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Abstract:  The paper reviews the nonlinear polynomial neural architectures (HONUs) and their fundamental 
supervised batch learning algorithms for both plant identification and neuronal controller training. As a 
novel contribution to adaptive control with HONUs, Conjugate Gradient batch learning for weakly 
nonlinear plant identification with HONUs is presented as efficient learning improvement. Further, a 
straightforward MRAC strategy with efficient controller learning for linear and weakly nonlinear plants is 
proposed with static HONUs that avoids recurrent computations, and its potentials and limitations with 
respect to plant nonlinearity are discussed.     

Nomenclature 
CG … Conjugate gradient batch learning algorithm 
CNU … Cubic Neural Unit (HONU r=3) 
colx … long column vector of polynomial terms 
d … desired value (setpoint) 
LNU … Linear Neural Unit (HONU r=1) 
QNU … Quadratic Neural Unit (HONU r=2) 
k  … discrete index of time 
L-M … Levenberg-Marquardt batch learning algorithm 
n , m … length of vector  ,  
ny , nu  … length of recent history of y or u [samples] 
r , γ … order of polynomial nonlinearity (plant, controller) 

 … control input gain at plant input 
T   … vector transposition 
u … control input 
w , v … long row vectors of all neural weights (plant, controller) 

,  … augmented input vector to HONU (plant, controller) 
y  … neural output from HONU 

y  … controlled output variable (measured) 
yref  … reference model output 
e  … error between real output and HONU 
eref  … error between reference model  and control loop  
µ … learning rate 

1 INTRODUCTION 

Computational intelligence tools such as neural 
networks or fuzzy systems are booming in the area of 
system identification and control of dynamical 

systems. We can refer to many novel and powerful 
control approaches, and the most important ones are 
the Model Predictive Control (MPC), Adaptive 
Dynamic Programming (ADP) often with extension 
of reinforcement learning, and Model Reference 
   Adaptive Control (MRAC). MPC control, e.g. 
(García et al., 1989; Ławryńczuk, 2009; Morari and 
H. Lee, 1999) and references therein, depends on a 
model of controlled system, and the unknown is the 
actual control input that is being optimized before 
every controller actuation to achieve the predefined 
sequence of desired outputs. The core distinction of 
control via ADP, e.g. (Wang et al., 2009) (WANG et 
al., 2007) and references therein, is that the controller 
is designed from heuristically obtained observation 
of control inputs and corresponding system 
responses. Then, using the enforced learning with 
penalization of improper controller action, the 
controller is directly trained without mathematical 
analysis of the controlled plant. In principle, ADP is 
thus suitable also for unstable systems, though the 
computational costs can be very high. MRAC 
control, e.g. (Osburn, 1961; Parks, 1966; Narendra 
and Valavani, 1979; Elbuluk et al., 2002) and 
references therein, requires model of a system and 
the unknowns are the parameters (neural weights) of 
a controller that are trained so the control loop adopts 
the desired dynamics of a reference model. In this 
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paper, we focus on MRAC control scheme that is 
more conservative in sense of adaptive feedback 
control and generally requires less computing in 
contrast to ADP.  As regards the computational 
intelligence tools for MRAC, we deal with Higher 
Order Neural Units (Bukovsky and Homma, 2016; 
Madan M. Gupta et al., 2013), that represent 
standalone neural architectures within the same 
direction of computation that involves polynomial 
neural networks , e.g. (Nikolaev and Iba, 2006), or 
higher order neural networks (Ivakhnenko, 1971; 
Taylor and Coombes, 1993; Kosmatopoulos et al., 
1995; Tripathi, 2015). In (Bukovsky et al., 2015) the 
advantages of HONU feedback controllers are 
highlighted for real-time application on non-linear 
fluid based mechanical systems. Further studies 
focussed on practical applications of HONU-MRAC 
closed loop control may be recalled in (Benes and 
Bukovsky, 2014). Except the famous Levenberg-
Marquardt algorithm, the Conjugate Gradients (CG) 
are known to be very fast for linear models and its 
nonlinear alternatives are studied (Dai and Yuan, 
1999; El-Nabarawy et al., 2013; Zhu et al., 2017). 
  In this paper, we recall Conjugate Gradient learning 
for HONUs as it can practically accelerate plant 
identification after first epochs are carried with 
Levenberg-Marquardt learning. Then, we newly study 
an approach that use merely static HONUs as a plant 
models and also as controllers so the recurrent 
computations are avoided and convergence of 
controller training is naturally accelerated. Then we 
newly discuss the drawback of the method that lies in 
its suitability for weakly nonlinear dynamical systems. 
The most common symbols and abbreviations are 
explained in Nomenclature section above, while other 
terms are explained at their first appearance.  

2 PRELIMINARIES ON HONUS 

This section recalls HONUs as nonlinear SISO 
models for such linear or nonlinear dynamical 
systems, that can be approximated by a HONU with 
the user-defined polynomial order r ≤ 3. Thus in this 
work, a dynamical system is considered weakly 
nonlinear, if it can be approximated with a recurrent 
HONU of polynomial order up to r=3, i.e. it is a 
dynamical system, resp. the dynamics in data, that can 
be reliably captured either by dynamical (recurrent) 
LNU or QNU or CNU. In other words, a weak 
nonlinear systems is here such a system that can be 
approximated via Taylor series expansion of up to 3rd 
order that corresponds to 3rd order HONU (i.e. CNU). 
Properly learned dynamics of a plant via HONU is 

further necessary to train a linear or nonlinear 
controller that is realized via another HONU as well.  
For example, a sinusoidal nonlinearity is an example 
of strong non-linearity that is difficult or even 
impossible to fully capture by HONU (r ≤ 3). For 
SISO systems, the HONUs of up to third order are 
defined in a classical form or in a long vector form as 
defined in Table  1, where the augmented input 
vector for dynamical system approximation can be 
defined in (1)and its total length is 1 y un n n= + + .  

Recall, that y as measured one in (1) implies static a 
HONU, i.e. static function mapping, because all the 
values in x are measured ones. 

  , (1) 

 In order to define dynamical (recurrent) HONUs, 
real y  should be replaced with neural outputs,  i.e. 
y y←  resp.   in (1), so we would obtain a 

recurrent neural architecture that can be more 
difficult to train, but it is necessary for tuning a 
controller for nonlinear dynamical systems as it is 
discussed later in this paper. For batch learning for 
plant identification, simple variant of Levenberg-
Marquardt algorithm can be recommended for both 
static HONUs as well as for recurrent ones so the 
weight updates  can be calculated as follows 

 , (2) 

where J is Jacobian matrix, I  is identity matrix, 
upper index -1 stands for matrix inversion, and the 
error yields . Recall that the Jacobian 
matrix for static HONU , i.e. the input vector (1) with 
only measured values, is as follows 

  (3) 

where colx is a long column vector of polynomial 
terms as indicated in Table  1. Then, equation (3) 
shows that J is constant for all training epochs of  
static HONUs (i.e. when input vector is defined as in  



Table 1: Summary of HONUs for weakly nonlinear systems (of up to 3rd polynomial order of nonlinearity). 

Order of 
 HONU 

HONU   (neural output ( )y k ) details 

Classical form of HONU   = Long vector form of HONU   

 
(LNU) 

 

  

 

  
(QNU) 

 

   

  

 
(CNU) 

  

 

 

(1)) and that accelerates real time computations (esp. 
when considering the HONUs are nonlinearly 
mapping models yet they are linear in parameters). 
 The Jacobian for recurrent HONUs, i.e. when  
y y←  in (1), with learning formula (2), and 

according to per partes derivation rule, generally 
yields 

,(4) 

where the content of  a short vector  xy  is apparent 

from (1). Recurrent HONUs then perform more 
accurate dynamical approximation of weakly 
nonlinear dynamical systems from measured data 
than a static HONU (as it is shown in the 
experimental section); however, the Jacobian of 
dynamical HONU varies in time so its rows have to 
be recalculated at every time sample resulting in 
varying Jacobian for every training epoch.   
  Further in this paper, it is shown that static HONU 
can be sufficient to identify weakly nonlinear 
dynamical systems so we can use a very efficient, 
well converging and the most straightforward 
technique of a feedback controller tuning.   

3 CONJUGATE GRADIENT FOR 
PLANT IDENTIFICATION 
WITH HONUs 

The proper plant identification from measured data 
is important for further controller tuning. In case of 
not well conditioned data in Jacobian, the L-M 
formula (2) needs a small learning rate µ for 

convergence and then this gradient method can be 
slow,  i.e. it may need large number of training 
epochs. Nevertheless, HONUs are linear in 
parameters and the CG learning can be directly 
applied to HONUs as it is introduced in this section. 
Recall, that CG solves the set of equations as 
follows 

  , (5) 

Where b is a column vector of constants, A is 
positively semi-definite matrix, and w is a column 
vector of unknowns (neural weights). Because 
HONUs are linear in parameters, i.e. the Jacobian 
(3) is not directly a function of weights, we can 
restate the training of HONUs as follows 

   , (6) 

where colX is defined (Bukovsky and Homma, 
2016) as follows (assuming all initial conditions are 
known) 

 , (7) 

that is in fact the Jacobian of a HONU for all 
training data (of total length N). Then, by 
mutliplying (6) with  from the left, we obtain  

  , (8) 

so we have obtained the positive definite matrix A 
and thus we can directly apply the CG learning to 
both static or recurrent HONUs as follows. For the 
very first epoch of training we initiate CG with  



 , (9)  

and with 

 . (10)  

Then for further epochs of training, i.e. for , we 
calculate parameter 

  , (11)  

and then we can update the weights as 

 , (12)  

where                          and other CG parameters for 
next training epoch are then calculated or updated as 
follows 

 , (13) 

and similarly to Fletcher-Reeves nonlinear CG 
method 

 , (14) 

and finally 

 . (15) 

This section extended the classical Conjugate 
Gradient learning (as known for linear systems) to 
HONUs due to their in parameter linearity.  This 
batch learning algorithm (9)-(15) has no adjustable 
parameters except the initial neural weights and the 
number of learning epochs; furthermore, the training 
of both static or dynamical HONU can be rapidly 
accelerated in comparison to L-M algorithm (2). As 
demonstrated in experimental section in this paper, it 
is suggested to use L-M learning for a few initial 
training epochs and then switch for CG to rapidly 
accelerate plant identification. Notice that in a 
closed loop, the presented CG for HONU is not so 
suitable for controller weights v training as the 
symmetric positive definite matrix is not so 
achievable and CG for a controller then becomes 
much more complicated task. Thus L-M and CG are 
both applicable to plant identification via static or 
dynamic HONUs, while only L-M is the most 
comprehensible training algorithm for HONUs as 
controllers within the MRAC control scheme 
(Figure (2)) 

 
Figure 1: Training of static CNU for system in Figure 3 
starting with L-M learning accelerated with CG learning 
for training epochs 10. 

4 BATCH LEARNING STRATEGY 
FOR CONTROL WITH STATIC 
HONU AS A PLANT MODEL  

The most typical control loop for SISO dynamical 
systems with HONUs can be according to Figure2, 
where we assume normalized (z-scored) magnitudes  

+ 

 

plant

controller

+-

Reference Model

- -

 

Figure 2: Discrete time Model Reference Adaptive Control 
(MRAC) loop with two HONUs: as plant model and as a 
nonlinear state feedback controller. 

of input and output variables, i.e. of d, y, and yref and 
where the input gain ro can be also adaptive and it 
compensates for the true static gain of the controlled 
plant.  In our previous works on HONUs with the 
MRAC control scheme in Figure 2, we have usually 
identified plants with  recurrent HONUs and then we 
used a trained HONU as a dynamical plant model 
for further controller-tuning computations, i.e., 



including for the control loop simulation with 
HONU as a dynamical model of a plant. It means 
that for the control law  

 , (16) 

the controller weights are optimized (trained) via L-
M learning rule as follows 

 , (17) 

where the subscript v  indicates it is the controller 
learning rule, and where the Jacobian matrix Jv  
involves recurrent backpropagation computations of 
partial derivatives (with properly applied time 
indexes as follows 

  , (18) 

so we should calculate the Jacobian (18) recurrently 
because  

, (19) 

where the utmost right matrix has its dimension of              
                ,     and nv denotes the total number of 
neural controller weights (i.e. the lengh of v). For 
the above controller training (16)-(19) (with 
dynamical HONU as plant model), both the input 
vectors x  in (1) and ξ  in (Figure 2). Based on our 

contemporary knowledge (Benes and Bukovsky, 
2014; Benes et al., 2014; Bukovsky et al., 2015, 
n.d.), the above control scheme with dynamic plant 
HONU works very well if the dynamical HONU can 
be trained to identify the plant, i.e. if the plant is not 
more nonlinear than as it could  be captured by the 
dynamical HONU. In other words, we always 
suggest to try to identify the plant with a dynamical 
HONU for control tuning for MRAC approach.  
Nevertheless, in case of weakly nonlinear plants, i.e. 
plants that can be well identified by the dynamical 
HONUs due to not too high degree of nonlinearity, 
we may avoid the recurrent computations and we 
can train the controller weights in much more 
straightforward and computationally efficient 
strategy as follows. 

 At the beginning of controller training and before 
the plant identification, we always need a reasonable 
training data, here we define the desired variable d 
that we can feed into the plant to measure the 
corresponding plant output data y, and we also 
simulate the reference model output yref. Recall that 
the objective is to modify the control loop so it 
adopts the reference model behavior once the 
controller is properly trained. In other words, we 
desire that the trained controller outputs a proper 
value q so in the next corresponding future steps, the 
controlled plant y matches the reference model 
output  yref.  

      , (20) 

Thus, if we feed the reference values directly into 
the input vectors of plant (1) and controller 
(Figure2) as in (20) i.e.  we do not need to simulate 
the closed loop output with a recurrent HONU 
model of a plant but instead we use directly the 
apriori given reference model values, then we can 
update the controller weights directly and the kth row 
of Jacobian (18) can be directly evaluated in (21) 
where the weights w were obtained by L-M and/or 
CG learning algorithm with static HONU as a plant 
model. Thus, we have avoided the recurrent 
computations in both plant identification as well as 
controller training and the computational efficiency 
and convergence of the learning is  boosted.  

  ; where   (21) 

 

However as mentioned above, the price for this 
boosted controller design is that this way trained 



controllers are limited to linear or weakly nonlinear 
plants, i.e. to such plants for which the static HONU 
sufficiently approximates the system from data 
(otherwise recurrent HONU has to be used for plant 
identification for the control scheme and it can be 
more difficult to train dynamical HONU properly or 
even impossible depending on nonlinearity of the 
approximated system). 

5 EXPERIMENTAL ANALYSIS 

The plant dynamics was first identified from input-
output data with static HONU and another static 
HONU(s) were trained as controllers (Figure 2) with 
L-M training, so the recurrent computations and 
plant simulation during the plant identification and 
controller training were avoided. All the 
computations were implemented in Python (2.7) 
including the continuous time simulation of plants 
and closed control loops (Scipy odeint with default 
setups unless noted otherwise). 

5.1 Linear Oscillating Dynamical 
System 

To demonstrate the efficiency of the proposed 
control approach with HONU for oscillatory linear 
dynamical systems, a SISO plant defined with the 
Laplace transfer function is chosen as follows 

 , (22) 

where s is the Laplace operator. The training data 
were simulated with sampling  [time unit] and 
its dynamics was approximated with a single static 
LNU (i.e. HONU r=1, ny=5, nu=5, µ=0.1, 300 
training epochs of L-M training) for the same 
constant sampling. To enhance the controller 
performance for this dynamical system with 
complex conjugate poles and zeros, two parallel 
LNUs were used as a controller to enhanced control 
performance as introduced recently in (Bukovsky et 
al., n.d.). Recall that in such case, the controller 
consisted of two summed LNUs so the control law 
(16) yielded    

,          (23) 

where q1 and q2 are outputs of two parallel LNUs 
(while only a single one is shown in Figure 2). Both 
controller LNUs were trained with L-M learning 

with input vector setups m1=5, m2=5, and with the 
same learning rate 1 4v Eμ =  for the weights and for 

ro  within 30 training epochs. The performance of 
the trained controller is shown in Figure 4. 

5.2 Weakly Nonlinear System 

As an example of a weakly nonlinear system, the 
second-order dynamics plant is chosen as defined in 
Figure 3, 

 
Figure 3: A weakly nonlinear plant where ( )uτ τ=  and 

( )u uS S y= are nonlinear functions (24). 

where the time constant τ and the static gain Su of 
the first subsystem are nonlinear functions as 
follows 

 .(24) 

The continuous-time plant (to obtain “measured” 
data) and the continuous control loop were simulated 
with sampling Δt=0.01 [time unit] with forward 
Euler method. The plant was identified from  
“measured”  data with static CNU (HONU r=3) 
with setups ny=3, nu=3 and with initial 10 epochs of 
L-M with µ=0.01 followed with 10 epochs of CG for 
accelerated learning (see the accelerated 
convergence in  Figure 1). Further a single CNU as a 
controller (as in Figure 2) with setup m=2  and also 
ro  were trained by L-M (10 epochs, µv=1E6). The 
sampling of plant identification and controller 
actuation was here  ΔtHONU=0.5 [time unit]. The 
performance of the trained control loop compared to 
the plant without a controller is shown in Figure 5. 

6 DISCUSSION 

To discuss the limitations of HONUs of up to 3rd 
polynomial order, i.e. r ≤ 3, as we have investigated 
them for nonlinear dynamical systems up to now, 
let’s discuss identification and control of an inverted 
pendulum model (25) with HONUs in this section. 
The model (23) is adopted from (Liu and Wei, 
2014); however, it is modified with increased 
friction to at least stabilize the system first to obtain 
training data for plant identification. It should be 
highlighted, that the MRAC control approach 
depends on plant model, here learned from training 



data, and such data can not be usually obtained from 
unstable systems. The modified (stabilized) discrete 
time inverted pendulum model is then as follows 

      (25) 

      
                    

where the measured output is simulated as  y=χ1, 
fd=0.6 is the friction and u is control input. A 
successful setup for at least imperfect control of this 
plant (see Figure 6) was found at doubled sampling 
with static CNU for identification (r=3, nu=nu=4, 
trained with 20 epochs of L-M (µ=1) followed with 
20 epochs of CG ) and two parallel static HONUs 
(LNU and CNU) as a controller, as discussed in 
subsection 5.1 (23), both with m=4 and with 30 
epochs of L-M training (µv=1). The successful setup 
for control of this more strongly nonlinear plant was 
not so trivial to find as it was for the previous two 
weakly nonlinear plants. The control result for (25) 
is shown in Figure 6.  

7 CONCLUSIONS 

 In this paper, we have presented MRAC control 
strategy with purely static HONUs that avoids 
recurrent computations and thus improves 
convergence of controller training. As an aside, the 
Conjugate Gradient was presented for HONUs as it 
can accelerate plant identification with HONUs. 
This adaptive control technique is easy to implement 
and it was shown working for weakly nonlinear 
dynamical systems, i.e. such systems that can be 
well approximated with HONUs of appropriate 
polynomial order (here < 3). Investigating this 
straight control approach with HONUs for strongly 
nonlinear systems is still a challenge.   
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APPENDIX 

 

Figure 4: Results for linear oscillatory plant (22) via static LNU as a plant model (trained via L-M) and two parallel LNUs 
as a feedback controllers (trained via L-M); the control loop output follows the desired unit steps reference signal (yref) (the 
upper plot), the control input (2nd from top), bottom axes shows training by L-M batch learning of static LNU for plant 
(bottom left), input gain (middle), and static LNU as controller (bottom  right). 



 

Figure 5: Results for control of weakly nonlinear dynamical system  (Subsection 5.2) with variable time constant and static 
gain (24), static CNU as a plant model (trained via L-M + CG, Figure 1)  and static CNU controller (via L-M) (the bottom 
axes show the detail of the desired behavior with the trained control loop output). 

 

Figure 6: Control of plant (25); with the increasing desired value (dashed), the accurate control is more difficult to achieve 
as the sinusoidal nonlinearity becomes stronger with increasing magnitude of desired value, so it demonstrates current 
limits and challenges of the identification and control of strongly nonlinear systems with HONUs. 

 


