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Abstract: This study examines a large routinely collected healthcare database containing patient-level self-reported 

outcomes following knee replacement surgery. A model based on unsupervised machine learning methods, 

including k-means and hierarchical clustering, is proposed to detect patterns of pain experienced by patients 

and to derive subgroups of patients with different outcomes based on their pain characteristics. Results showed 

the presence of between two and four different sub-groups of patients based on their pain characteristics. 

Challenges associated with unsupervised learning using real-world data are described and an approach for 

evaluating models in the presence of unlabelled data using internal and external cluster evaluation techniques 

is presented, that can be extended to other unsupervised learning applications within healthcare and beyond. 

To our knowledge, this is the first study proposing an unsupervised learning model for characterising pain-

based patient subgroups using the UK NHS PROMs database. 

1 INTRODUCTION 

With recent advances in the acquisition and 

digitisation of medical data, the use of routinely 

collected healthcare data for research is on the rise 

(Hay et al., 2013). Recent recommendations by the 

UK National Institute for Health and Care Excellence 

(NICE, 2016) and the Academy of Medical Sciences 

have acknowledged the potential for data science and 

big data methods to play an increasingly important 

role in healthcare provision and research (The 

Academy of Medical Sciences, 2017).  

Despite growing interest and increased 

computational resources, the use of data mining 

methods in healthcare research has been limited in 

scope and scale (Murdoch and Detsky, 2013). As the 

landscape of data science evolves, methodologies and 

applications for large-scale medical datasets are 

maturing (Chen et al., 2016).  

In this paper, we propose a model for mining a 

large routinely collected healthcare dataset using 

unsupervised machine learning methods. The 

proposed model detects groups of patients with 

specific patterns of pain, allowing us to characterise 

self-reported surgical outcomes collected from 

patients who have undergone knee replacement in the 

UK.  

We describe challenges associated with learning 

from unlabelled real-world medical data and describe 

a general approach that can be adapted for other 

applications and datasets. 

This is, to our knowledge, the first attempt at 

applying a data-mining approach to the problem of 

recognising pain-related patterns in patient-reported 

outcomes contained in a large, routinely collected 

national-level dataset. 

1.1 Clinical Context 

Osteoarthritis is a musculoskeletal condition that can 

cause joint pain and loss of function. It affects more 

than 8 million people in the UK alone (NJR Annual 

Report, 2016). In severe cases, joint replacement is 

performed to restore function and reduce pain. 

Approximately 75,000 patients in the UK undergo 

knee replacement surgery each year. However as 

many as 1 in 5 patients report poor outcomes, such as 

chronic or long-term pain after surgery (Wylde et al., 

2011).  

Patients with chronic pain can experience a 

decrease in their ability to perform everyday tasks and 

correspondingly in their quality of life (Jones et al., 

2000). There is therefore a need to be able to identify 

these groups of patients and develop a better 

understanding of their pain profiles. 
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1.2 PROMS Database 

The UK Patient Reported Outcome Measures 

(PROMs) Programme is an ongoing national-level 

programme to evaluate patient outcomes of surgery. 

Patient-reported outcomes for all NHS knee 

replacement procedures in England since 2009 are 

recorded in the PROMs database 

(http://content.digital.nhs.uk/proms). 

1.3 Oxford Knee Score 

The Oxford Knee Score (OKS) (Dawson et al., 1998) 

is a patient-reported outcome measure for knee 

replacement. Every patient undergoing a knee 

replacement is asked to complete a questionnaire that 

includes 12 questions about their pain and functional 

ability within the past 4 weeks, in relation to their 

knee (Murray et al., 2007). The response are scored 

using a 0-4 Likert-scale. OKS responses are collected 

from patients within 4 weeks before the knee 

replacement and again 6 months after the knee 

replacement. 

Five of the twelve OKS questions are known to be 

related to function (Harris et al., 2013).  The 

remaining seven questions – on “pain”, “night pain”, 

“walking”, “standing”, “limping”, “work”, and 

“confidence” – are related to pain and form the subset 

OKS-P. We here define a pain component summary 

measure (OKS-PS), summing the 0-4 scores given by 

a particular patient to the seven OKS-P questions 

related to pain. The OKS-PS can be scored from 0 

(worst) to 28 (best), with higher scores indicating 

better outcomes. We used the seven individual OKS-

P questions and the summary OKS-PS measure in this 

analysis. 

1.4 Contributions in This Paper 

Cluster analysis, an unsupervised learning method for 

discovering groupings and patterns in data, has been 

used in healthcare applications (Kongsted and 

Nielsen, 2017). However, studies have typically been 

based on relatively small cohorts (<10,000 patients) 

and used data from a set of general practices (Dunn et 

al., 2006, Lacey et al., 2015).  

• Our study investigates using cluster analysis on 

a large, routinely collected, nationally 

representative dataset, collected from all 

participating patients undergoing a knee 

replacement procedure at an NHS site in the 

UK. 

• We expose and address methodological 

challenges associated with learning from real-

world healthcare records using routinely 

collected data. 

• We propose a model evaluation framework that 

can be adapted to other unsupervised learning 

and data mining applications, within and beyond 

healthcare. 

2 METHODS 

2.1 Data 

OKS records associated with knee replacement were 

extracted for the years 2012-2016 from the PROMs 

database. A total of 126,064 complete-case records 

(with no missing data) of knee replacement patients 

were included in the analysis. We used the OKS 

reported by patients 6 months after surgery. 

2.2 Unsupervised Learning Model 

It is not known, a-priori, if subgroups of knee 

replacement patients exist and, if so, how many. This 

is the main challenge in a typical unsupervised 

learning scenario: without knowing about any “true” 

groups, the model has to learn if the population 

naturally contains subgroups and how many 

subgroups, based on the population’s characteristics 

or features. An underlying assumption is that the set 

of features that are included in the model are 

representative of the natural grouping within the 

population.  

We present an unsupervised learning model for 

identifying patient subgroups characterised by self-

reported outcomes. Patients or subjects were 

clustered based on the similarity of their OKS-P 

scores, with results from hierarchical and k-means 

clustering compared. The optimal number of clusters 

was determined using standard internal evaluation 

methods and our proposed external evaluation 

technique. Finally, the characteristics of the optimally 

identified clusters were examined. 

2.3 Cluster Analysis 

Cluster analysis methods seek to partition n subjects 

into k groups or clusters, where similar subjects are 

placed in the same cluster, and any two clusters are 

ideally distinct from one another. The similarity of 

any two subjects in the dataset is represented by the 

d-dimensional distance (e.g., the Euclidean distance) 

between them, where d is the number of features 

included in the model. 
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The choice of clustering method depends on the 

nature of the clustering task and the distribution and 

type of data (e.g., continuous or categorical). It is 

good practice to use more than one method and 

compare the resulting solutions. 

2.3.1 Hierarchical Clustering 

A multi-level hierarchical tree can be created by 

either repetitively merging subjects into clusters 

(agglomerative clustering) or repetitively splitting 

clusters (divisive clustering). As divisive clustering 

can be computationally more expensive, we used 

agglomerative clustering.  

Each subject is initially considered to be a cluster, 

and the closest clusters are merged. Clusters are 

continually merged based on their similarity, until 

either a pre-specified number of clusters, k, has been 

reached, or all of the subjects have been merged into 

one cluster. 

Similarity between two clusters can be assessed in 

different ways, e.g. by considering the minimum 

(often referred to as “single” link) or maximum 

(“complete” link) distance between points in two 

candidate clusters (“average” link). Alternatively it 

may be assessed using the average distance between 

points in two clusters. We will use the “Ward” 

measure which merges two clusters such that the total 

within cluster variance is minimised, and is 

appropriate for use with Euclidean distance.  

2.3.1.1  Handling Ties 

Let the 𝑖th subject be represented in feature space by 

𝑥𝑖 , where 𝑖 = 1: 𝑛. The d-dimensional distance 

between two subjects 𝑥𝑖1
 and 𝑥𝑖2

 is a function of their 

location in d-dimensional feature space, given by 

𝐷(𝑥𝑖1
, 𝑥𝑖2

) = ∑ (𝑥1𝑗 − 𝑥𝑖2𝑗)
2𝑑

𝑗=1 ,  

where 𝑗 = 1: 𝑑. 

The distance 𝐷(𝑥𝑖1
, 𝑥𝑖2

) between two subjects 

remains the same, even if the subjects’ order in the 

dataset changes. Hierarchical clustering should thus 

produce the same solution regardless of how the 

subjects are ordered in the dataset.  

However this non-dependency on ordering may 

change in case of ties. Pairs of subjects are referred to 

as being “tied” when they are equidistant in feature 

space, illustrated for two dimensions in Figure 1. 

Which of the tied pairs is merged first is an arbitrary 

decision. The most common approach is to select the 

pair that occurs first in the dataset, which makes the 

algorithm order-dependent.  

As each OKS-P question is a categorical variable 

(i.e., each question takes one  

 

Figure 1: Ties between equidistant pairs in a dataset. The 

solid arrows denote equal distances, whereas the dashed 

arrow denotes a non-equal distance. 

of five discrete values from: 0, 1, 2, 3, and 4), 

distance-based ties are expected in the 7-dimensional 

feature space that represents the 7 OKS-P questions. 

Although some alternatives to handling ties have 

been suggested (King, 1967), they have been 

designed for data that have both continuous and 

categorical variables. They are not suitable for 

handling ties when all of the variables are categorical, 

as in this case. In practice, the algorithm’s 

dependency on ties can be dealt with by repeating the 

algorithm after randomly reordering the dataset and 

averaging over the resulting solutions. 

2.3.2 K-Means Clustering 

In k-means clustering, we pre-specify the final 

number of clusters, k. Clusters are initialised by 

assigning k randomly selected points in the d-

dimensional space to be cluster centroids. For each 

subject, the subject-to-centroid distance is computed, 

and the subject is allocated to the closest centroid. 

The cluster centroids are re-calculated based on the 

allocations. Subjects are re-assigned to the closest 

centroids until the location of the cluster centroids 

stops changing. 

The clustering solution depends on cluster 

initialisation. A poor choice of initial cluster centroids 

can result in a local minima trap, which is a well-

known limitation of k-means clustering. As the 

cluster centroids are initialised at random, the 

algorithm should be repeated with random 

initialisation and the results combined. 

2.4 Cluster Evaluation 

As “true” groups are not known, evaluating a 

clustering solution can be notoriously challenging.  

2.4.1 Internal Evaluation 

Internal evaluation techniques determine how well 
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the data fit within the candidate 𝑘  clusters, by 

assessing how well a clustering solution minimises 

homogeneity within a cluster and maximises 

separation between clusters. Many criteria have been 

developed to achieve these aims. The simplest is 

based on the variance or scatter within a cluster, 

called the within-cluster sum of squares (WCSS): 

𝑊𝐶𝑆𝑆 = ∑ ∑ ∑ (𝑥𝑖𝑗 − 𝑥̅𝑘𝑗)
2𝑑

𝑗=1𝑖∈𝑆𝑘

𝐾
𝑘=1 ,  

where 𝑆𝑘 is the set of subjects in the kth cluster, 

𝑥̅𝑘 is the cluster mean, and k is the candidate number 

of clusters, k = 1:K. K is the maximum number 

candidate clusters considered. 

By design, k-means clustering seeks to minimise 

the 𝑊𝐶𝑆𝑆. Other commonly used objective criteria 

include the Silhouette, Gap, and Calinski-Harabasz 

(CH), and are well-described in literature. The 

number of clusters for which a given criterion is met 

is considered to be the optimal number of clusters, 𝑘̂.  

2.4.2 External Evaluation 

Internal evaluation criteria sometimes fail to yield a 

clear choice of 𝑘̂. We can then use an independent 

variable to externally validate the clustering solution. 

This independent variable must be associated in some 

way with the features included in the clustering 

model, but must not be a feature used in the model. 

As the “true” label is not known, this independent 

variable can at best be thought of as a validation 

variable, and not a label.  

Both internal and external evaluation methods are 

useful for developing an understanding of a clustering 

algorithm’s performance and the grouping behaviour 

present in the data. However, as there is no single, 

well-accepted criterion, choosing a 𝑘̂ that most 

suitably characterises any naturally existing clusters 

within the data is ultimately a subjective decision 

(Friedman et al., 2001). We chose to use both internal 

and external evaluation. 

2.4.3 Our Approach 

Hierarchical and k-means clustering solutions were 

internally validated using the gap, silhouette, and CH 

criteria, and externally evaluated using the OKS-PS 

score. As explained in section 1.3, the OKS-PS is a 

function of the features included in the model, where 

for subject 𝑖, 

OKS-PS(𝑖) = ∑ (𝑥𝑖𝑖𝑗 − 𝑥𝑖2𝑗)𝑑
𝑗=1 . 

The underlying notion here is that the optimal 

clustering solution will lead to the best separation 

between the OKS-PS distributions belonging to 

subjects in the k subgroups. In particular, the OKS-PS 

distribution for the poor-outcomes cluster should be 

distinct from the OKS-PS distributions for the other 

clusters. The poor-outcomes cluster is the group of 

patients with the worst or lowest OKS-P scores and 

hence the lowest OKS-PS scores. These patients are 

expected to have the most pain. 

We defined a heuristic criterion for evaluating 

results using the OKS-PS: the optimal clustering 

solution is the solution that results in the greatest 

distinction, or least overlap, between the poor-

outcomes cluster and the other clusters.  

2.4.3.1  Estimating Overlap 

We used two approaches to estimate the similarity 

between OKS-PS distributions. 

The degree of overlap between two distributions was 

estimated using the Kullback-Leibler (KL) 

divergence metric (a measure of the joint entropy or 

common information contained in two distributions, 

𝑝(𝑥) and 𝑞(𝑥). 𝐾𝐿(𝑝||𝑞) must be non-negative and is 

given by 𝐾𝐿(𝑝||𝑞) =  ∫ 𝑟(𝑥)ln (
𝑝(𝑥)

𝑞(𝑥)
), where 

𝐾𝐿(𝑝||𝑞) =  0, if 𝑝(𝑥) = 𝑞(𝑥). 

Ideally, for the solution corresponding to 𝑘̂, the 

overlap between the OKS-PS distributions of the 

poor-outcomes cluster and the other clusters would be 

minimised and the KL divergence would be 

maximised, i.e., 𝐾𝐿|𝑘̂ → ∞. 

We considered both the average 𝐾𝐿  between the 

OKS-PS distributions of the poor-outcomes cluster 

and all other clusters, and the smallest 𝐾𝐿 , i.e the 𝐾𝐿  

between the OKS-PS distributions of the poor-

outcomes cluster and the cluster most similar to it. 

The measure 𝜌 was defined to be the proportion 

of subjects from another cluster whose OKS-PS was 

within the range of the OKS-PS values for the poor-

outcomes cluster. Ideally, there would be no overlap 

between the two distributions, and this proportion 

would be 0, i.e., 𝜌|𝑘̂ → 0. 

2.4.3.2  Error Search Method 

The search for 𝑘̂ can be conducted using different 

rules. For a given evaluation criterion, we can 

compute the error 𝜀 and search for the global 

minimum error (method A): min
𝑘̂

(𝜀𝑘 + 1sd(𝜀𝑘)).  

Alternatively, we can search for the greatest 

change in error (method B): max
𝑘̂

(∆(𝜀𝑘)), where 

∆(𝜀𝑘) =  𝜀𝑘 − 𝜀𝑘−1, for 𝑘 =  1: 𝐾. 

As with the evaluation criteria, the choice of 

search method is arbitrary. We show results using 

both methods.  

An Unsupervised Learning Model for Pattern Recognition in Routinely Collected Healthcare Data

269



 

 5 

3 RESULTS 

Figure 2 shows the 𝑊𝐶𝑆𝑆 using k-means and 

hierarchical clustering. For both methods,  𝑊𝐶𝑆𝑆 was 

lowest at k = 1, rose sharply at k = 2, then decreased 

exponentially as the number of clusters increased. As 

there was no distinct drop or “elbow” point, 𝑊𝐶𝑆𝑆 

has limited use as an evaluation criterion here. 

There is no theoretical upper limit on candidate k. 

However, the clustering solution is seeking an 

optimal number of clusters within patients according 

to pain groups, and the OKS-PCS has a minimum 

value of 0 and a maximum value of 28. We therefore 

applied a limit of 𝐾 = 28. Internal and external 

evaluation of the hierarchical and k-means clustering 

algorithms was conducted to derive k clusters, where 

k = 2:28. Distances were measured using Euclidean 

distance measure.  

 

Figure 2: Within-cluster sum of squares (WCSS) plotted 

against k, the number of candidate clusters, for k-means 

(left) and hierarchical clustering (right). 

3.1 Internal Evaluation 

For a dataset of size n, internal evaluation involves a 

calculation of size n x n x k. Internal evaluation 

therefore cannot be directly applied to a dataset as 

large as ours. We based the internal evaluation on a 

random sample of 1,000 subjects from the dataset and 

repeated the random sampling 100 times. Figure 3 

shows the average results over 100 iterations. Higher 

Gap, Silhouette, and CH values indicate better within-

cluster homogeneity and inter-cluster separation. The 

k-means and hierarchical clustering produced similar 

solutions using the CH (Figure 3, left plot) and 

Silhouette (Figure 3, right plot) criteria, but dissimilar 

solutions using the Gap criterion (Figure 3, centre 

plot). 

 

Figure 3: Internal evaluation of hierarchical (black) and k-

means (blue) clustering solutions using the CH (Calinski-

Harabasz) (left), Gap (centre), and Silhouette (right) 

criteria. 

3.2 External Evaluation 

Figure 4 shows the OKS-PS distributions for each 

cluster. At k = 2, the OKS-PS distributions for the two 

clusters largely overlapped one another. As k 

increased, the degree of overlap between the 

distributions of the resultant clusters decreased. The 

cluster with a corresponding OKS-PS distribution at 

the lower end of the scale is the poor-outcomes 

cluster.  

Figure 5 shows that as k increased, 𝜌 decreased 

(left-most plot) and that the average KL between the 

poor-outcomes cluster and all other clusters increased 

(i.e., the overlap in their OKS-PS distributions 

decreased) (centre plot). Both these results are 

intuitive. However, the smallest KL measure (right 

plot) seems to suggest that the similarity between the 

poor-outcomes cluster and the most similar cluster 

increases with k, but beyond that it has limited use in 

deriving the optimal k. 

 

Figure 4: OKS-PS distributions for clusters derived using 

hierarchical clustering (top panel) and k-means clustering 

(bottom panel). The y-axis shows the number of patients in 

the k-th cluster, and the x-axis shows the corresponding 

OKS-PS score. Colours represent clusters. The distribution 

of the poor-outcomes cluster is highlighted in red. 
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Figure 5: External evaluation of hierarchical (black) and k-

means (blue) clustering solutions. ρ is the proportion of 

subjects from another cluster whose OKS-PS was within 

the range of the OKS-PS values for the poor-outcomes 

cluster (left). The average Kullback-Leibler (KL) 

divergence (centre) refers to the average of the KL 

divergence between the OKS-PS distribution of the poor-

outcomes cluster and the OKS-PS distributions of all other 

clusters. The smallest KL divergence (right) refers to the 

smallest KL divergence between the OKS-PS distribution 

for the poor-outcomes cluster and the OKS-PS distributions 

of all other clusters. 

3.3 Optimal Clustering Solution 

Figure 6 shows the optimal clustering solutions from 

Figures 3 and 4, using the two error search methods 

described in section 2.4.3.2. When the global 

minimum error (method A) was used, the different 

criteria suggested a wide range of 𝑘̂, from 𝑘̂ = 2 to 

𝑘̂ = 28, suggesting that this may be not be the 

appropriate search criteria here. When the greatest 

change in error (method B) was used, most criteria 

suggested 𝑘̂ = 3, with the lowest suggested 𝑘̂ = 2 and 

the highest 𝑘̂ = 4. As 10 out of 12 methods agreed on 

𝑘̂ = 3, it appears that the subjects in our dataset can be 

optimally separated into three groups.  

Figure 7 shows the distribution of features in the 

clusters according to 𝑘̂ = 2, 𝑘̂ = 3, and 𝑘̂ = 4, obtained 

using k-means clustering. At 𝑘̂ = 2, one cluster 

(containing 67.5% of the patients) represented 

patients with an average OKS-P score > 3 for all 

seven questions, and the other cluster represented 

(32.5%) patients who reported ≤ 2 for most 

questions. At  𝑘̂ = 3, the three clusters represented 

patients who reported average OKS-P score ≅ 4, 

2 <OKS-P score< 4, and OKS-P score≤ 2. At  𝑘̂ =
4, the OKS-P  range  for the poor-outcomes cluster 

(OKS-P score ≤ 2) did not change, suggesting that  

𝑘̂ = 4   is sufficient to obtain a “stable” description of 

this poor-outcomes cluster, and also that for 𝑘̂ ≥ 4 ,   
the poor-outcomes cluster summary  OKS-PS score 

≤ 14.  

The clusters obtained using hierarchical clustering 

appear similar to those obtained using k-means 

(Figure 8). Here it may be seen that the poor-

outcomes cluster has the same range (OKS-P score ≤

2) and number of patients (n = 21,772) at  𝑘̂ = 2, 𝑘̂ = 

3, and 𝑘̂ = 4, suggesting that the poor-outcomes 

cluster is indeed distinct. 

Finally it may be seen that the poor outcomes 

cluster obtained using k-means clustering contains 

15.6% and 14.4% of all patients at 𝑘̂ = 3   and  𝑘̂ =
4 , respectively, and 17.3% using hierarchical 

clustering (at 𝑘̂ = 2, 𝑘̂ = 3, and 𝑘̂ = 4) which agrees 

with literature on prevalence of poor-outcomes after 

knee replacement surgery as being up to 20%  

(Beswick et al., 2012).  

 

Figure 6: Proposed 𝑘̂ (x-axis) obtained using different 

evaluation methods (y-axis): 1-3 refer to internal evaluation 

of k-means clustering using the CH, gap, and silhouette 

criteria, respectively; 4-6 refer to internal evaluation of 

hierarchical clustering using the CH, gap, and silhouette 

criteria, respectively; 7 - 9 refer to external evaluation of k-

means using the ρ,  average KL, and smallest KL criteria, 

respectively; and 10 - 12 refer to external evaluation of 

hierarchical clustering using the ρ,  average KL, and 

smallest KL criteria, respectively;  The results of searching 

for the global minimum error (search method A) are shown 

in crosses and when searching for the greatest change in 

error (search method B) are shown in circles.  
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Figure 7: Distribution of the average OKS-P score within a 

cluster, corresponding to the features included in the model, 

obtained using k-means clustering. The clusters 

corresponding to k = 2, k = 3, and k = 4 are shown in the 

top, middle, and bottom panels, respectively. The number 

(n) and percentage (%) of patients in each cluster is shown.  

 

Figure 8: Distribution of the average OKS-P score within a 

cluster, corresponding to the features included in the model, 

obtained using hierarchical clustering. The clusters 

corresponding to k = 2, k = 3, and k = 4 are shown in the 

top, middle, and bottom panels, respectively. The number 

(n) and percentage (%) of patients in each cluster is shown.  

4 DISCUSSION 

Evaluating a cluster analysis solution is challenging, 

as the optimal number of clusters is not known a-

priori.  

Objective evaluation criteria may be appropriate 

for some algorithms and applications, but not for 

others. This limitation of internal evaluation was 

demonstrated in Figure 3 (centre plot) – while the 

hierarchical clustering solution suggested a decrease 

in the Gap criteria with an increase in k, the k-means 

algorithm produced an increase in the same with 

increasing k. Consequently, the global minimum 

method for error minimisation (method A) suggested 

some extremely high values as the optimal k  

(Figure 6) including values as high as  𝑘̂ = 21 , and 

𝑘̂ = 25, which seem clinically implausible, 

suggesting that the gap criteria is perhaps not an 

appropriate evaluation criteria for use in combination 

with k-means clustering for our application.  

We evaluated solutions using both internal and 

external evaluation approaches, and assessed results 

in view of the context, rejecting clinically implausible 

solutions. 

The choice of clustering algorithm, evaluation 

criteria, and error minimisation method are all 

important considerations, and the ideal combination 

is specific to the application. Hence, as demonstrated 

in this paper, several approaches should be compared 

in light of clinical knowledge and context. 

The external evaluation criteria devised in this 

study is rooted in the clinical background that there 

exists a poor outcomes cluster which is distinct from 

other patients based on the distribution of their OKS-

P. The external evaluation criteria we used were 

therefore based on the requirement for a clustering 

solution that optimally separates the poor outcomes 

cluster from other clusters. Given a different context, 

other external criteria could be adopted. 

The algorithms used in this study assign subjects 

to a specific cluster. In future work, we intend to 

propose an extension of these methods to perform a 

form of “soft” clustering and assign a probability of 

cluster membership.  

5 CONCLUSIONS 

We have demonstrated the application of unsuper-

vised learning and associated challenges to a large 

representative routinely collected healthcare dataset. 

Key considerations during cluster analysis such as 

choice of clustering algorithm and evaluation criteria 

have been described and the implications of 

subjective choices have been demonstrated. The 

model described here has been tailored to the UK 

NHS PROMs database. However, it is scalable and 

may be extended to other applications of learning in 

the absence of labels or for detecting patterns and 

groupings in large datasets, within healthcare and 

beyond. 
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