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Abstract: The morphology of the human embryo produced by in vitro fertilized (IVF) is historically used as a 

predictive marker of gestational success. Although there are several different proposed methods to improve 

determination of embryo morphology, currently, all methods rely on a manual, optical and subjective 

evaluation done by an embryologist. Given that tiredness, mood and distinct experience could influence the 

accuracy of the evaluation, the results found are very different from embryologist to embryologist and from 

clinic to clinic. We propose the use of an objective evaluation, with repeatability and automatization, of the 

human blastocyst by image processing and the use of Artificial Neural Network (i.e., Artificial Intelligence). 

1 INTRODUCTION 

Since the establishment of assisted reproduction 

techniques (ART) in humans the quality of the 

embryos in the blastocyst stage has been shown to 

be able to predict the efficacy of the implantation 

and the probability of the embryo to generate 

pregnancy (della Ragione et al., 2007; Ahlstrm et al., 

2011). The predominant technique currently used to 

determine embryo quality is the morphological 

analysis by means of optical microscopy; this 

method, despite being able to establish predictive 

relations with the pregnancy rate, is still subjective 

and, in many cases, with limited reproducibility. The 

main problem of this method lies in the subjectivity 

in the interpretation of the results by the 

embryologists, resulting in low interobserver 

agreement and intraobserver reproducibility (Arce et 

al., 2006; Sundvall et al., 2013; Richardson et al., 

2015) 

According to Gardner and Schoolcraft (1999) the 

embryo classification is made according to three 

parameters: i) stage of expansion and hatching (EE), 

classified from 1 to 6, being 1 the embryo without 

any inner cavity (blastocoel) meaning that it not 

reached the blastocyst stage yet and 6 the blastocyst 

fully hatched; ii) quality of the inner cell mass 

(ICM) classified from A to C, being A the ICM with 

the highest quality and C the worst and; iii) quality 

of the trophectoderm (TE), also classified as A to C 

and in the same way as ICM. Examples of 

blastocysts classified by the Gardner & Schoolcraft 

system are shown in Figure 1. 

For Gardner and Schoolcraft classification 

(1999), the technique used is the morphological 

assessment by stereomicroscopy that is non-

invasive, however there are several other methods to 

classify blastocysts such as metabolism 

measurement (Tejera et al., 2016) and time-lapse 

(Tejera, Aparicio-Ruiz and Meseguer, 2017) which 

are also non-invasive methods. In addition, there are 

techniques such as blastocyst transcriptome analysis 

(Kakourou et al., 2013) and chromosomal screening 

by array comparative genomic hybridization (aCGH) 

(Yang et al., 2012) that are invasive. Invasive 

techniques are not appropriate to classify human 

embryos as they may jeopardize the integrity of the 

embryo and, consequently, decrease the probability 

of his implantation. 

Rocha J., Bezerra da Silva D., dos Santos J., Whyte L., Hickman C., Lavery S. and Gouveia Nogueira M.
Using Artificial Intelligence to Improve the Evaluation of Human Blastocyst Morphology.
DOI: 10.5220/0006515803540359
In Proceedings of the 9th International Joint Conference on Computational Intelligence (IJCCI 2017), pages 354-359
ISBN: 978-989-758-274-5
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



 

 

Figure 1: Illustrative images of human blastocysts 

classification. The first number is referred to the presence 

and size of the blastocoel as well as the degree of embryo 

expansion. The first letter is referred to the quality of the 

inner cell mass and (second letter) of the trophectoderm. 

(a) 3AA; (b) 3AB; (c) 3BA; (d) 4AA; (e) 4AB; (f) 4BA; 

(g) 4CC; (h) 5AA; (i) 5CA. From Van den Abbeel, p.357, 

2013. 

One of the ways to reduce the subjectivity 

involved in that process and to make a more 

objective classification is the use of digital image 

processing and artificial intelligence (AI) techniques 

such as artificial neural networks (ANNs) and 

genetic algorithms (GAs). With these methods, it is 

possible to obtain a high reproducibility independent 

of experience, attention to detail and systematic 

approach of the examiner, factors which are 

confounding with visual morphological assessment 

of human embryos. Such techniques have already 

been used to classify mammalian embryos, obtaining 

promising results (Matos, Rocha and Nogueira, 

2014; Rocha et al., 2016). 

The technique of digital image processing 

consists of extracting information of size, colour 

scale and saturation using mathematical methods 

(Gonzalez and Woods, 2007). This technique allows 

the extraction of several variables such as 

circularity, radius, uniformity, texture, luminosity, 

and colour scale from the photos of the blastocysts 

(Rocha et al., 2016), which are important for the use 

in ANN technique. 

Genetic algorithms are algorithms of global 

optimization of functions, based on the theory of 

natural selection proposed by Charles Darwin. In 

this theory, individuals whose phenotype is better 

fitted to the environment are more likely to achieve 

reproductive success, so they are more likely to 

propagate their genes to the next generation. In 

addition to this, processes such as recombination, 

crossing over and mutation imply in differentiation 

between the chromosomes of the offspring and the 

parents promoting genetic variation and thus they 

evolve increasingly adapting to the environment to 

which they are inserted (Lacerda and Carvalho, 

1999). In this case the individuals are the ANNs and 

the genes are the various parameters that define the 

network architecture. 

The algorithm works with iterations that are 

called generations and for each generation, the 

principles of selection, migration, replication and 

repopulation are applied to a population of ANN 

architectures. 

ANNs are based on the biological neuron model, 

which can to learn through experience and error. The 

main characteristic of a biological neuron is the 

ability to receive and interpret stimuli, transmitting 

information to nearby neurons (Kovács, 2002). This 

learning capacity is achieved through interconnected 

neurons in layers that upon receiving a stimulus, 

process this information through a weighted value, 

called weight, that ends up storing the knowledge of 

the ANN. The weights indicate the influence of the 

signal at the output of each neuron (Haykin, 2001). 

Currently, the greatest difficulty is the determination 

of the number of neurons and layers to be used, so 

that these are usually obtained through exhaustive 

case studies (Jayas, Paliwal and Visen, 2000). 

However, with a statistically relevant database 

and evolutionary algorithms (like the GAs) the 

architecture that best fits the classification problem 

can be found more effectively (Schaffer, Whitley 

and Eshelman, 1992). 

Tools such as time-lapse monitoring - present in 

some equipment as EmbryoScope® - have been used 

for observation and data retrieval from human 

embryos, without limiting the number of 

observations made (i.e., images obtained). By this 

technology, coupled with an appropriate software, a 

video is produced and it reports the embryonic 

development during the in vitro culture period. 

Through this, much information is provided on the 

whole process of morphological transformations 

occurring in the embryo, such as kinetics and 

asymmetry of cleavages (Kovacs, 2014). 

The aim of the present work is to use the time-

lapse monitoring to extract images of human 

blastocysts at a specific moment post-insemination 

and submit these images to the digital processing 

techniques to obtain mathematical variables 

representatives of the embryos. After this step and 

using AI techniques, we intend to obtain, through a 

computer software, an automatized classification of 

human blastocysts images as already developed for 

the bovine species (Rocha et al., 2016, 2017). 



 

The images of human blastocysts used in the 

digital processing, as well as their classification, that 

will be used for the AI technique, were provided by 

the London-based Boston Place Clinic, which is our 

partner in the development of this work. 

2 METHODOLOGY 

2.1 Digital Image Processing 

Images of human blastocysts, obtained through 

EmbryoScope® by the Boston Place Clinic, were 

standardized to have the same resolution and 

illumination characteristics. The proposed algorithm 

automatically imports the image into the MatLab® 

software environment, and standardizes the image 

by converting the image into grayscale, adjusting the 

resolution and the aspect ratio. Conversion to 

grayscale allows for avoidance of the variation due 

to colour, thus all images are converted to 8-bit gray 

scale. This process provides a higher speed in the 

processing of the next steps, as it decreases the 

spectral dimension of the image. To solve the 

problem of the different illuminations of the images, 

a histogram adjustment was made. In the image, 1% 

of all information was saturated between light and 

dark pixels, increasing the contrast of the image and, 

thus, facilitating the next step of segmentation. 

Figure 2 shows the standardization of a human 

blastocyst. 

 

Figure 2: Human blastocyst standardization. 

After standardization, the blastocyst was isolated 

from the rest of the image (i.e., background) before 

the extraction of the variables. This process consists 

in altering the image gradient so that the limits of the 

blastocyst become more evident. For this step, the 

Hough's Transform function was used (Atherton and 

Kerbyson, 1999), which delineates the 

circumference that best characterizes the blastocyst. 

An example of the isolated blastocyst is shown in 

Figure 3. 

 

Figure 3: Isolated human blastocyst by Hough’s 

Transform. 

The complete image processing is performed 

using several algorithms that act individually as 

Gray Level Co-Occurrence Matrix (GLCM) 

(Haralick, Shanmugam and Dinstein, 1973) for 

texture analysis, the Watershed Transform, which 

seeks to segment the image (Beucher, 1992) in 

addition to the Gabor filter that differentiates the 

various textures of the image through the 

characterization of a signal simultaneously in the 

time domain and in the domain of the spatial 

frequencies (Marmol, 2011). After the application of 

these techniques, the TE and the ICM were 

separately identified, whilst isolating the blastocyst 

completely. The complete processing of an 

illustrative image of the human blastocyst is 

demonstrated in Figure 4. 

Following the process of image segmentation, a 

numerical vector is derived that will represent the 

extracted characteristics of the images. This vector 

will be used as input variable for the ANN, thus 

making the image-derived information proper for 

use in computational techniques. 

 

Figure 4: An illustrative sequence of the complete 

processing of the human blastocyst image. In the upper 

row (left) it is the original image without processing. In 

the right column, it is shown the trophectoderm mask 

(upper) and the inner cell mass (lower) after segmentation. 



 

2.2 Artificial Intelligence  

After obtaining the variables, that identify the 

human embryo and that will be used for the GA 

technique, a population of individuals will be 

constructed – which represent several architectures 

of the ANNs in their chromosomes. The 

chromosomes will be randomly generated forming 

an initial population of individuals. Each population 

will contain from 100 to 200 individuals. Each 

chromosome, which will represent a specific ANN, 

will contain in its genes the maximum and minimum 

number of neurons per layer, the number of layers to 

be used, the learning rate, the transfer functions to be 

used (logsig, purelin, tansig, hardlim, tribas, radbas 

or satlin) and the learning functions (trainrp, 

trainscg, traincgb, traincgf, traincgp, traingdm or 

traingd) (Beale, Hagan and Demuth, 2017). The 

entire process will be developed in the MatLab® 

environment (MATLAB 2017a, The MathWorks 

Inc., Natick, MA) that has tools for creating and 

modelling ANNs. 

After the generation of the ANNs (individuals), 

the entire population will be trained, validated, and 

tested using the blastocyst images database, which 

will be divided into training (from 50% to 70% of 

the data), validation and test (can be 15% to 25% 

each) sets. 

For the following generations, 20% of the 

selected individuals will be kept as the fittest, 60% 

will be composed by the recombination and 

mutation of the individuals of the previous 

population and the remaining 20% will come from 

the migration. The number of generations will be a 

maximum of 1000. The most fitted individuals will 

be chosen from the smallest error of the test set 

when applying the ANN technique. 

It is intended that at the end of the iterations, 

previously established, the software will present an 

optimized ANN architecture that classifies the 

human embryos in a less subjective way and with 

greater reproducibility and assertiveness. Of course, 

the whole processing will be in an automatized way 

(i.e., without human intervention unless the upload 

of the original image). 

3 DISCUSSION 

Currently, we have observed that the human 

blastocyst images, in terms of digital processing, is 

quite different from the mouse and bovine 

blastocysts already studied in previous research 

(Van Soom et al., 2003; Matos, Rocha and 

Nogueira, 2014; Rocha et al., 2016, 2017) 

Differently from murine and bovine blastocysts, 

which present well defined ICM and blastocoel at 

the time of implantation, human blastocysts have a 

huge ICM variation in terms of shape that, 

consequently, decreases the accuracy of ICM 

masking by digital processing (Figure 5). 

 

Figure 5: Illustrative images of mouse, bovine and human 

blastocysts (from left to right) to show the differences 

found on the inner cell mass shape mainly on the human 

embryos. Asterisk (*) marks the inner cell mass on each 

image. 

This fact can difficult in the determining the 

mathematical variables that characterize the human 

embryo and, consequently, the ANN inputs. Those 

inputs, if not properly extracted from the image, will 

not be representative of the blastocyst and thus the 

ANN will be wrongly trained. 

The next step is to enhance the way to obtain the 

fittest mask of the isolated ICM since the mask of 

isolated TE already seems fitted. In this way, it is 

essential to choose carefully what frame coming 

from the time-lapse record will be used on the image 

processing, since the same embryo in a short time 

frame could be registered with different images by 

the equipment. 

4 CONCLUSIONS 

Although in its early steps of development, the 

automatized, reproducible, and objective evaluation 

of human blastocysts by AI, is a promising tool to 

improve the way that in the future the embryologist 

could choose which embryo should be transferred to 

the patient. Since this proposed method is based on a 

long previous study with mouse and bovine 

blastocysts, to adapt the knowledge previously 

obtained to the human scope would be not a 

hindrance. 
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