Keywords: From Natural Language to Natural Logic, Formal Ontologies, Deductive Querying of Natural-logic Knowledge Bases, Path finding in Knowledge Bases, Logical Knowledge bases in Bio-informatics and Medicine.

Abstract: This paper describes the principles of a system applying natural logic as a knowledge base language. Natural logics are regiments of natural language employing high level inference rules. We advocate the use of natural logic for knowledge bases dealing with querying of classes in ontologies and class-relationships such as are common in life-science descriptions. The paper adopts a version of natural logic with recursive restrictive clauses such as relative clauses and adnominal prepositional phrases. It includes passive as well as active voice sentences. We outline a prototype for partial translation of natural language into natural logic, featuring further querying and conceptual path finding in natural logic knowledge bases.

1 INTRODUCTION

We describe principles for a prototype system for natural logic knowledge bases with focus on the query answering functionalities and the internal systems representations for achieving these functionalities.

Natural logics are forms of logic which approach natural language forms (van Benthem, 1986). Thus, sentences stated in natural logic can be read and understood by application domain experts without background in logic and computer science. This is in contrast to, say, description logic and logical clauses as in DATALOG. The applied natural logic dialect, called NATURA, possesses desirable decidability and tractability properties, similar to description logics. However, the deductive query functionalities differ in that concept terms are themselves considered first class objects subject to query answering.

The achieved deductive query answering functionalities are realized by devising a joint graph form for the given natural logic sentences. The system re-shapes natural logic sentences into atomic sentences forming the graph in a process termed atomization. This graph form affords an ontological view by way of the inclusion relation between concepts (concept nodes) (Arp et al., 2015). Since the concepts in the natural logic may be complex as a reflection of recursively composed noun phrases, the ontology is generative (Andreasen and Nilsson, 2004; Andreasen and Nilsson, 2014; Andreasen et al., 2015). This means that ever more specialized concepts can be accommodated in addition to and by means of given primitive concept terms.

The graph view, in addition to deductive querying assisted by high level inference rules, supports path finding as a mechanism to associate two stated query terms. This is particularly relevant in the considered bio-domain where causal pathways are in focus, cf. (Andreasen et al., 2017b). In general, this association is computed as a shortest path composed of a sequence of relations connecting the terms.

We have previously described the applied natural logic in (Nilsson, 2015; Andreasen et al., 2015) and more recently with various linguistic extensions (Andreasen et al., 2016; Andreasen et al., 2017a). In our ongoing stepwise syntactic and semantic extensions of NATURALOG, here we further extend the natural logic with passive voice forms and adverbial restrictions, which are central in the considered life science domains and corpora. This logical approach is in contrast to established and rather successful approaches to text mining based on direct references to phrases in concrete text sources and advanced information extraction techniques, cf. for example (Li et al., 2014; Kaewphan et al., 2012; Miwa et al., 2013).

An approach to acquisition of ontology from processing natural language is introduced in (de Azevedo et al., 2014). They present a principle of automated
ontology building based on a natural language translator for expressive ontologies. Our approach differs from (de Azevedo et al., 2014) in our use of a natural logic with accompanying graph representation instead of description logic. A version of natural logic is also exploited in (MacCartney and Manning, 2009).

Obviously, given the present state of computational semantics, a natural logic cannot accommodate the intricate syntactic and semantic forms found in natural language, not even in the somewhat stereotypic scientific language corpora. Our strategy is to make the system extract as much as possible in a computational text analysis governed by the applied target natural logic. This part is addressed in section 5.

2 KNOWLEDGE BASE NATURAL LOGIC

A Natural logic knowledge base consists simply of a set of natural logic affirmative sentences. The natural logic sentences consist of two concept terms connected by a relation

\[
\text{Cterm}^\prime \text{R} \text{Cterm}^\prime
\]

Linguistically, this typically corresponds to a subject term followed by a transitive verb and a linguistic object term as in the sample natural logic proposition

\text{some betacell produce insulin}

where morphologically correct forms in the formal logical language are neglected in favour of simplifying streamlining. This is an example of an atomic natural logic sentence. In such atomic sentences the concept terms are plain common nouns. More generally, the concept terms are noun phrases with a head noun optionally attributed with restrictions such as prepositional phrases and relative clauses, cf. the example:

\text{some cell that produce insulin reside-in pancreas}

where the subject term comprises the restrictive relative clause that produce insulin. We also consider adverbal prepositional phrases so that the relation (transitive verb) generalizes to include also relations introduced by prepositions.

Semantically, the natural logic sentences express relationships between classes of individuals, including subclasses formed by the various linguistic restrictive expressions.

2.1 Implicit Quantifiers

The considered natural logic sentences are logical propositions in that there are implicit quantifiers (linguistic determiners) as in

\text{every Cterm}^\prime \text{R some Cterm}''

strictly giving every betacell produce some insulin for betacell produce insulin.

As such the sentences are predicate logical sentences in disguise as discussed in (Nilsson, 2015; Andreasen et al., 2016). However, the underlying predicate logical construals are not appealed to in the prototype design, which uses inference rules at the natural logic level as briefly described in section 5.2 and covered in more detail in (Andreasen et al., 2015).

The natural logic sentence forms

\text{every Cterm}^\prime \text{R every Cterm}'' \text{and some Cterm}^\prime \text{R some Cterm}''

are also supported. The latter form is needed when considering passive forms of active sentences.

2.2 Copula Sentences

A common and important special case is the copula sentence form

\text{Cterm}^\prime \text{isa Cterm}''

as in the atomic sentence insulin isa hormone, which expresses that the denotation of the subject term Cterm' is included in the denotation of the object term Cterm''.

Notice that every Cterm' R some Cterm'' corresponds to the description logic terminological sentence form \text{Cterm}' \sqsubseteq \exists \text{R.Cterm}'' and that the copula form corresponds to \text{Cterm}' \sqsubseteq \text{Cterm}'', cf. (Baader, 2007).

Thus, one may conceive of all description logic sentences as copula sentences, whereas our natural logic sentences also use the actually appearing transitive full verb forms. Obviously, our natural logic is much closer to natural language description logic and therefore a natural logic knowledge base can be understood directly by domain experts. For further discussion of this issue, we refer to (Nilsson, 2015; Andreasen et al., 2017a). The natural logic forms some-some, which is necessary for representing passive sentences, and every-every are not supported in common forms of description logic.

3 NATURAL LOGIC GRAPHS

The natural logic knowledge base takes form of a set of natural logic sentences represented as a joint graph whose nodes uniquely represent concepts across the sentences, and whose directed labeled edges are domain-dependent relations cf. (Smith et al., 2005).

In this view, the copula sentences form an ontological structure partially ordered by the inclusion relation isa. The non-copula natural logic sentences then contribute with supplementary directed edges between nodes in the ontology proper. As a main rule,
the sentences in the ontology are definitional, whereas the given non-copula sentences are observational or empirical or normative in nature.

As a hallmark of our approach, the natural logic sentences are computationally reshaped (atomized) into atomic natural logic sentences. This is accomplished by introduction of interior auxiliary concepts formed by the system from the compound terms. For instance, the term cell that produce insulin gives rise to the atomic concept cell-that-produce-insulin, which is defined by the two systems-generated atomic natural logic sentences

\[
\begin{align*}
\text{cell-that-produce-insulin} & \text{ isa cell} \\
\text{cell-that-produce-insulin} & \text{ produce insulin}
\end{align*}
\]

Figure 1: Graph representation of the term cell that produce insulin.

with a contribution to the knowledge graph as illustrated in figure 1. Formally and internally the concept cell-that-produce-insulin is primitive, just like cell and insulin. Both of the two systems-generated sentences are definitional and therefore form part of the ontology proper. Logically, they are made to ensure that if something is a cell and is simultaneously something that produce insulin then it is a cell-that-produce-insulin.

In the process of computationally building the ontology from compound terms in sentences additional nodes may be necessary. For instance, establishment of cell-that-produce-insulin calls for introduction and definition of the concept cell-that-produce-hormone, given that insulin is a hormone. This may trigger a cascading effect since hormone is a substance and so forth in the inclusion structure. Moreover, a subsumption inference rule ensures that the inclusion cell-that-produce-insulin \(\text{isa}\) cell-that-produce-hormone is recorded, cf. figure 2. See also (Andreasen et al., 2015).

![Figure 2: Concept inferred by subsumption shown with dashed lines.](image)

Restrictions in concept terms may be nested as in organ that contain cell that produce hormone understood as organ (that contain cell (that produce hormone)) or aligned as in cell in pancreas [and] that produce hormone understood as cell (in pancreas) (that produce hormone). Evidently, these concepts give rise to a number of nodes in the generative ontology.

3.1 Passive Sentences

Passive sentences are highly frequent in scientific texts because the agent, which is the subject of the corresponding active sentence, is often left unspecified. Our natural logic distinguishes two passive forms: one in which the agent is absent as in insulin is released [in body], and one in which the agent is present as in insulin is-produced-by betacell, where is-produced-by is understood as the inverse relation of produce.

At first sight, a passive sentence such as \textit{insulin is produced by betacells} may seem to be merely a syntactic variant of the corresponding active voice sentence, in casu \textit{betacells produce insulin}. However, from a strictly formal logic point of view from \textit{every} \textit{betacell produce [some] insulin} follows only logically the weaker \textit{[some] insulin is-produced-by [some] betacell} (assuming a non-empty class of betacell by the principle of existential import) and not \textit{[every] insulin is-produced-by [some] betacell}, as explained in (Nilsson, 2015). When arcs representing active transitive verbs (every-some) are traversed in the opposite direction the corresponding passive interpretation (some-some) is obtained and vice versa.

3.2 The Structure of the Knowledge Base

The entire knowledge-base graph may be conceived of as consisting of two interwoven parts: A generative skeleton ontology and a propositional knowledge base. The generative ontology consists of copula sentences with atomic concepts such as

\begin{align*}
\text{betacell} & \text{ isa cell} \\
\text{insulin} & \text{ isa hormone} \\
\text{hormone} & \text{ isa protein}
\end{align*}

augmented with all the applied and derived compound concept terms as explained above in section 3. The propositional knowledge base is contributed by the the non-copula natural logic sentences. This part of the graph is made up of relations between two concept nodes in the generative ontology as in

\begin{align*}
\text{betacell} & \text{ produce insulin}
\end{align*}
4 FROM TEXT TO NATURAL LOGIC

The natural logic graph is built from fragments of natural language in domain texts by elaborating the structure in these based on a grammar defining natural logic. Each domain text is added to the knowledge base by processing the text sentence by sentence and extracting relational triples corresponding to natural logic propositions of the form Cterm R Cterm. These propositions are then added to the knowledge graph and thereby extend the knowledge base with the contribution from the text sentence. The transformation (and the mediating role of NATURALLOG) can be illustrated thus:

Sentence from the text
↓
NATURALLOG proposition
↓
Edges (triples) in the knowledge graph

The language recognized for extraction of triples from source texts is defined by the following basic natural logic grammar:

\[
\begin{align*}
\text{Prop} & \ ::= \ Cterm \ R \ Cterm \\
\text{Cterm} & \ ::= \ \{ \ \text{NOUN} \ | \ \text{CompNoun} \} \ (\text{RelClauseterm} \ | \ \text{Prepterm})^* \\
\text{RelClauseterm} & \ ::= \text{[that which who]} \ R \ \text{Cterm} \\
\text{R} & \ ::= \ \text{VERB} \ | \ R_{\text{Adv}} \ | \ R_{\text{Adv}} \ | \ R_{\text{Adv}} \ R_{\text{Adv}} \\
R_{\text{Adv}} & \ ::= \ \text{be verbs} \ R_{\text{Adv}} \ \text{by} \\
R_{\text{Prep}} & \ ::= \ \text{PREPOSITION} \\
\text{Prepterm} & \ ::= \ R_{\text{Prep}} \ \text{Cterm} \\
\text{CompNoun} & \ ::= \ \{ \ \text{NOUN} \}^+ \ \text{NOUN}
\end{align*}
\]

By way of example, the sentence *cells that produce insulin are located in the pancreatic gland* is recognized by the grammar as cell that produce insulin is-located-in pancreatic gland, where is-located-in is the relational form \(R_{\text{Adv}}\) in the grammar. The atomization (see section 3) introduces the two atomic argument terms: cell-that-produce-insulin and pancreatic-gland and extracts an edge corresponding to the main proposition:

cell-that-produce-insulin is-located-in pancreatic-gland

as well as edges to express the meaning of the argument terms:

cell-that-produce-insulin isa cell
cell-that-produce-insulin produce insulin

The resulting subgraph, corresponding to the contribution to the knowledge base by the example sentence, is shown in figure 3.

Notice that the copula edges are black and unlabelled (thus, with \(\text{isa}\) being implicit) and that edges corresponding to non-copula relations are drawn in grey. Furthermore, to distinguish definitional and observational contributions from the sentence, the definitional (and thus be included in the generative part of the ontology).

The grammar accepts passive sentences, so that sentences like *glucose production is inhibited by concentrations of insulin* will be recognized as shown in figure 4. The active paraphrase of this sentence, *concentrations of insulin inhibits glucose production*, will
be recognized as well, and the extracted graph for this is shown in figure 5. Observe that the extracted edges are the same for the two sentences, except for the two propositional relation edges, inhibit and be-inhibit-by.

5 A PROTOTYPE DESIGN

The approach described here involves two main challenges that relate to the introduced formalism for natural logic knowledge bases. Firstly, how to build a knowledge base on top of an initial skeleton generative ontology by processing source texts and adding extracted content from these. Secondly, how to provide a query mechanism that makes it possible to explore and reason with the content in the base, i.e. with the knowledge extracted from the source text corpus. Prototypes for knowledge base building as well as for querying are under development and these will be briefly described below.

5.1 Building the Knowledge Base

As exemplified above, the parsing of input sentences provides contributions to the generative as well as the propositional part of the ontology. However, to make it possible to take advantage of valuable resources covering the domain of the given text corpus, our approach introduces the notion of a skeleton ontology. A generative skeleton ontology is basically a collection of copula sentences and thus comprises a vocabulary of what can be considered as atomic concepts partially ordered in a taxonomic structure by the isa relation. In the experiments performed with the present prototype, we draw on excerpts from SNOMED (Spackman et al., 1997) to build the skeleton ontology. Figure 6 shows an example of an initial skeleton ontology based on a miniature excerpt from SNOMED.

The initial skeleton ontology is a graph representing a natural logic knowledge base, and adding (or loading) a text into the knowledge base simply means to extend it with triples extracted from the given text. Obviously, not in all cases will the extraction reveal the full meaning of the sentence, but even partial records of content may be valuable contributions to the knowledge base.

Furthermore, there may be “knowledge gaps” between the skeleton ontology and propositions extracted from texts. To fill these, we will rely on knowledge added by domain experts. Such domain knowledge could be added as taxonomic structures as in the case of the skeleton ontology or as sentences expressing propositions as extracted from texts. As an example, figure 7 shows the knowledge base after the addition of a single piece of domain knowledge

\[\text{Beta cells produce insulin} \]

and the sentence

\[\text{Glucose production by the liver is inhibited by high concentrations of insulin in the blood} \]

Triples are extracted by applying the principles sketched in section 4 to every sentence in the input text. More specifically, to extract triples from a sentence, we devise a shallow analysis identifying constituents in a first preprocessing phrase and then link these into a sentence structure in a subsequent parsing phase, as described below.

5.1.1 Preprocessing

In the preprocessing phase the words in the sentence are marked up by word-category and lemmatized. The sentence is tokenised into a list of lists, where each word from the sentence is represented by a list of possible canonical lemma and word category (part of speech) combinations. Marked categories are thus not completely disambiguated. Furthermore, the preprocessing applies a domain specific vocabulary to identify multiword expressions in the input sentence and replaces these by unique symbols. Thus, a preprocessing of the sentence \(\text{Beta cells produce insulin} \) returns the following tagged and lemmatized word list, where the word sequence "Beta cells" is replaced by a symbol: \{ {beta_cell/NOUN}, {produce/NOUN,produce/VERB}, {insulin/NOUN} \}.

5.1.2 Parsing

In the second phase, the marked up sentence is parsed using the natural logic grammar presented in section 4, and triples are extracted. The parsing is devised as a top down processing where we try to cover as much as possible of the considered sentence in a (partial) “best fit” process. As explained in section 4, the sentence is recognized as a proposition centered around

Figure 5: Graph representation of concentrations of insulin inhibit glucose production.
the main verb and subject and object terms are atom-ized leading to additional triples reflecting the content in these.

The “best fit” approach is basically a guiding principle aiming for the largest possible coverage of the input text. Thus, if an expression that covers the full input sentence can be derived, it would be considered the “best”, and if not, the aim is a partial coverage where larger means “better”. Hence, the parser should be able to recognize an input proposition if one such exists for at least one combination of possible lemmata of the input words. Therefore, in addition to processing the grammar (given above), the parser must ensure that all combinations are tried before failing the recognition of a proposition.

5.2 Query Answering

In order to enable exploration and reasoning with the content of the graph, and thereby the knowledge extracted from the source text corpus, we devise a query mechanism comprising two types of queries:

Affirmation Queries. The simplest form of queries asks for an affirmation (or rejection) of a sentence by appealing to one of the monotonicity inference rules. The monotonicity rules are *inheritance* and *property generalization* (Andreasen et al., 2015) admitting, respectively, specialization of the linguistic subject term and generalization of the linguistic object term. For instance

\[
\text{betacell produce hormone}
\]

follows by object generalization from the pair of recorded sentences \(\text{betacell produce insulin} \) and \(\text{insulin isa hormone}\).

Query sentences may further contain variables in noun phrase positions as in the scheme

\[
\text{X produce insulin}
\]

and in

\[
\text{betacell produce Y}
\]

The answer to queries using variables will be bindings to the specified variables. So, in the former case we will get *Terms* corresponding to all kinds of cells known to produce insulin “looking downwards” in the ontology. Conversely, a query may ask for the properties of a concept as in

\[
\text{betacell isa Z}
\]

“looking upwards” in the ontology in order to retrieve stated definitional properties of a concept.

In addition to the more traditional deductive querying principle above, we put forward a new principle of querying by abstraction over relations.

Connection Abstraction Queries. The so-called “connection” or chaining abstraction retrieves shortest relational paths between two stated concepts from the ontology. The relational paths are computed and delivered as explanatory answers to the query.

A connection abstraction is requested by letting a relation term appear as a variable as \(R\) in

\[
\text{betacell R insulin}
\]

Formally this becomes generalized to graph path finding between stated concept terms by admitting that relation variables \(R\) be instantiated to composed relation terms. These terms represent (heuristically weighted) shortest paths in the knowledge base graph as in a hypothetical query \(\text{liver R glucose}\), which calls for traversal of a path to be given as answer to the informal question “what is the connection between the liver and glucose?”. One answer to this is exemplified in figure 8.

Chaining abstraction is particularly relevant in the bio-domain due to the interest in biochemical causation and conversion paths.
6 SUMMARY AND CONCLUSION

We have described the key principles of a prototype system intended for deductive querying and pathway finding in knowledge bases. The knowledge base language is a form of natural logic. The prototype under development performs a partial translation of natural language input texts into the natural logic. This translation is limited by the semantic coverage of the natural logic. The natural logic sentences are atomized into an internal graph representation where the nodes represent complex as well as atomic concepts. This graph representation facilitates pathfinding between concepts. Assessment of the viability of this natural logic approach calls for further development of and experimentation with the prototype.

REFERENCES

