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Abstract: In this paper, a novel approach of managing driving context information in smart transportation is presented. 
The driving context refers to the ensemble of parameters that make up the contexts of the environment, the 
vehicle and the driver. To manage this rich information, knowledge representation using ontology is used and 
through it, such information becomes a source of knowledge. When this context information (i.e. basically a 
template or model) is instantiated with actual instances of objects, we can describe any kind of driving 
situation. Furthermore, through ontological knowledge management, we can find the answers related to 
various queries of the given driving situation. A smart vehicle is equipped with machine learning 
functionalities that are capable of classifying any driving situation, and accord assistance to the driver or the 
vehicle or both to avoid accident, when necessary.  This work is a contribution to the ongoing research in safe 
driving, and a specific application of using data from the internet of things. 

1 INTRODUCTION 

The World Health Organization’s statistics on global 
traffic accident (WHO 2015) are gruesome: 
• Every year, about 1.24 million people die each 

year in road traffic accidents;  
• Road traffic injury is the leading cause of death 

on young people, aged 15–29 years;  
• Half of those dying on the world’s roads are 

“vulnerable road users”, namely the pedestrians, 
cyclists and motorcyclists;  

• In 2008, in the USA, old people accounted for 
15% of all traffic fatalities and 18% of all 
pedestrian fatalities; and  

• If no remedy is employed, road traffic accidents 
are predicted to result in the deaths of around 1.9 
million people annually by 2020.  

Here lies the importance of researches on 
intelligent transportation intended to reduce traffic 
accident, such as ours. An intelligent transportation 
(An, Lee et al. 2011, Naja 2013) denotes advanced 
application embodying intelligence to provide 
innovative services related to modes of transport and 
traffic management, enabling various users to be 
better informed and makes safer, more coordinated, 
and smarter use of transport networks.  

Recently, the Internet of things (IoT) (Ashton 
2009, Atzori, Iera et al. 2010), that is, the idea of 
connecting all things in the world to the Internet, have 
been integrated into vehicles in order that an 
intelligent transport would be able to use them as 
parameters to tools for safe driving, green driving and 
comfortable driving. Our vision of an innovative 
vehicle is shown in Figure 1. Inside this vehicle is an 
intelligent architecture with three main components: 
(1) Embedded System, (2) Intelligent System, and (3) 
Network and Real-time System.   

 

Figure 1: Smart services for an intelligent vehicle. 
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The cloud computing infrastructure (Oracle 2009,  
Yousif 2017) which has become the de-facto hosting 
platform for all smart applications also hosts the 
system.  

In a smart vehicle, such vehicle is capable of the 
following: V2V (vehicle-to-vehicle communication), 
V2P (vehicle-to-person communication), V2I 
(vehicle-to-infrastructure communication) and V2X 
(where X represents practically anything such as 
home, in which case V2X becomes V2H, i.e. the IoT 
at home being able to communicate to the driver some 
information, such as when it is running low on some 
items on the refrigerator, for example). 

2 RELATED WORKS 

The Internet of Things (IoT) has been considered the 
technology that will integrate classical networks and 
networked objects (Miorandi, Sicari et al. 2012). 
Through IoT, it is expected that things can be 
identified automatically, can communicate with each 
other, and out of this, we can make better decisions 
for ourselves. One important question in this regard is 
how do we convert the data generated or captured by 
IoT into knowledge that we may be able to use for our 
convenience? An important work pertinent to this 
question is that of (Tsai, Lai et al. 2014). They 
proposed knowledge discovery in databases (KDD) 
and data mining technologies to find the information 
hidden in the data of IoT. Recent researches do focus 
on developing effective data mining technologies for 
the IoT. The results described in (Bin, Yuan et al. 
2010) show that data mining algorithms can be used 
to make IoT more intelligent, thus providing smarter 
services. Our Embedded System’s task is related to 
this area. In the area of intelligent transportation, the 
connected and autonomous vehicles are a 
technological revolution, combining radical changes 
in the design of road vehicles and in the 
understanding of their interactions with the 
networked infrastructure. The core science and 
technology required to support cyber-physical 
vehicles (Brioschi, Hina et al. 2016) are essential for 
future economic competitiveness. This is where this 
work lies. We intend to contribute to its advancement.  

3 THE DRIVING MODEL  

Ontology (Dice 2017) is the structure of concepts and 
relations representing the meaning of a given domain. 
In other words, ontology is a description of things that 

exist and how they relate to each other (Obrst 2003). 
Ontologies are partial and formal specifications of a 
conceptualization. Ontologies are formal because 
they are expressed as formalism with formal 
semantics (Zhao, Ichse et al. 2015). Ontology is used 
as knowledge representation in this work. For 
visualization purposes, we use a Protégé plug-in, 
VOWL (visual notation for OWL ontologies) 
(VOWL) in order to describe the ontology 
components. OWL ontology consists of individuals, 
properties, and classes. 

3.1 The Driving Context 

The driving context is the representation of a 
traffic/driving situation. Ontology is used for 
modelling, putting in place a common conceptual 
language between the driving situation and the 
assistance system. Briefly, the driving context is the 
result of the fusion of three main contexts: the vehicle 
context, the driver context and the environment 
context. It is depicted in Figure 2. 

 

Figure 2: Ontological representation of the driving context. 

As shown, the “Environment” is the class used to 
describe the external environment where human-
vehicle interactions take place. The “Vehicle” is the 
class that represents the vehicle in consideration, 
interacting with its driver. The “Driver” is the class 
that describes the driver of a simulated vehicle. 
“Environment” and “Vehicle” are related through 
hasVehicle object property while the “Vehicle” and 
the “Driver” are related to each other through 
hasDriver object property. This ontology is capable 
of modeling all possible types of driving situations. 
Through ontology, we can find answers to a query 
related to a driving situation. 

3.2 Modeling the Context of the Driver 

The ontological representation of the context of the 
driver is shown in Figure 3. The Driver class is related  

 



 

 

Figure 3: The ontological representation of the driver’s context. 

to many other classes that describe the driver’s 
context in the ontology, such as: 
• DriverProfile: it is related to the “Driver” 

through “hasDriverProfile” functional property. 
• MentalState: describes the mental state that can 

negatively influence the behavior of the driver 
while driving a vehicle. It has three subclasses: 
‘Fatigue’, ‘Stress’, and ‘Faint’. Each one has one 
of these values: ‘High’, ‘Average’ or ‘Low’. 

• FocusOnDriving: has data properties 
‘hasEyesOnTheRoad’, ‘isLookingToTheRight’, 
‘isLookingToTheLeft’, hasPhoneConversation, 
‘hasHandsOnSteeringWheel’, etc.  

• DriverViolation: The violations can be of type 
‘GiveRightToPass’, ‘RedLightViolation’ and 
‘OverSpeedViolation.  

3.3 Modeling the Context of the 
Vehicle 

The class “Vehicle” is a subclass of MovingObject 
template. As shown in Figure 4, the Vehicle class has 
three subclasses: ‘Car’, ‘Truck/Bus’ or ‘MotorBike’. 
A vehicle has some data properties, such as 
‘hasPlateNumber’ and ‘hasInsurance’. The Vehicle 
class is linked to other classes, such as:  
• Cockpit: contains the status of all elements that 

are found in a vehicle’s cockpit. For example, 
‘hasWindowsOpen’ is a data property that has a 
Boolean value;  

• Components: contains all components that 
guarantee a good driving experience. Among 
these subclasses are “DirectionIndicator” (values 
are ‘NoIndicator’ ‘RightIndicator’, 
‘LeftIndicator’, and ‘DoubleIndicators’), 

“TyresPression”, “LubricantTemperature”, 
“EngineLubricantLevel” (‘Low’, ‘Half’ or ‘Full’), 
and “FuelQuantity”. It also has some Boolean 
properties indicating if some components are 
active or not. Example is ‘hasFogLightsOn’;  

• TechnicalData: it is made up of three subclasses, 
namely “FuelType” (‘Petrol’, ‘Diesel’, 
‘Electricity’ and ‘GPL’), “EmissionClass” 
(‘euro0’, ‘euro1’, …, ‘euro6’) and 
“TractionType” (‘Front-WheelDrive’, ‘Rear-
WheelDrive’, ‘All-WheelDrive’);  

• VehicleObject: this refers to the class of other 
vehicles on the road and is related to our vehicle 
via property “hasPossibleCollision”. 

3.4 Modeling the Context of the 
Environment 

The Environment (see Figure 5) describes all the 
entities that are present in the external setting where 
the human-vehicle interaction takes place. Here, the 
environment is an abstract class and general concept 
made up of cities where vehicles, and moving and 
non-moving objects are present. The classes related 
to the Environment are given as follows:  
• City: In this work, an Environment is an area or 

region where we can find many cities. A city has 
two data properties, namely ‘hasCityName’ and 
‘hasLimitedTrafficZone’ which is a Boolean 
value indicating if the city can be accessed only 
during some intervals of the day;  

• DistrictArea: contains different districts of a city. 
The position of the “Driver” is stored in the 
“PositionArea”, a subclass of “Physics” and 
equivalent to “DistrictArea”;  



 

• Road: a road has many data properties, such as 
‘hasMinSpeedLimit’, ‘hasMaxSpeedLimit’, 
‘hasNumberOfLanes’, ‘hasContinuousLine’ and 
‘hasLength’. A road is made up of three 
subclasses: ‘Urban’, ‘ExtraUrban’, and 
‘Highway’. Every subclass of a road has its 
minimum and maximum speed limit;  

• RoadProperty: it stores all the properties that 
belong to a particular road. This includes 
“Visibility” (‘Low’, ‘Average’ or ‘High’), 
“Weather” (‘Fog’, ‘Sun’, ‘Rain’ and ‘Snow’), 

“AccidentHistory” (‘Unusual’ or ‘Frequent’), 
“TrafficCongestionHistory” (‘Low’, ‘Average’ or 
‘Intense’) and “CurrentTrafficCongestion” 
(‘Low’, ‘Average’ or ‘Intense’);  

• Lane: represents different lanes of a road ;  
• Position: contains the exact position of the 

referenced object. It has two data value 
properties: ‘hasLatitude’ and ‘hasLongitude;  

• Time: it has data value properties, such as 
‘hasDate’ and ‘hasTime’ 

 

Figure 4: The representation of the context of the vehicle. 

 

Figure 5: The ontological representation of the context of the environment. 



3.5 Multimodal Fusion and Fission 

To determine the driving event, the context 
parameters need to be fusioned. Multimodal fusion is 
the process of combining two or more signals or 
parameters obtained from two or more sensors (or 
other sources such as IoT) using two or more 
modalities. Once fusioned, the driving event is 
interpreted at the higher-level of abstraction.  

Machine learning training sets (i.e. supervised 
learning) are created so that the driving event in 
consideration can be easily predicted. The fusioned 
information is searched/matched on the knowledge 
database to determine if a pattern to the new situation 
is found. If so, then such situation has a meaning to 
the system and a corresponding action needs to be 
implemented.  
    Consider, for example, the fusion of the following 
data. It represents a typical driving situation. The 
notation of the rules in the fusion of context 
parameters below is that of SWRL (Semantic Web 
Rule Language) (Subercaze Julien , W3C). Note that 
the symbol ‘?’ below represents an instance or 
individuals of classes in our ontology: 

• Let vehicle X be an individual of class “Vehicle” 
== Vehicle (?X) 

• Let Y be the individual of class ‘Road’ == 
Road(?Y) 

• Let vehicle X be on Road Y == isOnTheRoad(?X, 
?Y) 

• Let Z an individual of class ‘Lane’ on Road Y == 
hasLane(?Y, ?Z) 

• Let vehicle X be currently located on lane Y == 
isOnLane(?X, ?Z) 

• Let W be an individual of class Object be located 
on lane Z == hasObject(?Z, ?W) 

• Let the distance of object W (after calculation) 
from vehicle X be near == 
hasDistanceFromVehicle(?, nearDistance) 

If we fusion the parameters and using our SWRL 
rules, we will end up concluding that object W is an 
obstacle relative to vehicle X. That is, logically: ܸ݁ℎ݈݅ܿ݁(?ܺ)		ܴ݀ܽ	(? ܻ)	ܱ݅ܶ݊ݏℎܴ݁݀ܽ(?ܺ, ? ܻ)	 ℎܽ݁݊ܽܮݏ(? ܻ, ? ܼ)	ܱ݅ܶ݊ݏℎ݁݁݊ܽܮ(? ܺ, ? ܼ)ℎܽݐ݆ܾܱܿ݁ݏ(? ܼ, ?ܹ)			ℎܸܽ݁݉ݎܨ݁ܿ݊ܽݐݏ݅ܦݏℎ݈݅ܿ݁(?ܹ, 	(ܹ?)	݈݁ܿܽݐݏܾܱ	(݁ܿ݊ܽݐݏ݅ܦݎܽ݁݊

Multimodal fission is the necessary action to the 
given driving situation. Given that we have an 
obstacle, the fission yields an action corresponding to 
avoiding the obstacle. The action itself is composed 
of sub-actions. For example, there are various steps to 
avoid an obstacle. 

3.6 Assistance for the Driver and the 
Vehicle 

The actions for different driving situations are 
implemented as ontology.  The ontological class 
“Action” is the overall class that will be instantiated 
depending on the driving situation at hand. The class 
“Action” has two sub-classes, DriverAction and 
VehicleAction directed towards the driver and 
vehicle, respectively. In the VehicleAction, we see 
subclasses: Call_Emergency, Turn_Light_On and 
Adjust_Airconditioner. For the class DriverAction, 
the subclasses are as follows: 

• ChangeLane: is an action to change lane to avoid 
an obstacle located on the same lane and that there 
is a free lane where the vehicle can go. 

• RemainInTheSameLane: invoked when there is an 
obstacle but there is no free lane available where 
the vehicle can go. 

• Brake: invoked when braking is necessary. This 
class has the following sub-classes, describing the 
situation when to brake: (1) BrakeForPedestrian – 
here, the pedestrian is an obstacle and the vehicle 
needs to brake to allow the pedestrian to cross the 
street; (2) BrakeForObstacle – this is invoked 
when the obstacle is on the same lane that is not 
moving or when the obstacle is a another vehicle 
whose speed is lower than the speed of the vehicle; 
(3) BrakeForRedLight – this is invoked when the 
system detects that there is a ‘TrafficLight’ object 
in the scenario and its value is ‘Red’, or ‘Yellow’ 
and the distance of the vehicle and TrafficLight 
object is near (the colour will shift from yellow to 
red in a short while) 

• SlowDown: this is invoked when the driver is 
overspeeding  

• HaveABreak: invoked when the driver is tired, 
stressed or going to have malaise. 

• BadWeather: informs the driver that weather has 
changed due to the presence of rain, snow or fog 
on the road.  

• AdvanceCarefully: informs the driver to continue 
driving slowly. 

•  ReleaseAccelerator: this is related to slowing 
down as it is related to demanding driver to release 
foot from accelerator to reduce gas consumption 
(i.e. applicable when driving from a road segment 
with higher speed limit to a road segment of 
0lower speed limit). This is part of our work 
related to the green driving. 

 
 
 



 

3.7 Machine Learning 

Machine Learning algorithms (Mitchell 1997) use 
data to discover pattern and can be used to predict an 
output from a formatted input after training the 
algorithm on a sufficiently big set of training data 
(Tchankue, Weeson et al. 2013). To begin with, a 
driving trip from point A to point B is a repetition of 
basic driving events:  go straight, turn left, turn right, 
stop, slow down, go roundabout, and avoid obstacle 
(where obstacle may be a moving object – a vehicle, 
a pedestrian, a bicycle – or a non-moving object). In 
this work, we make use of supervised learning to 
classify common driving situations (e.g. stop, turn to 
the left, turn to the right, over speeding, etc.) and 
unsupervised learning to classify driving situations 
that are the combinations of two or more common 
driving situations (e.g. driver to turn to the left and 
pedestrian is crossing the street). When a driving 
event is detected, an assistance action may be 
invoked. In such a case, we make use of optimization 
and reinforcement learning. The intent is to do 
assistance for the driving situation and integrate these 
aspects into the action: safe, green and comfortable 
driving. 

4 RESULTS AND DISCUSSION 

4.1 Methodology 

We created a driving simulator using Unity 3D 
software (Engine 2016) to mimic driving scenarios in 
the laboratory. As one drives, the data from the 
driving event are sent to the ontology template as a 
JSON data. These data instantiate various classes and 
objects in the ontology. The result is an actual driving 
event.  

The ontology becomes an actual description of the 
driving event. The event needs to be classified so it is 
fed as input to the machine learning classifier. The 
process yields an identification of a driving event. For 
now, the driving events are basic ones: stop, turn left, 
turn right, and normal driving. These are 
representative samples of all other driving events. 
Why only a limited driving events? The logic is 
simple: if this works fine with the representative 
samples, then it will work fine in all other driving 
events. Using driving rules in SWRL, we can identify 
if there is an infraction committed or if there is a need 
for driving assistance intervention. If such is the case, 
a driving assistance message will be sent to the driver. 
If there is a need to intervene for the vehicle (e.g. turn 
on the fog light), a signal will be sent to the vehicle. 

This signal will be used to implement an action for 
the vehicle. The driver then continues driving as he 
wishes. 

4.2 Simulation, Data Analysis and 
Processing 

In the simulation experiments, the aim is to detect the 
driving event. To do so, parameters that describe the 
context of the vehicle are needed. We collected all 
data that are near our vehicle (parameters for the 
context of the environment). We also pre-defined the 
context of our driver (i.e. we are the driver). These 
objects need to be identified for the purpose of 
classification using machine-learning algorithms. We 
record road objects (e.g. pedestrian, traffic signs, 
other vehicles) detected by the car. The class 
“RoadObject” is a template for this purpose. A 
RoadObject has the following properties: (i) type (e.g. 
stop, pedestrian, vehicle, etc.), (ii) speed, (iii) 
acceleration (iv) distance (i.e. distance of this object 
from us), (v) position, (vi) lane and (vi) weight.  The 
RoadObjects are stored in the JSON format.  

To collect data, multiple test drives were 
conducted for each common driving event. As it is to 
be used as training set for machine learning 
algorithms, we collected 1699 driving state; the 
repartition of each driving event is shown in Table 1 
This is a representative sample of the basic and 
preliminary driving events conducted in the lab.   

Table 1: Representative sample driving events. 

Driving event Number of event Percentage of 
event 

Normal 1138 66.98% 
Stop 257 15.12% 

Turn left 162 9.53% 
Turn right 142 8.35% 

Machine learning algorithms require formatted 
data (generally numeric) and a fixed number of 
columns. For instance, we used one hot encoding for 
the categorical data, like the position on lane. The last 
step in data processing is tagging the data. We used 
the simple tool in Python, the IDE Jupyter Notebook.   

4.3 Decision Tree and K-Nearest 
Neighbor 

Decision tree learning uses a decision tree as a 
predictive model. A decision tree is a flowchart-like 
structure in which each internal node represent a 
“test” on an attribute, each branch representing the 
outcome of the test while each leaf representing a 



 

class label for classification tree. A tree can be created 
by splitting the training set into subset based on an 
attribute value test and repeating the process until 
each leaf of the tree contains a single class label or we 
reach the desired maximum depth. There are multiple 
criterion that can be used to divide a node into two 
branch, such as the information gain which consist of 
finding the split that would give the biggest 
information gain, based on the entropy from the 
information theory (Witten, Frank et al. 2011).   

The k-nearest neighbor algorithm, on the other 
hand, is a simple algorithm which consists of 
selecting for an instance of data the k-nearest other 
instances and assigning to the first instance the most 
frequent label in the k instance selected. The value of 
k is user defined. The distance can be computed in 
different ways, such as the Euclidian distance for 
continuous variables like ours. The importance of 
each neighbor can be weighted; often the weight used 
is inversely proportional to the distance to give more 
importance to closer neighbor. 

4.4 K-Fold Cross Validation and 
Machine Learning Classification 
Results 

Validation measures how a predictive model will 
perform after generalization on an independent data 
set. It is useful to know the viability of a model and 
to avoid overfitting problem, i.e. fitting the model too 
closely to the training set, after that, it gets very good 
results on it but bugs will perform poorly on other 
data set. The cross validation is a technique used to 
validate a predictive model. It consist of splitting the 
original data set into a validation set and a training 
set, training our model on the training set and 
validating it on the validation set. We repeat the 
operation multiple times with different splits and take 
the average of the validation results to reduce 
variability. The k-fold cross validation consists of 
splitting the original data into k equal size sub-
samples. We then retain a sub-sample as the 
validation set and use the k-1 other sub-samples to 
train the model. The process is repeated k times, with 
each of the k sub-sample used one time as the 
validation data. Cross validation is commonly used 
when the number of data is small and the usual 
splitting into a training set and a validation set would 
not be convenient. To validate a classification 
problem like ours, we use our model to predict a 
number of samples, and we then compare the number 
of sample correctly tagged to the number of sample 
incorrectly tagged, giving us the percentage of 
correctly tagged data. Furthermore, confusion matrix 

can be used to know where a classification algorithm 
behaves poorly. 

After processing and tagging our data, 
experiments with machine learning algorithms were 
made using scikit-learn library. We experimented 
with decision tree and k-nearest-neighbor algorithms. 
Results are validated using cross-validation with 10 
folds, meaning that we have divided the dataset into 
10 equal parts, and each time we trained it on 9 parts 
and tested it on the tenth. The results are an average 
precision of 95% for decision tree and a precision of 
93% for the k-nearest neighbour algorithm. The 
results indicate good results, although the number of 
sample is quite low. We intend to test further with 
other parameters for each algorithm to get better 
results; we will also collect more data in different 
situations.  

4.5 Human-vehicle Interaction 
Interface 

This work is in evolution and available data is based 
on laboratory experiments results. The HCI interface 
shows messages intended for the driver. This 
confirms that our machine learning classification 
system is correct and that the SWRL driving rules are 
correctly applicable to the detected driving events. 
Our driving assistance system classifies messages as 
one of the following: (1) Notification – a message to 
inform the driver, and (2) Alert – this is a type of 
message that attempts to get the driver’s attention. A 
notification or alert is sent according to the category 
of driving situation:  

• Behaviour – this refers to the driver’s conduct of 
driving. Example: over speeding;  

• Danger – a potential risk to the driver or people 
on the road exists; the driver’s behavior has 
nothing to do with this. Example: Poor visibility 
due to fog; and  

• Ability – this concerns about the person’s ability 
to drive. Example, the driver is falling asleep. 

Given that two or more messages cannot be sent to 
the driver at the same time, a priority scheme is 
implemented, as follows:  
• Alert has a higher priority than Notification;  
• Ability has the highest priority, followed by 

Danger and lastly by Behaviour.  

5 CONCLUSION 

In this paper, we have demonstrated our work on 
intelligent transportation. This paper shows the 



 

current status of our work on the ontological and 
machine learning approach for managing driving 
context. In the paper, we present the components of a 
driving context using ontology, starting from the 
context of the driver all the way to the context of the 
environment. The driving context template is generic 
such that all kinds of driving situations on the road 
can be represented. We designed our own driving 
scenario simulator and modeling various events but 
sampling on the basic ones: turn left, turn right, stop, 
etc. By simulation, we are able to instantiate objects 
using real values. We use machine learning to classify 
driving events. As the results show, event 
classification using decision tree yields 95% 
detection rate accuracy. More machine learning tests 
and collection of sample training data are on the 
agenda.  Deep reinforcement learning (Phan, Dou et 
al. 2015, Phan, Dou et al. 2017)  will be invoked once 
we are to perform the driving assistance actions for 
some driving situations. Future works include 
designing and implementing a cognitive user 
interface component. 
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