
A Simple and Robust Approach to Computation of Meshes Intersection

Věra Skorkovská1, Ivana Kolingerová1 and Bedrich Benes2

1Department of Computer Science and Engineering, University of West Bohemia,
Univerzitnı́ 8, 306 14, Plzeň, Czech Republic

2Department of Computer Graphics Technology, Purdue University,
401. N. Grant Street, 47907-2021, West Lafayette, IN, U.S.A.

Keywords: Triangular Mesh, Mesh Repair, Intersections, Neighbor Tracing.

Abstract: Triangular meshes are important in many fields in both basic and applied research that rely on their correctness
and accuracy. Many operations with meshes can lead to undesirable situations and the resulting models can be
damaged and further unusable. Self-intersection and mesh-to-mesh intersection are types of operations that are
often present and can cause such problems. We propose an accurate geometry-based method for local repair
of intersecting meshes. The state-of-the-art methods either solve the problem inaccurately, or use methods
such as arbitrary precision arithmetic or virtual perturbation to deal with the troublesome boundary cases. Our
method represents a robust way to repair intersecting meshes accurately without the need to manipulate with
the input data or to employ arbitrary precision arithmetic. The correct solution is obtained through a careful
classification of the cases that could result from a numerical imprecision of the floating point arithmetic.

1 INTRODUCTION

3D surface models are often used in various fields,
ranging from animation and gaming industry to archi-
tectural design and CAD. Applications dealing with
3D models usually require correct meshes. Depend-
ing on the correctness definition, many types of de-
fects can be found in polygon meshes that have to be
repaired before any further use of the model. For a
thorough survey on the defect types and their repair
we refer to (Attene et al., 2013; Botsch et al., 2007).

This paper addresses the problem of mesh-to-
mesh intersections and self-intersections. These in-
tersections are unacceptable in many applications, for
example when the mesh represents a boundary of a
solid volume. The existing algorithms addressing this
problem are usually designed to be either robust, ef-
ficient, or accurate. To the best of our knowledge, no
method grants all the three desired properties. The
accuracy of the mesh-repair methods is probably the
most problematic and ignored topic, although it is the
main interest in applications such as CAD modeling
or exact physics simulations.

We propose a novel method for repair of intersect-
ing meshes. Our algorithm uses a neighbor tracing al-
gorithm (Lo and Wang, 2004; McLaurin et al., 2013),
works with floating point arithmetic, and has a high
accuracy achieved via a careful classification of all

cases of intersections possibly caused by the numer-
ical imprecision. The method deals with both self-
intersections of a single mesh and intersections of two
meshes. The method does not use virtual perturba-
tion to avoid singular cases which makes it suitable
for applications where alterations of the input model
are undesirable. Our solution represents a robust way
of handling mesh (self-)intersections in applications
where accuracy of the solution is the main concern.

Our algorithm first detects the intersection bound-
ary. In the second step the triangles containing the
boundary are cut along the boundary, dividing the tri-
angles into a valid part that is a part of the repaired
mesh, and an invalid part that needs to be removed.
The invalid parts are then discarded and the valid parts
are triangulated. Finally, the valid parts of the mesh
are stitched together. The correct identification of the
intersection boundary in the first step is essential for
the correct behavior of the rest of the algorithm and it
is the main contribution of this paper.

Figure 1 shows an example of a result generated
by our algorithm. The scene consists of six Stanford
dragons and six Stanford bunnies (Levoy et al., 2005)
placed at random positions with random rotation. 172
intersection boundaries were identified in the over-
lapped meshes by the first step of our algorithm. The
detected intersections were repaired and the resulting
output mesh does not contain any intersections.

Skorkovská, V., Kolingerová, I. and Benes, B.
A Simple and Robust Approach to Computation of Meshes Intersection.
DOI: 10.5220/0006538401750182
In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2018) - Volume 1: GRAPP, pages
175-182
ISBN: 978-989-758-287-5
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

175



Figure 1: Six Stanford dragons and six Stanford bunnies (Levoy et al., 2005) intersect in 172 separate intersection boundaries
(left). The final merged mesh (right) does not contain any intersections.

2 RELATED WORK

Many methods for repairing mesh intersections and
self-intersections have been proposed. The ap-
proaches can be divided into two main categories:
global (volumetric) and local (surface oriented) ap-
proaches (Attene et al., 2013).

Global approaches convert the polygonal mesh to
an intermediate representation which is then used to
generate a new valid mesh. Early methods utilize vol-
umetric representation (Andújar et al., 2002; Noorud-
din and Turk, 2003). While being effective at repair-
ing the defects, this approach is sensitive to the res-
olution of the intermediate structure. Adaptive ap-
proaches exist that change the resolution of the in-
termediate structure according to the required detail
(Ju, 2004; Bischoff et al., 2005). Binary space par-
tition trees (Murali and Funkhouser, 1997), level set
methods (Osher and Fedkiw, 2002; Enright et al.,
2002) and deformable simplicial complexes (Misz-
tal and Bærentzen, 2012; Christiansen et al., 2014)
have been also used to solve this problem. The use of
global approaches is appropriate if the mesh is highly
inconsistent. It typically allows creating very robust
methods at the cost of lower accuracy and efficiency.

Local approaches work directly with the input
mesh and identify individual self-intersections which
are then repaired locally, usually one at a time, and
leave the rest of the mesh unchanged. These ap-
proaches change the input mesh as little as possible
which is desirable in applications where accuracy of
the solution is the main interest. Local approaches are
more suitable when the intersections are located only
at isolated parts of the mesh.

Some local approaches take a global method and
apply it only in the local scale (Bischoff and Kobbelt,
2005; Attene, 2010; Wojtan et al., 2009). These meth-

ods depend highly on the grid resolution and can also
lead to changes in the volume encompassed by the
mesh. Other group of methods does not rely on the
use of an intermediate data structure but works di-
rectly with the mesh. Zaharescu et al. (Zaharescu
et al., 2011) search the mesh for partially valid faces
and locally repair them. Others (Lo and Wang, 2004;
McLaurin et al., 2013) use neighbor tracing to speed
up the process of finding intersected faces and to
achieve reliable results. A similar approach is used to
simulate the interaction of dynamic meshes (Brochu
and Bridson, 2009) and to simulate interactions be-
tween solids and liquids (Clausen et al., 2013). These
geometric approaches often use exact arithmetic to
achieve numerical stability of the intersection calcu-
lations, while boundary cases are avoided by using
virtual perturbation method.

The above-mentioned methods usually concen-
trate on either being robust, accurate, or efficient. To
the best of our knowledge, none of them satisfy all
the three properties. We focus on the accuracy of the
solution as it is very often overlooked.

The most accurate solutions can be found among
local geometric solutions. They usually use vertex
displacement or arbitrary precision arithmetic to im-
prove the robustness. However, the vertex displace-
ment changes the input mesh which can be unaccept-
able whereas the use of arbitrary precision arithmetic
leads to lower efficiency of the method. If the perfor-
mance of the algorithm is crucial, the use of floating
point arithmetic may be preferred.

Our goal is to propose an accurate method for
repairing (self-)intersections working with floating
point arithmetic. The proposed solution ranks among
local methods and extends the neighbor tracing algo-
rithm (Lo and Wang, 2004; McLaurin et al., 2013)
with the emphasis on the accuracy of the solution.

GRAPP 2018 - International Conference on Computer Graphics Theory and Applications

176



intersection 
boundary

mesh 1

mesh 2

invalid 
parts

Figure 2: Left to right: intersection boundary detection, invalid parts elimination, polygon triangulation, and mesh stitching.

3 PROPOSED SOLUTION

Figure 2 shows an overview of our method. The input
are two triangle meshes (or two nonadjacent parts of
a single mesh) which are examined for intersection.
In the first step we identify the intersection boundary,
then cut both parts of the mesh along the boundary,
triangulate the newly generated polygons, and then
we stitch the mesh together.

Our method for finding the intersection boundary
is based on the neighbor tracing algorithm (tracing the
neighbors of intersecting triangles - TNOIT) by Lo
and Wang (Lo and Wang, 2004) with further empha-
sis on the correct solution of singular cases of inter-
section.

The TNOIT algorithm (Lo and Wang, 2004)
repairs mesh intersections only if the intersection
segments of the boundary are calculated precisely
enough to be correctly classified. The TNOIT algo-
rithm fails when an intersection is not determined cor-
rectly. However, such cases are very common in real-
world situations.

The problem can be alleviated by increasing the
precision of the floating point arithmetic as shown
in (Karasick et al., 1991). However, this decreases the
algorithm performance and may limit time-critical ap-
plications such as real-time simulations. Moreover, it
only shifts the problems to higher frequencies. An-
other way of solving the problem is to use a vir-
tual perturbation method (e.g., Simulation of Simplic-
ity (Edelsbrunner and Mücke, 1990)) to slightly dis-
place the vertices of the mesh, avoiding the boundary
cases altogether. However, the vertex displacement
can be unacceptable in applications where a precise
solution is needed.

We address this issue by a careful inspection of all
the cases which can occur due to the imprecise cal-
culation of the intersection, while using only floating
point arithmetic. Our solution represents a robust way
of handling mesh (self-)intersections in applications
where the accuracy of the solution is the main con-

p

R1

T1

I1
I2

I3
I4

ρ
1

ρ
2

Figure 3: Nonparallel planes intersecting at the line p.

cern.

3.1 Numerical Imprecision Problem

Let us open the description by an analysis of a case
where numerical imprecision could cause problems.
Let ρ1 and ρ2 be two nonparallel planes intersecting
at line p. Triangles T1 and R1 in these planes inter-
sect only if they intersect the line p and if the corre-
sponding intersection segments overlap. An example
in Figure 3 shows this case; triangle T1 intersects the
line p in segment I1I2, triangle R1 intersects p in seg-
ment I3I4. The line segments overlap, i.e., the line
segment I3I2 is the intersection of T1 and R1. To cor-
rectly determine the intersection of the triangles, we
need to identify the corresponding intersecting seg-
ments. Considering a triangle T located in the plane ρ
and a line p in the same plane, there are five ways the
triangle T can intersect the line p (see Figure 4):

1. Line p does not intersect the triangle T .

2. Line p intersects the triangle T at two of its edges.

3. Line p intersects the triangle T at a vertex.

4. Line p intersects the triangle T at a vertex and the
opposite edge.

5. Line p intersects the triangle T at two of its ver-
tices and the edge formed by these two vertices is
in the line p.

The cases 1-2 can be handled even in the context
of floating point arithmetic, but the situation is more

A Simple and Robust Approach to Computation of Meshes Intersection

177



V1

V2
V3

p

(1)

V1

V2
V3

p
(2)

pV1

V2
V3

(3)

V1

V2 V3

p
(4)

V1

V2 V3
p

(5)

Figure 4: Intersections of a triangle and a line. Left to right,
top to bottom: no intersection, intersection at two edges, at
a vertex, at a vertex and an edge, and at two vertices.

V1

V2 V3

p

e1

e2

I2

I1
I3

e3

V1 V2

V3

p

e1

e2
I2

I1

I3

e3

Figure 5: Intersections of line and triangle edges. Left: an
example situation, right: vertices rotated counterclockwise.

difficult when we get closer to the boundary cases, be-
cause even a small error can cause an incorrect clas-
sification of the intersection cases.

We suggest a solution to this problem based on a
careful classification of all the possible cases which
can be caused by the incorrect calculation of the in-
tersection. For each pair of triangles, we first identify
the intersection line p (Figure 3). Then we calculate
the intersection segment for each triangle. The inter-
section line p is guaranteed to lie in the same plane as
the triangle, allowing us to compute the intersections
of the line p and all edges of the triangle. An exam-
ple of the situation is shown in Figure 5. Line p can
intersect the line containing an edge in three ways:
intersection lies outside the edge (I1), at a vertex, or
inside the edge (I2, I3).

Based on the position of the intersection points I1,
I2, I3, we classify the situation into one of the cases
depicted in Figure 4. The problem gets more com-
plicated when we take into consideration the fact that
some (or all) of the intersection points might not have
been determined correctly due to the numerical im-
precision of the floating point arithmetic. We intro-
duce the following substitute symbols for the relative
position of the intersection points:

• 0 - the intersection point lies outside the edge,

• 1 - the intersection point lies at a vertex, and

• 2 - the intersection point lies inside the edge.
The order of the points is not relevant for the clas-

sification and so we can sort the symbolic represen-
tation in the ascending order. Using this notation, we
can describe the situation from Figure 5 (left) as 022
- I1 lies outside the edge e1, I2 and I3 lie inside the
edges e2 and e3 respectively. Let us consider a similar
situation where the vertices of the triangle are rotated
counterclockwise (Figure 5 (right)). The description
of the situation using the substitute symbols would be
220. As mentioned above, we can sort the symbolic
representation without the loss of generality, getting
the same representation (022) for both cases. This
simplification leaves us with 10 cases to address:

• 000 - all intersections outside the edges→ case 1,

• 001 - impossible case,

• 002 - impossible case,

• 011 - one intersection outside, two intersections at
vertices,

– two intersections at the same vertex→ case 3,
– intersections at different vertices→ case 5,

• 012 - impossible case,

• 022 - one intersection outside, two intersections
inside the edges→ case 2,

• 111 - three intersections at vertices→ case 5,

• 112 - one intersection inside, two intersections at
vertices,

– two intersections at the same vertex, one inter-
section at the opposite edge→ case 4,

– intersections at two different vertices and on the
edge between them→ case 5,

• 122 - impossible case, and

• 222 - impossible case.

The impossible cases cannot occur as a result of a
correct calculation. For these cases, no such straight
line exists that all the intersection points would lie
on it. An example of this situation is in Figure 6
where the line p intersects edges e2 and e3 close to
vertex V1. However, the incorrect calculation of the
intersection puts the point I3 outside e3 whereas the
point I2 inside e2, causing a contradiction with the
original assumption that all the intersection points lie
on the line p (points I1, I2 and I3 are not collinear).

If the classification of the intersection ends up as
one of the impossible cases, we know that the results
must have been caused by numeric imprecision. In
such a case we need to correct the results before the
neighbor tracing algorithm can continue.

Even if the result of the classification is a valid op-
tion, some numeric error might have been introduced.

GRAPP 2018 - International Conference on Computer Graphics Theory and Applications

178



V2 V3

p

e1

e2
I1

e3

V1 I2 I3≈ ≈

V1
I2

I3 p

e3 e2

Figure 6: Impossible case of the intersection points as a
result of numeric imprecision during the calculations.

V2 V3

p

e1

e2
I1

e3

V1 I2 I3≈ ≈

I2
I3

p

e3
e2

I´V1= 2 I3́=

ṕ

Figure 7: Incorrect intersection classification. The com-
puted intersections I2 and I3 lie inside the edges while the
correct intersections I′2 and I′3 lie at the vertex V1.

The numeric errors during the calculation can cause
an incorrect classification. Figure 7 shows an exam-
ple of such a situation. Line p intersects the edges e2
and e3 at the vertex V1 but the computed intersection
points I2 and I3 are located inside the corresponding
edges. This error causes an incorrect classification as
the case 022 instead of the correct case 011.

We cannot tell if the classification is valid if any of
the intersection points lies close to a vertex. However,
if the mesh does not contain any nearly degenerate tri-
angles with edges shorter than the maximum error ε,
we can continue the neighbor tracing. In such a case
we can never stray away from the exact solution far-
ther than to the direct neighbor. Figure 8 shows an
example of such a situation where several incorrect
classifications took place in a row. The green dashed
line marks the exact intersection boundary while the
red dotted line represents the computed intersection
boundary affected by the computational error. The
exact intersection is close to a vertex. The numeri-
cal imprecision causes an incorrect classification of
the intersection with triangle T6, leading the intersec-
tion boundary to T5 instead of T1. In an unlikely sce-
nario it is possible for several incorrect classifications
to chain, e. g., as in Figure 8, where the intersection
is incorrectly classified for triangles T6, T5, T4 and T3.
Triangles T3, T4 and T5 should not be a part of the in-
tersection at all, but they are included as a result of
the numeric error of the calculation.

Subsequently, no intersection is found for triangle
T2. The failure to identify the intersection suggests
that the previous segment or segments of the intersec-
tion boundary were affected by the numerical impre-
cision. Yet thanks to the condition we put on the in-

T1

T2
T3

T4

T5

T6

T
T3

T4

T5

T6

I1́I1=

I2
I6́

I7́I3=
I2́

I3́

I4́
I5́

T1

T6

T5

T4 T3 T2

Figure 8: A chain of several incorrect classifications of the
intersection. The green dashed line represents the exact in-
tersection boundary, the red dotted line represents the com-
puted intersection boundary.

put triangle mesh (no nearly degenerate triangles), we
know the correct solution is going through a neigh-
boring triangle. In such a case we have to test other
possible classification solutions to find the right tri-
angle where the intersection boundary continues. We
start with the original case that we got as a result of the
classification of the intersection of triangle T and look
for the next closest option until we find the pair of
triangles where the intersection boundary of the two
meshes continues. The same approach is used if the
original classification results in an impossible case.

3.2 Mesh Fixing

After the intersection boundary was found by the al-
gorithm from Section 3.1, we can fix the mesh. We
propose a novel method for repairing the mesh by us-
ing the detected intersection boundary. For each in-
tersection segment found during the neighbor tracing,
we store the pair of triangles which formed the in-
tersection. This information is used during the repair
step to fix the connectivity and topology of the mesh.

For each triangle participating in the intersection,
a new valid polygon is created by cutting the incon-
sistent parts off (see Figure 9). To create the polygon,
we first need to identify all the polylines that inter-
sect it. We insert the polylines into an auxiliary data
structure which helps to correctly trace the polygon
as shown in Figure 10. We start with an empty list
and insert the vertices of the triangle. We then insert
the first point of each intersecting polyline into the
list at the appropriate position corresponding to the
line segment where the point is located in the orig-
inal triangle. Finally, we connect the end points of
the polylines with the vertices that come after them in
the polygon boundary. Then we trace the boundary of
the polygon: starting with any polyline, we trace the
boundary following the pointers we set up in the aux-
iliary structure until we get back to the starting point.
The points we visited form the boundary of the new
polygon. If any polyline is left unvisited, the origi-
nal triangle needs to be cut into more pieces. We re-
peat this process until all the polygons are found (Fig-

A Simple and Robust Approach to Computation of Meshes Intersection

179



A B

C

D

E

F

G

H

I

JK
L

M N

A B

C

D

E

F

G

H

I

JK
L

M N

Figure 9: Polygon reconstruction. Intersecting polylines
(left) and newly created polygons (right).

A B C A A B C AD

E

F
G
H
I

J

K

L

M

N

A B C AD

E

F
G
H
I

J

K

L

M

N

A B C AD

E

F
G
H
I

J

K

L

M

N

Figure 10: Left to right, top to bottom: list initiation; inser-
tion of polylines; linking end points; polygon tracing.

ure 9). The order of the processing does not affect the
outcome of the algorithm.

Then we use the ear cutting algorithm (Meisters,
1975) to triangulate the polygons created in the pre-
vious step. Finally, correct connectivity is restored
through the shared intersection boundary.

4 RESULTS AND DISCUSSION

We tested our algorithm in various scenarios to show
its robustness and correctness. Our implementation is
a single-threaded C++ code and it was tested on Intel
Core i7 clocked at 3.07 GHz with 8 GB RAM.

Our algorithm addresses the problem of numerical
inaccuracy of floating point calculations which can af-
fect the result of the neighbor tracing algorithm (Lo
and Wang, 2004) when operating near the boundary
cases. We created a simple scene to demonstrate the
problem. A cuboid with edge ratio 2:2:2 intersects
a cuboid with edge ratio 4:1:1 in Figure 11. The
cuboids are aligned so that the intersection bound-
ary is going exactly along the edges of the faces.
The cuboids are rotated one degree along the x axis
to magnify the inaccuracy problem. The position of
some vertices cannot be represented exactly in float-
ing point arithmetic after the rotation, amplifying the
inaccuracy of the subsequent calculations.

The scene was set up in such a way so that we
know the exact result of the intersection and can com-
pare it with the results of our algorithm. The inter-
section boundary is aligned with the edges, so we can

Figure 11: Two cuboids (left) and their intersection (right).

Figure 12: Input (left) and repaired model (right).

assume that every triangle participating in the inter-
section will have one of its vertices or edges lying on
the intersection boundary. Using the notation intro-
duced in Section 3.1, the result for each segment of
the boundary should be 011, 111, or 112. However,
the measured results differ from these expected values
due to the numerical imprecision of the floating point
arithmetic. Table 1 summarizes the results measured
for the two cuboids with increasing resolution. For
the example in Figure 11 consisting of 3,072 faces,
the calculation results in impossible cases in 57 out of
128 instances. Furthermore, not even the valid results
correspond to the expected outcome - none of the in-
tersections was correctly identified as the cases 011,
111 or 112. Using the proposed method, we were able
to repair the intersection despite the incorrect identifi-
cation of the intersection cases. Existing methods (Lo
and Wang, 2004; McLaurin et al., 2013) fail on these
types of scenes unless exact arithmetic or virtual per-
turbation methods are used.

Our algorithm can also be used for other prob-
lems. It can detect and repair not only the inter-
section between separate objects, but also the self-
intersections of a single model. Figure 12 captures
such a self-intersecting object. The middle ring rep-
resents an inconsistent part of the mesh, where the
normals are reversed as a results of the mesh overlap -
the normals are pointing inwards instead of outwards.
We can detect the two intersection boundaries using
our algorithm and repair the mesh.

The algorithm can also easily be used to perform
boolean operations on triangle meshes. Having two
meshes A and B (Figure 13), we can perform boolean
operations on them by setting the orientation of the
normals of the mesh. As we cannot change the actual
normals, we use temporary normals to obtain the de-
sired behavior; these temporary normals are used dur-
ing the repair of the mesh to determine, which part of

GRAPP 2018 - International Conference on Computer Graphics Theory and Applications

180



Table 1: The number of occurrences of possible intersection cases for the scene captured in Figure 11, with increasing
resolution, using the notation introduced in Section 3.1.

faces 000 001 002 011 012 022 111 112 122 222 valid impossible

336 11 8 0 0 5 8 0 0 0 0 19 13
3 072 33 1 55 0 1 38 0 0 0 0 71 57

49 152 116 0 201 0 5 188 0 0 0 0 304 206
196 608 224 2 364 0 0 426 0 0 0 0 650 366

Figure 13: Boolean operation on cube A and sphere B. Left
to right, top to bottom: A∪B, A∩B, A\B, and B\A.

Table 2: The resolution of the scenes.

faces vertices

Self-intersection (Fig. 12) 5 120 2 564
Boolean - union (Fig. 13) 13 568 6 790
Two cuboids (1) (Fig. 11) 49 152 24 582
Two cuboids (2) (Fig. 11) 196 608 98 310
Dragons & bunnies (Fig. 1) 76 716 38 372

the mesh should be discarded. To get the union A∪B,
the temporary normals are identical to the actual nor-
mals. On the contrary, the boolean operation intersec-
tion A∩B can be defined by setting all the temporary
normals pointing inward the mesh. For the difference
A \B, the temporary normals of A are pointing out-
wards, while the normals of B are pointing inwards.

Table 2 contains the number of faces and ver-
tices of the scenes presented in this paper. Table 3
shows the measured execution time. The measured
data demonstrate that we usually find all the inter-
section boundaries long before we search the entire
mesh, e.g., in the Two cuboids (2) example (Fig-
ure 11). Nevertheless, we cannot stop the calculation
early, because we do not know if all the boundaries

Table 3: The execution time of steps of the algorithm (in
ms). Description of the scenes can be found in Table 2.

Find
intersection
boundaries

Search
whole
mesh

Fix
mesh

Self-intersection 5 72 15
Boolean - union 24 221 43
Two cuboids (1) 63 394 33
Two cuboids (2) 24 1 454 76
Dragons & Bunnies 7 358 7 631 476

have been found until we finish searching the whole
mesh. The Dragons & bunnies example (Figure 1)
shows that for complex scenes with many separate in-
tersection boundaries we have to go through most of
the mesh to find all the intersections.

We do not focus on the speed of the method. We
explore the capabilities of the method and its robust-
ness. The examples presented in this section demon-
strate the ability of the method to find the intersection
boundary and repair the intersecting meshes even in
the non-trivial cases, such as a scene containing many
separate intersection loops (Figure 1) or a scene with
many boundary cases (Figure 11).

5 CONCLUSION

We have proposed an approach for the repair of in-
tersecting meshes based on the neighbor tracing al-
gorithm (Lo and Wang, 2004; McLaurin et al., 2013)
with the emphasis on the accuracy. Unlike the previ-
ous work, we do not use arbitrary precision arithmetic
to achieve the accuracy of the solution, nor do we use
virtual perturbation to avoid the undesirable boundary
cases, as the change of input data can be unacceptable
in some applications. Our method does not introduce
any alteration of the input, works with floating point
arithmetic and achieves accuracy through a careful
classification of all sub-cases that could be caused by
numerical imprecision. The neighbor tracing can be
damaged by a numeric error near the boundary cases
but for a mesh without nearly degenerate triangles, the
intersection boundary can be correctly traced and re-

A Simple and Robust Approach to Computation of Meshes Intersection

181



paired thanks to the classification of the intersection.
The method is designed for data in which we can

expect a lot of boundary cases participating in the in-
tersection boundary. We have tested the method on
an example of two intersecting edge-aligned cuboids,
where every segment of the intersection boundary
represents a boundary case. We have also tested the
method on a scene composed of several Stanford bun-
nies and Stanford dragons (Levoy et al., 2005) to
demonstrate the correct behavior of the method in
larger scene containing many intersection boundaries.
Our experiments proved that the method can find the
correct solution even in these non-trivial situations.

The correct behavior of the method can be guaran-
teed only if the maximum error ε of the calculation is
smaller than the shortest edge of the mesh. For mod-
els that contain almost degenerate edges the algorithm
may not be working correctly because the calculation
error may corrupt the output of the method.

As the method works with single precision float-
ing point arithmetic, it could be implemented on the
GPU, where the higher precision operations can be
very expensive. The transformation of the algorithm
to be able to run it on the GPU is one of the possible
avenues for this work.

ACKNOWLEDGEMENTS

This work has been supported by the project SGS-
2016-013 - Advanced Graphical and Computing Sys-
tems.

REFERENCES

Andújar, C., Brunet, P., and Ayala, D. (2002). Topology-
reducing surface simplification using a discrete solid
representation. ACM Trans. Graph., 21(2):88–105.

Attene, M. (2010). A lightweight approach to repair-
ing digitized polygon meshes. The Visual Computer,
26(11):1393–1406.

Attene, M., Campen, M., and Kobbelt, L. (2013). Poly-
gon mesh repairing: An application perspective. ACM
Comput. Surv., 45(2):15:1–15:33.

Bischoff, S. and Kobbelt, L. (2005). Structure preserv-
ing cad model repair. Computer Graphics Forum,
24(3):527–536.

Bischoff, S., Pavic, D., and Kobbelt, L. (2005). Automatic
restoration of polygon models. ACM Trans. Graph.,
24(4):1332–1352.

Botsch, M., Pauly, M., Kobbelt, L., Alliez, P., Lévy, B.,
Bischoff, S., and Röossl, C. (2007). Geometric Mod-
eling Based on Polygonal Meshes. This document is
the support of a SIGGRAPH 2007 course.

Brochu, T. and Bridson, R. (2009). Robust topological op-
erations for dynamic explicit surfaces. SIAM Journal
on Scientific Computing, 31(4):2472–2493.

Christiansen, A. N., Nobel-Jørgensen, M., Aage, N., Sig-
mund, O., and Bærentzen, J. A. (2014). Topology op-
timization using an explicit interface representation.
Struct. Multidiscip. Optim., 49(3):387–399.

Clausen, P., Wicke, M., Shewchuk, J. R., and O’brien, J. F.
(2013). Simulating liquids and solid-liquid interac-
tions with lagrangian meshes. ACM Trans. Graph.,
32(2):17:1–17:15.

Edelsbrunner, H. and Mücke, E. P. (1990). Simulation
of simplicity: A technique to cope with degenerate
cases in geometric algorithms. ACM Trans. Graph.,
9(1):66–104.

Enright, D., Fedkiw, R., Ferziger, J., and Mitchell, I. (2002).
A hybrid particle level set method for improved in-
terface capturing. Journal of Computational Physics,
183(1):83–116.

Ju, T. (2004). Robust repair of polygonal models. ACM
Trans. Graph., 23(3):888–895.

Karasick, M., Lieber, D., and Nackman, L. R. (1991). Effi-
cient delaunay triangulation using rational arithmetic.
ACM Trans. Graph., 10(1):71–91.

Levoy, M., Gerth, J., Curless, B., and Pull, K. (2005).
The Stanford 3D Scanning Repository. http://
graphics.stanford.edu/data/3Dscanrep/.

Lo, S. and Wang, W. (2004). A fast robust algorithm for
the intersection of triangulated surfaces. Engineering
with Computers, 20(1):11–21.

McLaurin, D., Marcum, D., Remotigue, M., and Blades, E.
(2013). Repairing unstructured triangular mesh inter-
sections. International Journal for Numerical Meth-
ods in Engineering, 93(3):266–275.

Meisters, G. H. (1975). Polygons Have Ears. The American
Mathematical Monthly, 82(6):648–651.

Misztal, M. K. and Bærentzen, J. A. (2012). Topology-
adaptive interface tracking using the deformable sim-
plicial complex. ACM Trans. Graph., 31(3):24:1–
24:12.

Murali, T. M. and Funkhouser, T. A. (1997). Consis-
tent solid and boundary representations from arbitrary
polygonal data. In Proceedings of the 1997 Sympo-
sium on Interactive 3D Graphics, I3D ’97, pages 155–
ff., New York, NY, USA. ACM.

Nooruddin, F. S. and Turk, G. (2003). Simplification and re-
pair of polygonal models using volumetric techniques.
IEEE Transactions on Visualization and Computer
Graphics, 9:191–205.

Osher, S. and Fedkiw, R. (2002). Level Set Methods and Dy-
namic Implicit Surfaces (Applied Mathematical Sci-
ences). Springer, 2003 edition.

Wojtan, C., Thürey, N., Gross, M., and Turk, G. (2009).
Deforming meshes that split and merge. ACM Trans.
Graph., 28(3):76:1–76:10.

Zaharescu, A., Boyer, E., and Horaud, R. (2011). Topology-
adaptive mesh deformation for surface evolution, mor-
phing, and multiview reconstruction. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
33(4):823–837.

GRAPP 2018 - International Conference on Computer Graphics Theory and Applications

182


