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Abstract: Previous literature shows that financial networks are sometimes described by fuzzy data. This paper extends
classical models of financial contagion to the framework of fuzzy financial networks. The degree of default
of a bank in the network consists in a (real valued) measure of the fuzzy default and it is computed as a fixed
point for the dynamics of a modified ”fictitious default algorithm”. Finally, the algorithm is implemented in
MATLAB and tested numerically on a real data set.

1 INTRODUCTION

It is well known that the banking system is connected
in a network by the mutual exposures that banks and
other financial institutions assume towards each other
and this kind of interbank exposures are recognized
as a source of financial crisis known as contagion
cascade. The literature on financial stability has in-
creased significatively in last years (see for instance
Glassermann and Young (2016) or Hurd (2016) for re-
cent surveys); however, the issue of the lack of precise
information about the overall interbank exposures in
the system has not been exhaustively investigated.
This is an important problem as banks are obliged to
show their exposures within the balance sheet only
few times per year. The present paper studies a finan-
cial network model under imprecise data in which in-
terconnections are represented by fuzzy numbers and
provide mathematical and computational tools in or-
der to exploit the information arising from this model.

The paper by Eisenberg and Noe (2001) shows
that obligations of all banks within the system are
determined simultaneously by fixed point arguments.
develops an algorithm1 that converges to a clearing
payment vector but, at the same time, gives informa-
tion about the systemic risk in the systems.

On the other hand, Furfine (2003) is the first
paper which studies the financial contagion arising
from interbank exposures according to more realis-
tic data that are based on daily observations along
a two months period. Furfine find interbank expo-

1Known as the fictitious default algorithm.

sures by looking at the transaction data in the Federal
Reserve’s large-value system (Fedwire). More pre-
cisely, he focuses only on federal funds transactions
that are deduced from the Fedwire during February
and March 19982. Furfine (2003) found 719 commer-
cial banks trading on the Fedwire and approximately
60000 federal fund transactions in the period taken
into account. In Furfine’s approach is that banks are
classified into four groups according to the volume of
funds traded. The exposure of a bank from one group
in another bank from another group is expressed in
terms of minimum, maximum and average value of
the transactions between the two groups observed in
the sample period. Furfine does not fully exploit the
information arising from these data. Our interpreta-
tion of Furfine’s data is instead that they can be read
as triangular fuzzy numbers where the minimum and
the maximum are obviously the inf and the sup of the
support and the average is the maximum point for the
membership function. This interpretation is the key
motivation of our paper: on the one hand it shows
that fuzzy data appear naturally in financial networks,
on the other hand, we have already a detailed data set
of fuzzy interbank exposures that can be used to run
simulations.

2Furfine identifies federal funds transactions as follows:
firstly, payments greater than $1 million and ended in five
zeros were identified as candidates. For each candidate pay-
ment, another payment between the same two banks in the
opposite direction is searched the following day (plus in-
terest). If such opposite payment is found, then the first
payment is considered as federal fund exposure.
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In this paper, we follow the Eisenberg and Noe
(2001) approach: we use fixed point arguments to
show existence of clearing vectors and construct a
suitable adjustment of the fictitious default algorithm
to our fuzzy model. In our approach, the balance sheet
of each bank is a triangular fuzzy number, called fuzzy
net worth; then, we construct index of fuzzy default
functions that assign to every fuzzy net worth a real
(or crisp) degree of fuzzy default. For each degree of
fuzzy default, clearing payment vectors are then con-
structed. We focus on two specific models: the op-
timistic δ model and the pessimistic σ model. They
depend on the way the fuzzy net worth is greater than
0; namely, the optimistic model measures the set of
all the alpha-cuts having not empty intersection with
R+, while, the pessimistic model measures the set of
all the alpha-cuts which are subsets of R+. The vector
of degrees of default is characterized as a fixed point
of the dynamics of a modified fictitious default algo-
rithm. Finally, the algorithm is implemented in MAT-
LAB using Furfine’s (2003) data; simulations show
that contagion spreads only within smaller banks as
it was also shown in Furfine 2003.

2 FUZZY NUMBERS

In this section we recall some key notions and re-
sults from the theory of fuzzy numbers that are re-
quired in our model (see, for example, Buckley and
Eslami (2002), Klir and Yuan (1995) and Zimmer-
mann (2001) for extensive surveys and references).

Given a universal set X , a fuzzy subset A of X is a
function which associates with each point in X a real
number in the interval [0,1]. That function is called
membership function.
A fuzzy number n is a particular fuzzy subset of R,
with membership function denoted by µn, such that

1. the core of n, i.e. the set co(n) = {x ∈ X |µn(x) =
1}, is non-empty;

2. the α-cuts of n, i.e. the sets {x ∈ X |µn(x) > α},
are all closed, bounded, intervals, for every α ∈
]0,1]3;

3. the support of n, i.e. the set supp(n) = {x ∈
X |µn(x)> 0}, is bounded4.

3We remark that for each α ∈]0,1] the α-cut of n is
always [n(α),n(α)]. Moreover if 0 < α1 < α2 6 1, then
n[α2]⊆ n[α1].

4We remind that the core of n is n[1], while the support
of n is not n[0], since the 0-cut is always the whole universal
set. Moreover, since the support of n has to be bounded,
there exists a positive real number l so that the support of n
is a subset of [−l, l].

A fuzzy number n is said to be positive if
infsupp(n) > 0, or, equivalently, if supp(wi) ⊆ R+;
n is said to be negative if supsupp(n) < 0, or, equiv-
alently, if supp(wi) ⊆ R−. We can trivially observe
that there are fuzzy numbers that are not positive nei-
ther negative. With abuse of notation we will indicate
that n is positive (negative) with n > 0 (n < 0).
A triangular fuzzy number n is a continuous fuzzy
number5 such that the core is a singleton, i.e.
co(n) = {n̂}. Denote with n = infsupp(n) and n =
supsupp(n), then the triangular fuzzy number n is de-
noted by n = (n, n̂,n), while its membership function
is defined as follows

µn(x) =





x−n
n̂−n

, if n 6 x 6 n̂;

x−n
n̂−n

, if n̂ < x 6 n;

0, otherwise.

We denote by N the set of triangular fuzzy numbers.
For the computation of the sum of triangular fuzzy
numbers and the product of a triangular fuzzy number
by a real number, we can use the following rule:

Given three triangular fuzzy numbers n= (n, n̂,n),
m = (m, m̂,m), l = (l, l̂, l) and a real number a,

i) n+m− l = (m+n− l, n̂+ m̂− l̂,n+m− l)

ii) an =





(an,an̂,an), if a > 0;

(an,an̂,an), if a < 0;

0, if a = 0.

(1)

3 NETWORKS OF BANKS

Banks, Balance Sheets and Fuzzy Default

The market consists in a set of banks I = {1,2, . . . ,n}.
Each bank i is characterized by its balance sheet
which, in turn, consists in assets and liabilities.

The bank’s assets are:

i) Outside assets ci: aggregate claims of bank i on
nonfinancial entities;

ii) In-network assets pki, for each k 6= i. Each pki is
the claim of bank i on bank k, that is, a payment
obligation of bank k to bank i and is the aggregate
exposure of bank i in the bank k.

The bank’s liabilities include:
5A continuous fuzzy number is a fuzzy number having a

continuous membership function.
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i) Obligations bi to nonfinancial entities;

ii) Obligations pik, for each k 6= i, to the bank k.

In the literature, the matrix (pik)
n
i,k=1 is the adja-

cency matrix of an directed network, called financial
network. Each node is a bank, and a directed edge
runs from node i to node k if bank i has a payment
obligation to node k. In this case we say that bank i is
connected to bank k. All entities outside the network
can be represented through a single node representing
the ”outside”.

The difference between the bank i’s assets and li-
abilities is the net worth wi. Following the previous
literature, we assume that all debt obligations have
equal priority and the assets are distributed to cred-
itors from each bank k in proportion ηk, where ηk = 1
if the bank k is able to honor all its debts with cer-
tainty, ηk ∈]0,1[ if it is possible that k is not able to
honor all its debts6.

Therefore the asset side of node i’s balance sheet
is given by

ci +∑
k 6=i

ηk pki

and the liability side by

bi +∑
k 6=i

pik.

The node’s net worth is

wi = ci +∑
k 6=i

ηk pki−bi−∑
k 6=i

pik. (2)

The previous formula of the net worth is standard
in the literature on contagion (see Glasserman and
Young (2016) or Hurd (2016)). Aim of this paper
is to extend the previous in case of triangular fuzzy
numbers. It is well known that in the crisp case, the
default of a bank corresponds to a negative net worth.
In the framework of the present paper, in which the
net worth is a fuzzy number, the classical ”binary”
concept of default is inadequate. Therefore a suitable
definition of fuzzy default must be given.

Definition 3.1. We say that:

i) A bank i defaults with certainty if its net worth
wi < 0, (i.e. supp(wi)⊆ R−).

ii) A bank i does not default if wi > 0, (i.e.
supp(wi)⊆ R+).

ii) A bank i incurs in a fuzzy default if supp(wi)∩
R− 6= /07.

6The term ’possible’ refers to the situation of fuzzy de-
fault as it will be explained below.

7We remark that a certainty default is a particular case
of a fuzzy default.

Degree of Default as a Fixed Point

In this subsection we construct a model which gives
for every bank and every fuzzy net worth a reason-
able vector of proportions η and a proper measure
of default. The model will be assigned by a pair of
functions (Λ,g) which specifies a supposed degree of
default Λ(ω) given a fuzzy default ω (that is, Λ is
defuzzified ”degree of default”), and the proportions
ηk = g(λk) for every bank k and every degree of de-
fault λk. The pair (Λ,g) will be asked to satisfy spe-
cific properties.

Recall that for every triangular fuzzy number n,
n = supsupp(n), n = infsupp(n) and n̂ is the element
of the core. Then,

Definition 3.2. Let %L be the binary relation on N
defined by

n %L m ⇐⇒





i) n > m,
ii) n > m,
iii) n̂ > m̂.

We say that n is L-related to m, if n %L m.

Moreover

Definition 3.3. We say that a function Λ : N → R is
L-decreasing if and only if

n %L m =⇒ Λ(n)> Λ(m). (3)

Then we introduce the model as follows

Definition 3.4. A defuzzified measure of default is a
pair of functions (Λ,g) where

i) Λ : N → [0,1] is a L-decreasing function such that

Λ(w) =
{

0 if w > 0 (supp(w)⊆ R+)
1 if w < 0 (supp(w)⊆ R−)

Λ is called index of fuzzy default and λi = Λ(wi)
represents the degree of default of bank i when its
net worth is wi.

ii) g : [0,1]→ [0,1] is a decreasing function such that
g(0)= 1. The term ηi = g(λi) gives the proportion
of debts that bank i is ”supposed” to distribute to
the other banks if i incurs in a degree of default
equal to λi.

Remark 3.5. Every decreasing function g is suitable
from a theoretical point of view even if, in examples
and simulations, we will consider the simple func-
tional form

g(λi) = 1−λi,

which represents a good approximation of the relation
between the likelihood of default and expected rate of
debt repayment.
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Note also that the assumption of a decreasing re-
lation between degree of default λi and the propor-
tion ηi is natural as the greater is the likelihood of
default the lower is the perception of solvability of i
and, therefore, the lower is the expected rate of debt
repayment.

Let (Λ,g) be a defuzzified measure of default. De-
note with

Hi((ηk)k 6=i) := ci +∑
k 6=i

ηk pki−bi−∑
k 6=i

pik,

and with Fi : [0,1]n−1→ [0,1] the function defined by

Fi((λk)k 6=i) = Λ
(
Hi
(
(g(λk))k 6=i

))
.

Let F : [0,1]n→ [0,1]n be the function defined by

F(λ1, ...,λn) =

(F1((λk)k 6=1), ...,Fn((λk)k 6=n)) = (Fi((λk)k 6=i))i=1,...,n.
(4)

Then, it follows that
Proposition 3.6. Let (Λ,g) be a defuzzified mea-
sure of default and λ = (λ1, ...,λn) ∈ [0,1]n where
λi = Λ(wi) is the degree of default associated to a net
worth wi, for every bank i = 1, . . . ,n. Then λ is a fixed
point for F, i.e. λ = F(λ).

We have
Theorem 3.7. Let (Λ,g) be a defuzzified measure of
default, then the function F, defined as in (4), admits
a fixed point.

4 OPTIMISTIC AND
PESSIMISTIC INDEXES OF
FUZZY DEFAULT

This section focuses on two particular examples of in-
dexes of fuzzy default which have an interesting inter-
pretation and allow for simple computations.
Definition 4.1. The function Λσ : N → [0,1] defined
by

Λσ(w) =





µw(0), if ŵ > 0;

1, if ŵ < 0.
∀w ∈N (5)

is said to be pessimistic index of default.
and

Definition 4.2. The function Λδ : N → [0,1] defined
by

Λδ(w) =





1−µw(0), if ŵ 6 0;

0, if ŵ > 0;
∀w ∈N (6)

is said to be optimistic index of default.

Interpretation

1: If there is no default with certainty (w > 0), then
Λδ(w) = Λσ(w) = 0.

2: If there is default with certainty (w < 0), then
Λδ(w) = Λσ(w) = 1.

3: Λδ(w)6 Λσ(w) ∀w ∈N .

4: Suppose that there is fuzzy default with ŵ > 0.
That is

w < 0 < ŵ < w

This fuzzy net worth represents the situation in
which the values that are the most likely to occur
are positive, but there is yet the possibility that
negative values occur, even if with a small mem-
bership.
The optimistic index gives a degree Λδ(w) = 0.
The pessimistic index gives a degree Λσ(w) =
µw(0) which is the measure of the range interval
[0,µw(0)] of all the values α whose α-cuts include
at least a negative value. Intuitively, the larger is
the interval then more likely is the possibility of
default.

5: Suppose that there is fuzzy default with ŵ < 0.
That is

w < ŵ < 0 < w

This fuzzy net worth represents the situation in
which the values that are the most likely to oc-
cur are negative but there is yet the possibility that
positive values occur, even if with a small mem-
bership.
The pessimistic index gives a degree Λδ(w) = 1.
The optimistic index gives a degree Λδ(w) = 1−
µw(0) which is the measure of the range interval
[µw(0),1] of all the values α whose α-cuts include
all negative values. Intuitively, even in this case,
the larger is the interval then more likely is the
possibility of default.

6: The case w < ŵ = 0 < w obviously gives Λδ(w) =
0 and Λσ(w) = 1, which is the largest possible dif-
ferences between the two degrees. This sounds
reasonable as ŵ = 0 is the case in which uncer-
tainty is maximal, since there are no reasons to
believe that negative values occur more likely than
positive ones and viceversa.

5 FUZZY CONTAGION

In this section, we propose a model of default cascade
in the our framework in which net worths are triangu-
lar fuzzy numbers. In particular, we extend the classi-
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cal ”fictitious default algorithm” introduced in Eisen-
berg and Noe (2001) (see also Glasserman and Young
(2016)) to our fuzzy framework. The dynamic pro-
cess is constructed in general for arbitrary defuzzified
measures of fuzzy contagion, but we will look also at
the particular cases of the Λδ and Λσ functions defined
in the previous section.

The Contagion Dynamics

The exogenous shock is parametrized as a vector

x = (x1, . . . ,xn)

where each xi is a triangular fuzzy number which rep-
resents the exogenous shock which affects the (ante-
shock) capital of bank i which, in turn, is character-
ized by the difference bi− ci

8. In particular, we study
the fuzzy default cascade step by step, computing in
each step the net worth and the associated degree of
default and show the convergence of the dynamics to
a fixed point.

In particular the cascade is constructed as follows:
- at step h = 1 the exogenous shock x occurs. The

net worth of each bank i is given by:

w1
i =Hi((η0

k)k 6=i)= ci+∑
k 6=i

η0
k pki−bi−∑

k 6=i
pik−xi,

where each η0
k = 1 meaning that every bank is

solvable before the exogenous shock.
For each i, we then compute

λ1
i = Λ(w1

i ), η1
i = g(λ1

i ).

- at each step h, given the the vectors




wh−1 = (wh−1
1 ,wh−1

2 , . . . ,wh−1
n )

λh−1 = (λh−1
1 ,λh−1

2 , . . . ,λh−1
n )

ηh−1 = (ηh−1
1 ,ηh−1

2 , . . . ,ηh−1
n ),

we compute, for each i,





wh
i = Hi((g(λh−1

k ))k 6=i)

= ci +∑
k 6=i

g(λh−1
k )pki−bi−∑

k 6=i
pik− xi

λh
i = Λ(wh

i )
ηh

i = g(λh
i ),

- therefore we get a sequence (λh)h∈N ⊂ [0,1]n as
follows: By construction,

λh
i = Λ

(
Hi((g(λh−1

k ))k 6=i)
)
=

8Indeed the exogenous shock could also have been im-
plicitly included in the capital bi−ci without any exogenous
parameter x. Therefore it could be possible to study the fi-
nancial contagion for every choice of capital bi− ci.

Fi

(
(λh−1

k )k 6=i

)
∀i = 1, . . . ,n ;∀h ∈ N;

being F = (F1, . . . ,Fn), it follows that

λh = F
(

λh−1
)
∀h ∈ N.

It immediately follows that the stationary points
for this sequence are fixed points for the function
F , called degree of fuzzy default. We will show
below the convergence of the sequences in the op-
timistic and in the pessimistic models.

Remark 5.1 (Simulations). The algorithm, proposed
in the present paper, has been implemented in MAT-
LAB and tested numerically on a real financial data
set in order to analyze the contagion dynamics for the
case of fuzzy input data. The analysis of the result of
our simulation confirms Furfine’s prediction that only
small banks may be affected by contagion.
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