
A Policy-Based Dynamic Adaptation System for Service Composition

Sara Zatout, Mahmoud Boufaida and Mohamed Lamine Berkane
Laboratory LIRE, University Constantine 2, 25000 Constantine, Algeria

saraz.constantine@gmail.com, mboufaida@umc.edu.dz, mohamed_lamine.berkane@univ-constantine2.dz

Keywords: Service Orchestration, Adaptation, Quality-of-Service (QoS), WS-Policy.

Abstract: As web services are distributed and autonomous applications that live in dynamic environments, any
unexpected change to a service such as a QoS parameter degradation, could potentially lead to faults in the
composition. Therefore, these parameters need to be identified and controlled during execution. In this paper,
we present an architecture that features a plan for monitoring the orchestration processes during execution.
This architecture concerns the dynamic adaptation with regard to services composition. The architecture is
based on QoS requirements and adaptation strategies expressed with WS-Policy. We illustrate our proposal
by means of an example related to a bookstore orchestration process.

1 INTRODUCTION

Web Services (WS) have become a universal
technology for the integration of distributed and
heterogeneous applications over the Internet (Charfi
and Mezini, 2004). Their modeling simplifies the
business application development and
interoperation (Tsalgatidou and Pilioura, 2002).
Services come in two flavors: simple services and
composite ones (Papazoglou and Van den Heuvel,
2003). WS composition consists of combining and
coordinating a set of services with the aim to
achieve a functionality that cannot be achieved by a
single WS. An orchestration process represents a
form of composition in which the various services
can be efficiently organized through a flow to
execute a business process. The orchestration must
be dynamic, flexible, and adaptable to meet
changing business needs (Peltz, 2003). The BPEL
(Business Process Execution Language) allows
designers to orchestrate individual services, in order
to construct higher level business processes, the
orchestration specification is expressed in an XML-
based language, and it is deployed in a BPEL
execution engine (Margaris, 2015). The services
involved in a composition have different QoS
(Quality-of-Service) criteria.

However, in dynamic environments such as
Internet, they may be subject to unexpected
malfunctions. Inconsistencies can occur when
calling a partner service and performing one of the
composition activities, for instance, while an

incorrect response arrives or the service is
unavailable, and so on. This leads to a deviation
from QoS parameters.

Therefore, we assume that the aspects of QoS
should be monitored and analyzed at run time, in
order to determine if the process meets the defined
criteria and requirements.

In this paper, we present a system that allows the
monitoring and the dynamic adaptation of services
participating in an orchestration, by analyzing
aspects of QoS. Our system is composed of two
main levels: the monitoring level and the adaptation
one. Each of these two levels contains a set of
components that interact with each other to ensure a
proper functioning of business processes. The first
level serves essentially to observe and to detect the
QoS deviations of composition processes during the
WS execution. It should be able to understand if a
given service does not meet certain QoS conditions
and requirements. These requirements are generally
specified and validated during the design phase. The
second level will be used in our system, when a
failure has been detected. The adaptation process
must be able to identify the type of problem and to
adjust it dynamically.

The remainder of this paper is structured as
follows. Section 2 presents related work. In Section
3, we present a system on adaptation of business
process composition. In Section 4, we give an
example to illustrate our proposal. Finally, Section
5 concludes the paper and discusses future work.

238

2 RELATED WORK

The need to identify and evaluate the quality
parameters of service orchestration is an open
question receiving attention by many researchers.

In (Erradi et al., 2006), the authors propose a
policy-based middleware, called MASC
(Manageable and Adaptive Service Compositions)
for monitoring WS compositions and dynamically
adapting them to various execution changes.
However, the adaptation actions that relate to the
substitution of services must be dynamically chosen
to determine the appropriate alternative service. In
the approach, these actions are taken in real time,
during the execution phase.

VieDAME (Vienna Dynamic Adaptation and
Monitoring Environment for WS-BPEL) (Moser et
al., 2008) introduces a mechanism for a dynamic
service adaptation of BPEL processes and
monitoring QoS attributes. Each service in a BPEL
process can be marked as replaceable. Each service
and all of its alternative services’ endpoints are
stored in the VieDAME service repository. A
replacement policy can be selected to control which
of the available service alternatives will be used.
Yet, in this work the authors do not handle the case
of updated service repository. This requires a
selection again of possible alternative services.

CEVICHE (Complex Event processIng for
Context-adaptive processes in pervasive and
Heterogeneous Environments) (Hermosillo et al.,
2010) is a framework that supports a dynamic

business process adaptation, by combining
Complex Event Processing (CEP) and Aspect-
Oriented Programming (AOP). The information
about the processes, contextual environment,
business rules, adaptation conditions and alternative
services, is saved in an XML file. However, this
framework must be referred to a services registry to
take account of changes in alternative services.

In (Berkane et al., 2012) the authors propose a
pattern-based architecture for designing an
adaptation system of business process. However, in
this work the adaptation system is specified in the
functional layer where the equivalent WS is defined
before the process execution.

In our work, the equivalent service is selected
during the execution phase.

3 PROPOSED ARCHITECTURE
FOR ADAPTING BUSINESS
PROCESS ORCHESTRATION

In Figure 1, we present the architecture of our
system which allows the dynamic adaptation of WS
orchestrations. The orchestration process presents
the various services that can be composed
efficiently through a flow, in order to execute a
business process. The service orchestration is
presented in a well-defined language to express the
different stages of the composition process. In our
work, we choose to use the BPEL language for the

Figure 1: Proposed adaptation architecture.

A Policy-Based Dynamic Adaptation System for Service Composition

239

definition of process models in the form of service
orchestrations. BPEL provides an inherent
extensibility mechanism at the process and activity
level. The orchestration process allows to control
the collaboration between services, but
unfortunately it does not provide a means to control
QoS attributes. Our system focuses on monitoring
the different services’ orchestration process
activities that run in the BPEL engine, then adapting
the composition, if it does not meet the requirements
set. This system breaks down into two levels: the
first level encompasses two components responsible
for monitoring and analysis of the composition
operation and the second one includes three
components that provide a solution for dynamically
adapting the composition of services. In the
following we present the components of our
architecture which is modularized into five distinct
components working in cooperation to achieve
dynamic adaptation issues.

3.1 Monitoring Component

This component is responsible for providing
information about the execution state of the
orchestration in the BPEL Engine. It has two parts:
the first part is the extraction and collection of QoS
values from monitoring tools and the second one
aims to calculate the QoS parameters collected in
the previous part. After computing the QoS values,
the monitoring service sends these parameters to the
analysis component for the evaluation.

3.2 Analysis Component

This component is responsible for verifying and
evaluating the information collected by the
monitoring component to determine the case of an
inequality QoS values. It is based on a set of policies
expressed with WS-Policy that represents a
repository containing the necessary values of QoS
that must be verified during the execution of the
services. WS-Policy is an extensible model that we
can adapt in any system case. In our work, we adopt
the QoS policy model suggested in (Mezni et al.,
2014), in which a QoS parameter is presented as :
<assertion> including attributes <name>, <value>
and <unit> which contain other child parameters.

3.3 Diagnostic Component

It is the system responsible for identifying the type
of deviation according to the faulty QoS types sent
by the analysis component. It interacts with a

repository that contains the deviation types of these
parameters. Then, it selects the mismatch type, and
sends it to the filtering component. The mismatches
repository also serves to record the different faulty
QoS parameter data. This support can be provided
in the specification of the compositions during the
design phase.

3.4 Filtering Component

This component’s role is to recover the type of
deviation sent by the diagnostic component and to
select the appropriate configuration action. We
provide the adaptation policies (Mezni et al., 2014)
and the services repository that allows one to
dynamically select the service equivalent to the
chosen adaptation action. We use WS-Policy to
specify the set of events and actions for each type of
event. We adopt the extension AWS-Policy
(Autonomic Web Service Policy) presented in
(Mezni et al., 2014), in which a model of adaptation
policies is described. It contains the actions that can
be performed in the case of a detected event,
described in an <EventAssertion> element. An
adaptation plan can consist of a set of adaptation
actions described in an <ActionAssertion> element.
However, we will not introduce the name of
alternative WS in adaptation policies. The filtering
component is responsible for dynamically selecting
WS equivalent to the adaptation process.

3.5 Configuration Component

The configuration component is responsible for
retrieving the information sent by the filtering
component, by applying the necessary changes to
the system. It presents a final step in the adaptation
process. After the adaptation of the orchestration
process, the monitoring system takes the control of
the interactions following the composition process
with the partner services.

4 EXAMPLE

To provide illustration with regard to our proposed
architecture, we take a simple example of a
bookstore process (Chan and Bishop, 2009). The
process includes a series of activities allowing users
to buy books online. The system begins by
authenticating the user. After that, the system
invokes the “ResultSorting” WS to present the
existing catalogues. Then, the user can browse the
catalogues for making a search. (S)he can select

Seventh International Symposium on Business Modeling and Software Design

240

items and add them to a (ShoppingCart). The
process will run two spots in parallel: one to find the
provider of the chosen books; the other one to
calculate the price. After that, an order will be
generated.

We present an example of the ”ResultSorting”
service’s QoS policy. Figure 2 shows the QoS
requirements for the “ResultSorting” WS.

Figure 2: ResultSorting QoS policy.

The filtering service uses the adaptive policies
declared in the repository to determine the possible
configuration action for this situation. Figure 3
features an example of QoS adaptation policies,
used for the bookstore process.

Figure 3: Adaptation policy for the bookstore process.

5 CONCLUSION

In this paper, we have presented a policy-based
architecture to dynamically monitor and adapt the
QoS parameters of orchestration processes. This
architecture is divided into two levels: (a) the
monitoring level, which consists of two
components, namely the monitoring component and
the analysis one; (b) the adaptation level containing

three components, namely the diagnostic
component, filtering component, and configuration
component. We used WS-Policy for expressing
QoS requirements and to also express adaptation
policies. As future work, we intend to present a
method for developing and checking QoS policies
during the design phase, and to evaluate our
proposal with a more complex case study.

REFERENCES

Berkane, L., Seinturier, L., & Boufaida, M. (2012). A
pattern-based architecture for dynamically adapting
business processes. In The Fourth International
Conferences on Pervasive Patterns and Applications,
pp. 29-35.

Chan, K. M., & Bishop, J. (2009). The design of a self-
healing composition cycle for Web services.
In Software Engineering for Adaptive and Self-
Managing Systems. SEAMS'09, pp. 20-27, IEEE.

Charfi, A., & Mezini, M. (2004). Aspect-oriented web
service composition with AO4BPEL. In Web
Services, pp. 168-182, Springer.

Erradi, A., Maheshwari, P., & Tosic, V. (2006). Policy-
driven middleware for self-adaptation of web services
compositions. In ACM/IFIP/USENIX International
Conference on Distributed Systems Platforms and
Open Distributed Processing , pp. 62-80, Springer.

Hermosillo, G., Seinturier, L., & Duchien, L. (2010).
Using complex event processing for dynamic
business process adaptation. In Services Computing
(SCC), pp. 466-473, IEEE.

Margaris, D. D. (2015). Advance BPEL execution
adaptation using QoS parameters and collaborative
filtering techniques. Department of Informatics and
Telecommunications, p. 139.

Mezni, H., Chainbi, W., & Ghedira, K. (2014). Extending
Policy Languages for Expressing the Self-Adaptation
of Web Services. J. UCS, 20(8), pp. 1130-1151.

Moser, O., Rosenberg, F., & Dustdar, S. (2008).
VieDAME-flexible and robust BPEL processes
through monitoring and adaptation. In Companion of
the 30th international conference on Software
engineering, pp. 917-918, ACM.

Papazoglou, M. P., & van den Heuvel, W. J. (2003).
Service-oriented computing: State-of-the-art and
open research issues, IEEE.

Peltz, C. (2003). Web services orchestration and
choreography. Computer, 36(10), pp. 46-52.

Tsalgatidou, A., & Pilioura, T. (2002). An overview of
standards and related technology in web services.
Distributed and Parallel Databases, 12(2-3), pp 135-
162.

A Policy-Based Dynamic Adaptation System for Service Composition

241

