP5” where ”Inception”
indicate that InceptionV3 is the base model. For in-
stance, GAP1 architecture would correspond to the
original approach developed in NiN (Lin et al., 2013)
where they state that each of these maps ”can be ea-
sily interpreted as categories confidence maps”. To
keep track of the introduced names of the models, Ta-
ble 1 gives a short description of them.

Formally, the last layers of the network are defi-
ned as follows : lets fk(x,y) be the activation of unit k
with {k ∈N : k < m ·c} in the last convolutional layer
at the spatial location (x,y). Then, the GAP vector g

with g ∈ Rm·c is defined by :

gk =
∑X

x=0 ∑Y
y=0 fk(x,y)
X ·Y (1)

Where X and Y are the sizes of the preceding convo-
lutional layers. Then, we cluster g in a vector g′ ∈Rc.

g′c = ∑
m

gk (2)

This vector is fed to a softmax function to compute
the class predictions pc.

pc = softmaxc(g′) (3)

The activation fk(x,y) we chose is Rectified Linear
Unit (ReLu) (Nair and Hinton, 2010).

Figure 2: The architecture of the proposed model with two
maps per class (m = 2) and four classes (c = 4) as an exam-
ple.

3.1 Class Activation Mapping

In (Zhou et al., 2016), the authors described a proce-
dure to retrieve some regions of interest with a met-
hod they call class activation mapping. This met-
hod is re-adapted to our architecture and described
below, yet, to fairly compare each other results, the
aforementioned architecture is slightly modified and
re-implemented in ”Inception-GAP-Zhou”. In this
model, the GoogLeNet (Szegedy and Liu, 2015) they
used is swapped with the InceptionV3 base which is
followed by a convolutional layer composed of 1024
units whose outputs are averaged with GAP, then fully
connected to the predictions and then transformed
into predictions with a softmax layer.

The procedure they called ”Class Activation Map-
pings” (CAM) aim to indicate ”the discriminative
image regions used by the CNN to identify” action
classes. In our model, we adapt this equation such that
a CAM becomes, for each class c, and each spatial lo-
calization (x,y), the sum of the n activation functions.

CAMc(x,y) =
c.m−1

∑
k=(c−1)m

fk(x,y) (4)

Mind the Regularized GAP, for Human Action Classification and Semi-supervised Localization based on Visual Saliency

309



Table 1: Description of the models evaluated and compared in this work.

Model name Description
Inception-GAP5 Our GAP architecture with 5 maps per neurons built on top of InceptionV3

Inception-GAP5-L1 Inception-GAP5 whose GAP layer has a L1 penalty on its outputs
Inception-GAP5-L2 Inception-GAP5 whose GAP layer has a L2 penalty on its outputs
Inception-GAP-Zhou Gap method, as proposed in (Zhou et al., 2016), build on top of InceptionV3

Inception-GAP-Zhou-L1 Inception-GAP-Zhou whose GAP layer has a L1 penalty on its outputs
Inception-GAP-Zhou-L2 Inception-GAP-Zhou whose GAP layer has a L2 penalty on its outputs
GoogLeNet-GAP-Zhou Architecture proposed in (Zhou et al., 2016)

Retrieving CAMc: In comparison to the loca-
lization method introduced in (Zhou et al., 2016),
the amount of operations used to retrieve these CAM
maps from the computational graph, is significantly
reduced. Due to the design of InceptionV3, used
as a base model in our approach, the default input
image resolution is 299× 299 pixels (Szegedy et al.,
2016). In our architecture, we cut InceptionV3 to the
Inception2-5 layer, resulting in a matrix with a shape
of 17×17× k kernels. Therefore, the amount of ope-
rations needed to retrieve the CAM are :

• For Inception-GAP5, the CAM method relies on
summing 5 convolutional kernel outputs through
the 17 x and 17 y coordinates, resulting in 5×
17×17 = 1445 sums.

• For Inception-GAP-Zhou (Sec.4), the CAM met-
hod is the result of (a) weighting all the k = 1024
convolutional kernel outputs (of size 17×17) with
its corresponding weights on the dense layer, re-
sulting in (1024×17×17) = 295,936 multiplica-
tions and (b) summing these 1024 maps through
each of the 17 x and 17 y coordinates, resulting in
(1024×17×17) = 295,936 sums.

In this sense, GAP5 is more computationally efficient
than GAP-Zhou.

3.2 Regularization

The softmax operator, or normalized exponential as
mentioned in (Bishop, 2006), forces the exponentials
of the activations (g′c in our case) to be properly se-
parated, yet it does not constrain the class activations
to be centered on some particular value. In our mo-
del, we want the fk(x,y) activations to provide us with
insights on the probability of a class to be present at
a given position. Therefore, we add a regularization
term on the fk(x,y) values.

As in (Raina et al., 2007), where the authors con-
strain the activations with a L1 regularization, we pro-
pose to force the last convolutional layer of our model
to be sparse. Such property should help in having a
clear visualization of the CAMs and rendering whet-
her a class is present or not at a given spatial location

(x,y). To render this property, we introduce either a
L1 or a L2 regularization term to the outputs of the
last convolutional layer produced by fk(z(x,y)), with
z being the input to last convolutional layer.

The L1 regularization, applied to our last convolu-
tional layer, whose k kernels are weighted by Wk and
followed by their ReLu activation, is as follows :

L1 = α∑
k
·
∣∣∣∣∑

x,y
fk(z(x,y))

∣∣∣∣

= α∑
k
·
∣∣∣∣∑

x,y
max(0,Wk ∗ z(x,y))

∣∣∣∣
(5)

Whereas the L2 activity regularization is :

L2 = α∑
k

√
∑
x,y

fk(z(x,y))2

= α∑
k

√
∑
x,y

max
(

0,(Wk ∗ z(x,y))2

) (6)

With the ReLU activation, in both cases the Wk
weights are penalized only if the kernel k returns a
map which sum is above zero.

The loss function of our model is the same as (Sze-
gedy et al., 2016), namely, the cross-entropy l =
−∑k Yk log(pk) with Yk the one hot vector class corre-
sponding to a sample Xk. The regularization term des-
cribed above is added to this loss and the alpha term
weights the importance of the regularization with re-
spect to the categorical cross entropy. After evalua-
tion, we tuned empirically α to be equal to 10−7 for
both the L1 and the L2 regularization terms.

3.3 Implementation

This work was implemented on Keras3 back-ended
with Tensorflow (Abadi, 2015). To implement our
model, we used InceptionV3, available in Keras and
pre-trained on ImageNet (Krizhevsky et al., 2012). As
in InceptionV3, our models are trained and tested with
images resized to 299×299 RGB pixels.

Nadam was chosen to train our model because of
its fast convergence speed. The parameters used in

3CHOLLET, Francois. Keras (2015). http://keras.io.
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our approach are those proposed by default in Keras,
except for the learning rate, which was decayed every
second epoch, as in (Szegedy et al., 2016).

During the first 10 epochs, the weights of incepti-
onV3 are fixed in such way that the GAP layer is ini-
tialized with respect to the pre-trained network. Af-
terwards, all the weights in the model are subjected
to optimization. We empirically fix the maximum
amount of epochs to be 125 (when the loss stopped
decreasing) and report in the following Section the
results obtained for each model we trained, with and
without regularization. The results are achieved by
the combination of weights scoring the lowest loss on
the validation set.

4 ACTION DATASET AND
ASSOCIATED EVALUATIONS

This section presents both quantitative and quali-
tative results obtained with our models applied on
”The Stanford 40 Action” (Yao et al., 2011) data-
set. Inception-GAP5 built on top of InceptionV3 with
5 maps per class was preferred to Inception-GAP10
as we noticed that increasing the amount m of maps
per class (10 instead of 5) did not improve results
in our classification task. Inception-GAP5 achieved
an accuracy of 75.9% when Inception-GAP10 scored
1.3 points lower and Inception-GAP5-L1 achieved an
accuracy of 75.5% when Inception-GAP10-L1 scored
0.7 point more. For fair comparison, we also imple-
mented the method proposed in (Zhou et al., 2016)
on-top of InceptionV3 and trained it using the same
optimizer as the one used for our model, referred as
Inception-GAP-Zhou.

First the dataset is presented then comes the com-
parison of two one-shot and semi-supervised training
methods, one based on a fully shared GAP layer
(GoogleNet-GAP-Zhou (Zhou et al., 2016) and our
implementation of Inception-GAP-Zhou) and the ot-
her based on an unshared GAP Layer (our Inception-
GAP5). Section 4.3 is a quantitative evaluation
of the regularization introduced in Section 3.2 and
Section 4.4 assesses the localization abilities of some
of the models used up until then.

Hereafter, 5 metrics are used : accuracy, preci-
sion, recall, Mean average Precision (MaP), and In-
tersection over Union (IoU). Precision and recall, are
computed such that we only consider a label to be true
if the probability of its prediction is over 50% (as in
the Keras1 implementation). This 50% threshold pro-
bability acts as a measure based on the confidence of
the model. Along with these metrics, we compute the
Mean average Precision which also reflects how con-

fident a model is towards its predictions. The higher
the MaP score is, the more confidence we can have on
the ranked predictions of the model. Finally, we use
Intersection over Union, which is a common localiza-
tion metric in the literature, to evaluate the localiza-
tion abilities of our model. The IoU is defined as the
fraction of the overlap area of ground truth bounding-
box with the predicted bounding-box over the area of
their union. To be considered as correctly localized,
the IoU of a predicted bounding-box should be over
0.5.

4.1 Action 40 Dataset

The Stanford 40 Action (Yao et al., 2011) dataset
has been used to perform training and testing of the
networks. This dataset is composed of 9532 images
(4000 used for training, and 5532 for testing) of pe-
ople performing one of 40 actions such as drinking,
cooking, reading, phoning, or brushing teeth. We
split the test images into two subsets : one with 3532
images used for validation and 2000 (50 images per
class) for the test stage. In the dataset, all images are
provided with a class label and a bounding box around
the person performing the corresponding action.

4.2 Comparing Inception-GAP5 and
Inception-GAP-Zhou

This section describes our comparison of Inception-
GAP5 and Inception-GAP-Zhou, and reports the re-
sults given in (Zhou et al., 2016) with GoogLeNet-
GAP. In Table 2, our model shows better performance
than Inception-GAP-Zhou with respect to the the first
three of metrics aforementioned (accuracy, precision
and recall), meaning that Inception-GAP5 is better
at classifying the dataset and that its classification is
more reliable.

Table 2: Comparison of our architecture (Inception-GAP5)
with respect to both the original GoogLeNet-GAP (Zhou
et al., 2016) and its variant Inception-GAP-Zhou evaluated
on Stanford Action 40 dataset. (Acc. stands for Accuracy).

Model name Acc. Precision Recall
Inception-GAP5 75.9% 80.1% 74.2%

Inception-GAP-Zhou 73.7% 75.7% 72.8%
GoogLeNet-GAP-Zhou 70.6% - -

4.3 Impact of Regularization on GAP
Models

This section presents the impact of L1 and L2
regularization terms on both Inception-GAP5 and
Inception-GAP-Zhou.

Mind the Regularized GAP, for Human Action Classification and Semi-supervised Localization based on Visual Saliency

311



One of the expected behaviors mentioned in
Section 3.2 is to observe a sharper class separation
by forcing the activations of the GAP maps, and the-
refore the activations of the softmax, to be close to
zero. Such effect is seen in Table 3, where we ob-
serve the precision of both architectures increasing
when applied the regularization term. Even though
such phenomenon could result in an accuracy drop,
this trend is not observed here. The accuracy and
the precision of the Inception-GAP-Zhou model and
its L1-regularized counterpart (Inception-GAP-Zhou-
L1) both improved gaining 2.1 points in accuracy, 7.1
points in precision and 9.9 points in its Mean average
Precision, whereas Inception-GAP5 only dropped by
0.4 points in accuracy, and gained 8.7 points in pre-
cision and 14.3 points in its Mean average Precision
with the L1 regularization. Such results clearly de-
monstrate the benefit of L1 regularization on classifi-
cation.

Table 3: The impact of L1 and L2 regularization terms eva-
luated on Inception-GAP5 and Inception-GAP-Zhou archi-
tectures. (Acc. stands for Accuracy, Prec. for Precision and
MaP. for Mean Average Precision).

Inception-... Acc. Prec. Recall MaP.
GAP5 75.9% 80.1% 74.2% 63.8%

GAP5-L1 75.5% 88.8% 63.5% 78.1%
GAP5-L2 73.5% 88.1% 61.1% 77.0%

GAP-Zhou 73.7% 75.7% 72.8% 66.6%
GAP-Zhou-L1 75.8% 82.8% 70.5% 76.5%
GAP-Zhou-L2 73.5% 77.3% 71.2% 72.4%

The effect of regularization is also visible on the
Class Activation Maps (Figure 3) where we plot the
40 action CAMs corresponding to the processing of
the same image by each of six different models. We
observe the absolute values of the CAMs, ranging
from zero, up to the maximum value observed in all
the CAMs for the model and image (max( fk(x,y))).
In other terms, all CAMs are divided by the same
maximum value of the observed CAMs for an image
and a model.

Similar effects appears in both Inception-GAP5
and Inception-GAP-Zhou when applying the same re-
gularization. When L1 regularization is applied (Fi-
gure 3b and 3e), all the neuron activations produ-
cing the CAMs becomes close to zero except the neu-
ron recognizing a class, here the class is ”playing-
guitar”. We believe these activations are closer to re-
ality as absent classes do not activate their neurons.
The use of L2 regularization (Figure 3c and 3f) re-
sults in CAMs that are not sparse, that magnifies the
receptive fields of a neuron and do not discriminate
classes as properly as L1 regularization does.

4.4 Evaluation of Action Localization

The localization properties of our model are evaluated
and shown in Table 4 and Figure 4. On the one hand,
the table reports the results of the center of mass of
the CAMs being in the ground-truth bounding-box,
on the other hand, the Figure 4 reports how accurate
we are in defining a bounding box around a class.
To draw a bounding box around the predicted class,
we threshold the CAM of the prediction by a given
percentage of its maximum value and consider the
bounding box to be smallest rectangle surrounding all
these points (as in (Zhou et al., 2016)).

It is important to observe that, in the Stanford 40
Action (Yao et al., 2011) dataset, the discriminative
parts of an action are mostly located next to the hu-
man performing the action (e.g. the fishing action is
mostly determined and localized, with our method, by
the presence of a fishing rod; instead of a person).
Yet, as mentioned in Section 4.1, the ground-truth
bounding-boxes provided are surrounding the person
performing the action, and not the action, hence, our
weakly supervised localization is penalized by its fo-
cus on the object rather than on the human.

The accuracies reported in Table 4, show that
our model without regularization, called Inception-
GAP5, which is based on unshared GAP layer, per-
forms better than Inception-GAP-Zhou, and based on
a shared GAP layer, by 6.3 points on prediction kno-
wing the class ground-truth and 2.8 points not kno-
wing it. Interestingly, the L1 regularized versions
of Inception-GAP5 and Inception-GAP-Zhou do not
show the same results. Yet, we believe that in both
cases the regularization term constrained the last con-
volutional layer to be more attentive to discriminative
elements due to the sparse constraints on the weig-
hts. In the case of Inception-GAP5, the networks is
forced to be attentive to the object rather than the hu-
man, while, in the case of Inception-GAP-Zhou, the
network is constrained to be more attentive on the hu-
man performing the action.

Table 4: Class localization accuracies. The second column
shows the evaluation results when knowing the ground truth
class and the third column considers the class predicted by
the model.

based on the based on the
Inception-... ground truth prediction only

GAP5 72.8% 50.3%
GAP5-L1 65.1% 46.6%
GAP5-L2 70.3% 49.6%

GAP-Zhou 66.5% 47.5%
GAP-Zhou-L1 68.1% 47.6%
GAP-Zhou-L2 67.4% 45.8%
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(a) Inception-GAP5 (b) Inception-GAP5-L1 (c) Inception-GAP5-L2

(d) Inception-GAP-Zhou (e) Inception-GAP-Zhou-L1 (f) Inception-GAP-Zhou-L2

(g) Example
Figure 3: Visualization of the CAMs obtained with Inception-GAP5 (Figure 3a, 3b and 3c) and Inception-GAP-Zhou (Fi-
gure 3d, 3e and 3f) with and without L1 or L2 regularization terms to an image of people playing guitar (Figure 3g). Each
map corresponds to one of the 40 classes. The mostly activated class is ”people playing guitar”.

The same conclusions may be drawn from Fi-
gure 4 where we test the IoU localization metric
with different threshold values. In the best case,
Inception-GAP5 is better than Inception-GAP-Zhou
by 2.7 points, the regularized version of Inception-
GAP-Zhou is better than its non-regularized counter-
part by 3 points, and that the regularized version
of Inception-GAP5 is worse than its non-regularized
counter-part, by 2.25 points. Here also, we explain
these differences by the models being more attentive
to discriminative elements - which may lead to a de-
tection outside of the ground truth bounding box.

5 CONCLUSION AND FUTURE
WORK

This work presented semi-supervised image classi-
fication and localization on RGB images using an
unshared GAP layers. Based on evaluations, we im-
prove upon existing approaches in terms of the per-
formance for both image classification and localiza-
tion, in the context of human action localization, we
hypothesize that the increased performance is due to
the unshared GAP layer and to the reduced attention
field in the model, which makes our model similar

Figure 4: Percentage of correctly localized images based on
the IoU metric depending on the threshold value selected to
extract our prediction bounding-box.

to (Oquab et al., 2015). This increased performance
also exists even though the amount of parameters is
reduced and the visualization method needs less com-
putation.

As our next step, we are going to asses this mo-
dification on a larger dataset such as Imagenet, then,
explore the use of shallower models (models with less
convolutional layers) to tackle this problem. We will
explore whether, in the context of shallower models,
increasing the amount m of maps per neuron shows
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benefits. We have strong assumptions that a wider
GAP layer will perform better than a narrower one in
the context of shallow neural network.

In the context of human action localization, it will
also be interesting to generate a prediction based on
a coherence of several consecutive frames rather than
on a single frame. Our future work will consider both
an aspect of time and coherence between consecutive
images and an associated audio coherence where we
consider to transpose it from the semi-supervised spa-
tial localization in images to semi-supervised tempo-
ral localization in audio events.
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