
ANFIS Synthesis by Clustering for Microgrids EMS Design

Stefano Leonori, Alessio Martino, Antonello Rizzi and Fabio Massimo Frattale Mascioli
Department of Information Engineering, Electronics and Telecommunications,

University of Rome ”La Sapienza”, Via Eudossiana 18, 00184 Rome, Italy

Keywords: Smart Grids, Microgrids, Energy Management System, ANFIS, Data Clustering, Decision Making System.

Abstract: Microgrids (MGs) play a crucial role for the development of Smart Grids. They are conceived to intelligently
integrate the generation from Distributed Energy Resources, to improve Demand Response (DR) services, to
reduce pollutant emissions and curtail power losses, assuring the continuity of services to the loads as well. In
this work it is proposed a novel synthesis procedure for modelling an Adaptive Neuro-Fuzzy Inference Sys-
tem (ANFIS) featured by multivariate Gaussian Membership Functions (MFs) and first order Takagi-Sugeno
rules. The Fuzzy Rule Base is the core inference engine of an Energy Management System (EMS) for a grid-
connected MG equipped with a photovoltaic power plant, an aggregated load and an Energy Storage System
(ESS). The EMS is designed to operate in real time by defining the ESS energy flow in order to maximize the
revenues generated by the energy trade with the distribution grid. The ANFIS EMS is synthesized through
a data driven approach that relies on a clustering algorithm which defines the MFs and the rule consequent
hyperplanes. Moreover, three clustering algorithms are investigated. Results show that the adoption ofk-
medoids based on Mahalanobis (dis)similarity measure is more efficient with respect to thek-means, although
affected by some variety in clusters composition.

1 INTRODUCTION

A Microgrid (MG) is an electric grid able to in-
telligently manage and control local electric power
systems affected by stochastic and intermittent be-
haviours, such as electric generation from renewable
energy sources, electric vehicles charging and de-
ferrable and shiftable loads. MGs are the best can-
didates for the transition to Smart Grids, since they
allow a bottom-up approach for building and devel-
oping reliable and smart distribution systems, relying
on the concept of territorial granulation. Each MG
is provided of a suitable Energy Management Sys-
tem (EMS) to intelligently manage local power flows
inside MG and with the main grid (Patterson, 2012;
Dragicevic et al., 2014). The MG infrastructure relies
on power converters connecting power systems and
electric loads to the main bus in order to locally route
and manage the MG power flows and the power ex-
changes with the connected grid. To this end, MGs
must be equipped with a communication infrastruc-
ture able to monitor and supervise the state of all the
MG components.
Usually, MGs are supported by Energy Storage Sys-
tems (ESSs) able to guarantee both the quality of ser-
vice and the electric stability, ensuring some energetic

autonomy to the system when it is disconnected to
the grid (i.e. islanded mode). The implementation
of a suitable Demand Side Management (DSM) EMS
allows to apply Demand Response (DR) services to
the costumer, which is more appropriate to refer to as
prosumerwhether equipped with a power generation
system.
In (Deng et al., 2015) are well summarized all the DR
main services (i.e. valley filling, load shifting, peak
shaving operations). These services, together with
Vehicle-2-Grid (V2G) operations and the intelligent
use of the ESS, allow to reduce the stress caused by
the MG to the connected distribution grid in order to
get incentives, avoid penalties, reduce both the con-
sumptions and the operational costs, which strictly
depend on the energy price policies adopted by the
distribution grid. Concerning this topic, in (Kirschen,
2003; Amer et al., 2014) are discussed the develop-
ment of new energy policies which will involve the
costumer to assume an active role in the energy mar-
ket by means of the application of DR services.
In this work, a procedure based on computational in-
telligence techniques for the data driven synthesis of
an EMS is proposed. The EMS must define in real
time the energy flow exchanged with the grid in or-
der to maximize the MG profit by considering a Time
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Of Use (TOU) energy policy. The MG EMS is based
on an Adaptive Neuro-Fuzzy Inference System (AN-
FIS) that is efficiently modelled by a clustering algo-
rithm. In addiction, different clustering algorithms
are investigated and compared for the ANFIS mod-
elling, which mainly differ in the (dis)similarity mea-
sure adopted. Moreover, it is also investigated the effi-
cacy of considering the EMS output space by the clus-
tering algorithms (i.e. joint input-output space) rely-
ing on a benchmark solution found through a Mixed-
Integer Linear Programming (MILP) problem formu-
lation.
The remainder of the paper is organized as follows.
In Sec. 2 is introduced the MG problem formulation.
The EMS design and the modelling procedure are
described in Sec. 3, where both the Objective Func-
tion (OF) formulation and the set of clustering algo-
rithms will be introduced. In Sec. 5 are reported the
simulations settings, whereas the achieved results are
in Sec. 6, followed by the conclusions discussed in
Sec. 7.

2 MG PROBLEM FORMULATION

In this paper it is considered a prosumer grid-
connected MG equipped with a DSM EMS. It is in
charge of efficiently manage the MG components rep-
resented as aggregated systems grouped in renewable
sources power generators, electric loads and ESSs.
Their energy flows are managed in real time by an
EMS that acts as decision making system. It must ef-
ficiently redistribute the prosumer energy balance (i.e
the overall energy produced net of the energy demand
at the given time slot) between the grid and the ESS
by maximizing the profit given by the energy trade
with the main grid.
This work is based on several hypotheses which help
defining the correct level of abstraction to properly
focus the problem under analysis as made in previ-
ous studies (Leonori et al., 2016a; Leonori et al.,
2016b). The power value of the MG components
has been considered constant within each 15 min-
utes time slot. Low level operations such as voltage
and reactive power control are not considered. The
power transmission losses within the MG are consid-
ered negligible. The on-line control module ensures
that the power balance is achieved during the real-
time operation. The EMS has a sample time equal to
the time slot duration which is considerably greater
than the characteristic time of the ESS power con-
trol, therefore the ESS inner loop has been neglected.
The power converters which connect the MG sub-
components to each other, included the one allow-

ing the MG-grid connection, are neglected in terms
of power losses and characteristic time of control.
The MG aggregated energy generation, aggregated
load request, energy exchanged with the ESS and en-
ergy exchanged with the grid during thenth time slot
are denoted withEL

n , EG
n , ES

n andEN
n , respectively. In

figure 1 it is represented a schematic diagram of the
MG where the power lines are drawn in black and the
signal wires in red. In Figure is also represented the
Battery Management System (BMS). It monitors the
ESS and estimates its State Of Charge (SoC) which is
used as an input of the EMS.

EGL
n−1

SoCn−1

Csell
n−1, Cbuy

n−1 ES
n

EN
n -

-

Figure 1: MG architecture. Signal wires in red, power lines
in black.

By assuming that the prosumer energy productionEG
n

has the priority to meet the prosumer energy demand
EL

n , the prosumer energy balanceEGL
n can be defined

as
EGL

n = EG
n +EL

n , n= 1,2, ... (1)

in each time slot.
Moreover, in this work it is assumed that the prosumer
energy balanceEGL

n is a known quantity read in real
time by an electric meter. In each time slot,EGL

n must
be exchanged with the main grid and the ESS by ful-
filling the following energy balance relation

ES
n +EN

n +EGL
n = 0, n= 1,2, ... (2)

The energyES
n is assumed positive or negative when

the ESS is discharged or recharged, respectively. Sim-
ilarly, the energyEN

n is considered positive (negative)
when the network is selling (buying) energy to the
MG. Considering a TOU price policy, it is possible to
formulate the profitP generated by the energy trade
with the main grid in a time period composed byNslot
time slots as

P=
Nslot

∑
n=1

Pn where Pn =

{
EN

n ·Cbuy
n if EN

n > 0
EN

n ·Csell
n if EN

n ≤ 0
(3)

whereCbuy
n andCsell

n define the energy prices in pur-
chase and sale during thenth time slot. According
with (Leonori et al., 2017), it is assumed that dur-
ing the nth time slot the MG cannot exchange with
the grid an amount of energy greater than the current



energy balanceEGL
n . In other words, in case of over-

production (over-demand) (i.e. EGL > 0 (EGL < 0))
the ESS can be only charged (discharged).
In this work the EMS is assumed to be able to effi-
ciently estimate in real time the energyEN

n andES
n to

be exchanged during thenth time slot with the con-
nected grid and the ESS, respectively (see figure 1).
The EMS is supposed to be fed by the input vectoru
constituted by 4 variables, namely, the current energy
balanceEGL

n−1, the current energy prices in sale and

purchase,Csell
n−1 andCbuy

n−1 and theSoCvalueSocn−1.

It should be noted that whereasEGL
n−1, Csell

n−1 andCbuy
n−1

are instantaneous quantities read by proper meters,
SoCn−1 is a status variable depending on the previous
ESS history. Before entering the EMS, theEGL, Csell,
Cbuy inputs, must be normalized in the range[0,1],
whilst theSoCbelongs to[0,1] by its own definition.
In the following, the normalized input vector will be
referred to as̄u.

3 PROBLEM STATEMENT AND
MODELLING APPROACH

The use of computational intelligence techniques and,
especially, Fuzzy Logic and Fuzzy Inference Systems
(FISs), is often mentioned in literature for solving
the EMS real time decision making system design.
In such cases, the inferential process (i.e. the rule
based system) can be realized relying on expert op-
erator(s) with the support of heuristics, such as Ge-
netic Algorithms (GAs). Moreover, Mamdani FIS
types based on grid partitioning, are the most com-
monly used due to their simplicity and effectiveness.
For example in (Arcos-Aviles et al., 2016) is proposed
a GA-FIS model in order to minimize the power peaks
and the fluctuations of the energy exchange with the
connected-grid, while keeping the batterySoCwithin
certain security limits; in (Leonori et al., 2016b) a rule
base system designed by an expert operator has been
optimized by a GA in order to maximize the profit
generated by the energy trade with the main grid as-
suming a TOU energy price. In these works, the ap-
plication of heuristics, specifically GAs, has been mo-
tivated by the fact that the synthesis problem has been
casted as an unsupervised one.
In this paper it is proposed an EMS synthesis proce-
dure in a supervised fashion. To this end, the EMS
model has been synthesized through an ANFIS sup-
ported by clustering. The proposed paradigm is well
introduced in (Panella et al., 2001).
The supervised problem formulation needs to rely on
a ground-truth output values solution, namely the de-

sired outputEN
n . In this regard, a benchmark solution

has been evaluated through a MILP formulation.
The adoption of such synthesis procedure with a su-
pervised formulation allows to avoid both expert op-
erator(s) and heuristics, at least for a preliminary
study. Conversely to Mamdani FIS type, the proposed
model, based on Takagi-Sugeno formulation, is not
sensitive to the MF resolution or, in other words, the
spatial granularity. Moreover, it does not need an a-
priori analysis of the GA complexity and efficiency,
that is strictly related to the FIS number of parame-
ters to be tuned.

3.1 ANFIS EMS Structure

ANFIS models are one of the most popular type of
fuzzy artificial neural networks. They are composed
by 7 layers. As well described in (Jang, 1993), AN-
FISs implement FISs by means of a suitable set of
first order Takagi-Sugeno rules. The genericj th rule
has the form:

if x1 is Φ( j)
1 and... xm is Φ( j)

m theny=
m

∑
i=1

θ( j)
i xi +θ( j)

0

(4)
wherex = [x1, ...,xm] is a generic crisp input vector.
Eachxi is evaluated by the respective rule antecedent
term set, defined by the Fuzzy Set MFΦi . The second
termy is the output associated to thej th rule. It is es-
timated through the calculation of the associated rule
consequent hyperplane, defined by the coefficientsθi .
In this work it has been decided to define every rule
antecedent by a unique MF. Therefore, the ANFIS
MFs are modelled by means of multivariate Gaus-
sian functions which assure the coverage of the entire
fuzzy domain regardless of the number of employed
MFs. The generic MFΦ(ū), where the input vector̄u
has been introduced in Sec. 2, is defined as follows:

Φ(ū) = e−
1
2 (ū−µµµ)·C−1·(ūT−µµµT ) (5)

whereµµµ andC are the mean vector value and the co-
variance matrix of the multivariate Gaussian function,
respectively. The consequent fuzzy rule is modelled
as in (4). The rule consequent outputsEN, the energy
exchanged with the grid, that is evaluated by means
of a suitable hyperplane defined as follows:

EN = θ0+θ1EGL+θ2C
sell+θ3C

buy+θ4SoC (6)

The overall output of the ANFIS is computed by
adopting a Winner Takes All strategy. All rule
weights are fixed to unitary values.



3.2 Benchmark Solutions and Objective
Function Formulation

Algorithms based on MILP, along with Dynamic Pro-
gramming and Linear Programming, namely methods
able to find an optimal solution through a determinis-
tic (or sub-optimal since MILP is supported by heuris-
tics) approach, are suitable for the determination of a
benchmark solution (Sundstrom and Guzzella, 2009)
useful to validate and support the EMS modelling.
In this case, it supports the EMS modelling by casting
the problem from unsupervised to supervised learn-
ing. Specifically, the ANFIS model is trained on a
given dataset together with its respective benchmark
solution found through a MILP formulation of the
problem, by re-adapting the approach proposed in
(Palma-Behnke et al., 2013). By definingPupper and
Plower as the MILP optimal solution obtained with and
without the ESS, respectively, the OF in ((3)) can be
rewritten as:

P̄=
Pupper−P

Pupper−Plower
(7)

Such profit normalization allows to estimate how
much the EMS performances are close to the opti-
mal solution considering a given dataset. The respec-
tive upper benchmark solution ESSSoCprofile and
EN profile are namedSOCopt andEN

opt, respectively.
These are used for the EMS synthesis procedure.

3.3 ANFIS Synthesis by Clustering

In literature, several techniques to train an AN-
FIS architecture have been analyzed. For example,
backpropagation-based and clustering-based training
have been proposed in (Jang, 1993) and (Rizzi et al.,
1999), respectively. In this work, the latter technique
is adopted. It exploits a clustering algorithm in or-
der to build the ANFIS architecture, in particular the
MFs’ shape and the rule based system.
Specifically, three different clustering algorithms are
introduced and successively compared for the EMS
synthesis problem. By starting from the widely-
knownk-means algorithm (MacQueen, 1967; Lloyd,
1982), the others are mainly re-adaptations and/or ex-
tensions of it (still, well-known in literature) in or-
der to explore and implement different (dis)similarity
measures. Moreover, it is discussed how to take ad-
vantage of the output space (i.e. theEN

opt benchmark
solution) in case of clustering in the so-calledjoint
input-outputspace, as explained in (Panella et al.,
2001).

3.3.1 k-means

k-means is an hard partitional clustering algorithm
which, given a datasetS = {x1,x2, ...,xNP}, re-
turns k non-overlapping groups (clusters),i.e. S=
{S1, ...,Sk}, such thatSi ∩Sj = /0 if i 6= j and∪k

i=1Si =
S, such that objects in the same cluster are more simi-
lar to each other than to those in other clusters. In or-
der to find such clusters,k-means aims at minimizing
the following objective function, namely the Within-
Cluster Sum-of-Squares (WCCS):

WCSS=
k

∑
i=1

∑
x∈Si

‖x− r(i)‖2
2 (8)

where‖x− r(i)‖2
2 is the squared Euclidean distance

between patternx and the ith cluster representa-
tive r(i), usually known ascentroid, defined as the
component-wise mean amongst patterns in cluster
Si . Minimizing (8) is, however, an NP-hard problem
(Aloise et al., 2009) and what is commonly known as
k-means is actually an heuristic which, as such, does
not guarantee to find an optimal solution.k-means
is based on the Voronoi iteration or, equivalently, an
Expectation-Maximization algorithm which works as
follows:

i Select k initial centroids according to some
heuristics (e.g.randomly);

ii Assignment (Expectation) Step: assign each pat-
tern to nearest cluster (closest centroid);

iii Update (Maximization) Step: update clusters’
centroids;

iv Loop ii–iii until a given stopping criterion is met
(e.g. maximum number of iterations is reached or
centroids’ update is below a given threshold).

3.3.2 k-medians

A commonly used variant of thek-means algorithm
consists in changing the (dis)similarity measure from
squared Euclidean distance to 1-norm (also known as
Manhattan, TaxiCab or CityBlock distance), leading
to the so-calledk-medians problem (Bradley et al.,
1997).
The 1-norm (dis)similarity measure implies to con-
sider the Assignment Step and the OF (9) with no
squares involved, but considering the absolute value
only. Therefore, thek-medians OF shall be referred
to as, more generally, the Within-Clusters Sum-of-
Distances (WCSD):

WCSD=
k

∑
i=1

∑
x∈Si

‖x− r(i)‖1 (9)



k-medians still works by the Expectation-
Maximization steps introduced in Sec. 3.3.1.
However, in this case the cluster’s representative is
themedian, evaluated by taking the component-wise
median rather than the mean amongst patterns in
clusters. Due to the minimization of the 1-norm
rather than squared 2-norm,k-medians is more robust
to noise and outliers with respect tok-means; indeed,
the median is not (so-much) skewed in presence of
(few) very low or very high values.

3.3.3 k-medoids

In k-medoids (Kaufman and Rousseeuw, 1987) the
cluster’s representative (known asmedoidor Min-
SOD1) is the cluster datapoint which minimizes the
sum of distances within the cluster itself. Conversely
to k-means andk-median, ink-medoids clusters’ rep-
resentatives are actual members of the dataset at hand
by definition. In this work, thek-medoids problem
has been solved by means of the implementation pro-
posed in (Park and Jun, 2009), which is based to the
same Voronoi iterations at the basis ofk-means andk-
medians.k-medoids, due to the representatives’ defi-
nition, can ideally deal with any (dis)similarity mea-
sures. Therefore, its objective function can generally
be defined as

WCSD=
k

∑
i=1

∑
x∈Si

D(x− r(i)) (10)

whereD(·, ·) is the (dis)similarity measure. In this
paper, the adopted (dis)similarity measure fork-
medoids is the Mahalanobis distance (Mahalanobis,
1936), defined as following:

d(x, r(i)) =
√
(x− r(i))T ·C−1

i · (x− r(i)) (11)

whereCi is the covariance matrix for theith cluster
andr(i) is its representative (i.e. the medoid).
Since thek-medoids algorithm minimizes the sum of
pairwise distances rather than the sum of squares, it
is more robust to noise and outliers with respect to
k-means.

3.3.4 ANFIS Synthesis by Joint Input-output
Space Clustering

Albeit clustering is an unsupervised problem by
definition, the dataset at hand consists in la-
belled patterns; thus, it has the formS =
{(x1,y1),(x2,y2), ...,(xNP,yNP)} wherexi ∈ RNF and
yi ∈R, for i = 1, ...,NP, which we refer to asinputand
outputspace(s), respectively. Since in this work the

1Minimum Sum Of Distances

clustering problem in the joint input-output space will
be considered, the cluster’s representative(s) must be
re-defined. Indeed, if one has to work in the in-
put space (i.e. with unlabelled patterns), the clus-
ters’ representatives as defined in Secs. 3.3.1–3.3.3
suffice. Conversely, as concerns joint input-output
spaces, each cluster will be described by:

• its original representativer (either mean, median
or medoid – depending on the algorithm at hand)

• its covariance matrixC

• a set ofNF +1 coefficientsθθθ
The former two quantities will be used in order to
build the ANFIS MF according to (5), whereas the
latter will be used in order to define the hyperplane
which locally approximates the input-output mapping
according to (6). Specifically, it can be evaluated us-
ing the Least Mean Squares (LMSs) estimator:

θθθi =
(
XT

i X i
)−1

XT
i Yi (12)

whereX i is the set of input patterns lying in theith

cluster andYi is the set of corresponding output val-
ues (ground-truth). It is worth noticing that patterns
in X i will be augmented by appending a heading 1
such that their dimension isNF + 1: in this manner
θθθi ∈ RNF+1, as it also considers the hyperplane’s in-
tercept (cf. (6)).
In order to fully consider both the input and out-
put spaces, the (dis)similarity measure has been
readapted, regardless of the specific adopted cluster-
ing algorithm. The pattern-to-cluster (dis)similarity
measure is defined as a convex linear combination
between the point-to-representative distance (input
space) and the approximation error given by the in-
terpolating hyperplane (output space):

d̂(x,〈r ,C,θθθ〉) = ε ·d(x, r)+ (1− ε)
(

y−θθθT ·x
)2

(13)
whered(·, ·) is one of the given (dis)similarity mea-
sures (either squared Euclidean, Manhattan or Maha-
lanobis), the triad〈r ,C,θθθ〉, as introduced, defines the
fuzzy rule and, finally,ε ∈ [0,1] is a trade-off param-
eter which tunes the linear convex combination. It is
worth noticing that ifε = 1 the rightmost term in (13)
will not be considered, thus collapsing into a standard
clustering problem.
The rationale behind (13) is that the algorithm aims
at minimizing the approximation error due to the hy-
perplane (rightmost term) and, at the same time, at
discovering well-formed2 clusters in the input space
(leftmost term).

2either compact or homogeneous, depending on the
(dis)similarity measure and, by extension, on the clustering
algorithm objective function



4 EMS MODELLING
PROCEDURE

In this section is explained in details how the ANFIS
EMS is efficiently modelled through the exploitation
of a clustering algorithm. The ANFIS optimization
process is explained from a generic point of view,
valid for each clustering algorithm proposed in the
previous section, including their variants (i.e. along
with the output space). The clustering algorithm re-
lies on a given dataset composed byEGL, Cbuy and
Csell time series.

The whole dataset has been partitioned inTrS,
VlS and TsS(i.e. Training Set, Validation Set and
Test Set, respectively). These are used to train the
ANFISs, to select the best for a given number of MFs
and to measure the performances of the optimum one,
respectively. The dataset partition amongTsS, TrS
andVlS is made on a daily base, namely all time slots
associated with the same day will belong to a sin-
gle set. More precisely, the whole dataset is firstly
divided in two subsets having the same cardinality.
The first subset constitutes theTsSwhereas the sec-
ond one is partitioned in 5 different ways in order to
constitute 5 differentTrSandV lSpairs.

Algorithm 1 EMS Training Procedure

1: procedure EMS DESIGN

2: TsSand〈TrSs,V lSs〉 pairs partitioning
3: for j = 1 to 5do ⊲ for eachTrSj
4: {EN

opt,SoCopt} j := MILP(TrSj)
5: ⊲ evaluation of the optimal solution
6: Γcl

j := {TrSj ,SoCopt,EN
opt}

7: ⊲ Clustering input dataset
8: end for
9:

10: for k= 2 to 25do ⊲ for each value ofk
11: for j = 1 to 5do ⊲ for eachTrSj

12: {µk j,Ck j ,θθθk j} := clustering(k,Γcl
j )

13: Φk j := {µk j,Ck j} ⊲ MF evaluation
14: ANFISk j := {Φk j,θθθk j}
15: simulation ofANFISk j onVlSj → P̄k j
16: end for
17: selection ofANFISbest

k according withP̄k j

18: simulation ofANFISbest
k on theTsS→ Pk

19: end for
20: end procedure

The clustering procedure exploits the genericTrSj

dataset, namely theTrS of the j th TrS-VlS pair, to-
gether with the corresponding optimum profiles of
(SoCopt) j and(EN

opt) j found through the MILP opti-
mization. For the sake of ease, the dataset read by

the clustering algorithm is defined byΓcl
j . It is clear

that if the only EMS input space is considered,(EN
opt) j

will not take part as a feature for clustering and will
be only used for the estimation of the hyperplanes co-
efficients defined byθθθ j , once they are defined (see
(12)). Conversely, if the clustering procedure is ap-
plied on the joint input-output space, the coefficients
θθθ j are updated after each Voronoi iteration together
with the clusters. The optimization process is ran for
a number of clustersk ranging fromk = 2 to k = 25
on the j th datasetΓcl

j .
For eachk, the clustering procedure is repeated for
eachΓcl

j (i.e. 5 times), returning the respectivek
representative vectors, covariance matrices and hy-
perplanes coefficients. These are used to model the
ANFIS multivariate Gaussian MFsΦk j (i.e. rule an-
tecedent set) and the Sugeno hyperplanes (i.e. rule
consequent set) represented by theθθθk j coefficient
sets, respectively, according to (5) and (6), as intro-
duced in Sec.3.3.4. The previously described pro-
cedure results in 24× 5 different ANFIS synthesis.
More precisely, for eachk value there exist 5 dif-
ferent ANFIS corresponding to the 5 differentTrSs.
Each generated ANFIS is then simulated on its re-
spectiveVlSand its performance is evaluated accord-
ing to (7). For each value ofk, the best ANFIS among
the 5 TrS-VlS pairs, namedANFISbest

k , is selected
whereas the remaining 4 are discarded. Finally, for
eachANFISbest

k the MG EMS is simulated on theTsS
in order to evaluate the generalization capability. The
overall procedure of the EMS ANFIS design and op-
timization is illustrated in Algorithm 1.

5 SIMULATION SETTINGS

In this work it has been considered a MG composed
by the following energy systems: a PV generator of
19 kW, an aggregated load with a peak power around
8 kW, and ESS with an energy capacity of 24 kWh.
For the ESS modelling it has been taken into consid-
eration the Toshiba ESS SCiB module having a rated
voltage of 300 V, a current rate of 8 C-Rate and a ca-
pacity of about 80 Ah.
The dataset used in this work has been provided by
AReti S.p.A., the electricity distribution company in
Rome. The energy prices are the same used in pre-
vious works, (Leonori et al., 2016a; Leonori et al.,
2016b).
The considered dataset covers an overall period of 20
days, sampled with a 15 minutes frequency. The over-
all dataset is shown in figure 2, together with the en-
ergy prices both in sale (positive) and purchase (neg-
ative).
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Figure 2: MG power production and demand of the overall
dataset and TOU energy prices.

The even days are assigned to theTsS, whereas the
odd days are partitioned with a random selection be-
tween theTrS andVlS in order to form 5 different
TrS-VlS partitions (see Sec. 4). It has been chosen
to assign the 70% of the odd days to theTrSand the
remaining 30% to theVlS.
The ANFIS optimization process is executed for each
clustering algorithm introduced in Sec. 3.3 and by
varying theε values, namely the local approximation
error influence, as follows:

• k-means forε equal to 1, 0.75, 0.5 and 0.25.

• k-medians forε equal to 1, 0.75, 0.5 and 0.25.

• k-medoids forε equal to 1, 0.75, 0.5 and 0.25.

The clustering algorithms have been set with a max-
imum number of iterations equal to 50 and every ex-
ecution of the algorithm (i.e. number of replicates) is
repeated 20 times with a new, random, initial repre-
sentatives selection.
The solution chosen by the clustering algorithm af-
ter each run is the one which minimizes its respective
objective function (see Sec. 3.3), namely the WCCS
defined in (8) fork-means, (9) fork-medians and (10)
for k-medoids.

6 RESULTS

The simulation results have been studied by comput-
ing the OFP̄ defined in (7) on theTsS, whose optimal
solution is shown in figure 3.
The results on theTsSgiven by the procedure de-
scribed in Algorithm 1 are shown in figure 4, as a
function of k, by reporting the respective value of
P̄ for eachANFISbest

k generated. These are grouped
by the differentε coefficient values, which range be-
tween 1 and 0.25 as defined in Sec. 5. It is possi-
ble to observe thatk-medoids in most cases presents
the best results, being its OF curves (in green) lower
with respect to the other two competitors (k-means
in red andk-medians in blue). Moreover, for lower
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Figure 3: MG optimum solution energy flows, ESSSoCand
energy prices computed on the TsS by MILP approach.

values ofε, especially forε = 0.25 (i.e. when the
approximation error due to hyperplane prevails (see
(13)), thek-medoids results appear to be more sta-
ble ask increases with respect to the other two algo-
rithms (see figure 4-d).k-means andk-medians show
a smoother behaviour of̄P, especially forε = 1 (fig-
ure 4-a), meaning that these are more stable when
considering the input space only. In all cases their
profit results are around 80% of the optimum solu-
tion.
In order to focus on the results reliability and sen-
sitivity, the carried out tests have been repeated 10
times. In this study, for the sake of clarity, it has
been decided to select onlyANFISbest

k associated with
the best OF result on theTsS. The selected solu-
tions are displayed through a boxplot representation
in figure 5 after being grouped byε coefficient and
clustering algorithm. Specifically, in figure 5-a are
reported theANFISbest

k selected solution OF (̄P) val-
ues; in figure 5-b their respective number of clusters
and, finally, in figure 5-c are reported the Davies-
Bouldin Index (DBI) values (Davies and Bouldin,
1979), which measures both intra-clusters compact-
ness and inter-clusters separation.

As shown in figure 5-a, best results are confirmed
to be prevalently given byk-medoids. These are
followed by thek-medians. On the other hand,k-
medoids solutions present high level of variability
both on the value ofk and the DBI, as pointed by
higher extension of the boxes (see figure 5-b and
c). Nevertheless, forε = 0.5 the boxplots show a
lower variance forP̄, k andDBI. In k-means andk-
medians solutions, considering the joint input-output
space term seems to be scarcely significant. Only
for k-means the joint input-output space term in OF
yields a relevant improvement in terms of reduction
of the DBI and the number of clusters. More into
details, as far ask-medoids is concerned, by look-
ing at the DBI it is possible to see that the clustering
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problem is hard to solve3, whereas thek-means and
k-medians lead to better solutions. However, in terms
of OF (see (7))k-medoids overperforms the other two
competitors. This is mainly due to the Mahalanobis
distance which, by considering up to the second-order
statistics (i.e. the covariance matrix), is aware of the
clusters’ shapes as well. Indeed, by using the Ma-
halanobis distancek-medoids effectively updates the
covariance matrix at each iteration, conversely to the
other two clustering-based ANFIS synthesis proce-
dures, where the covariance matrix is evaluated once,
at the end of the clustering procedure.

7 CONCLUSION

In this work it has been investigated a procedure for
the synthesis of a MG EMS based on computational
intelligence techniques. It performs a cluster analysis
in order to find automatically the number and the lo-
cation on the input space of the rules composing an
ANFIS, as the core inference engine of the EMS.
The ANFIS synthesis is casted as a supervised ma-
chine learning problem, where patterns are input-
output pairs, taking as ground-truth output values the
ones coming from the benchmark solution obtained
by a MILP procedure.
In particular, three considered clustering algorithms
have been compared, which differ for their respective
(dis)similarity measures and the way clusters’ repre-
sentatives are evaluated. Besides, a clustering proce-

3Recall: the lower DBI, the better the partition. Indeed,
a low DBI means low intra-variance (high compactness)
and high inter-variance (high separation).

dure in the joint input-output space has been inves-
tigated, evaluating its effectiveness when the weight-
ing coefficient in the OF changes. Results show that
adopting the Mahalanobis distance on the joint input-
output space leads to profits way superior thank-
means. This improvements, however, are paid with
higher values of both the average number of clusters
(i.e. model complexity) and its variance (i.e. algo-
rithm robustness).
On the other hand, the adoption of thek-medians
seems a good compromise in terms of both robust-
ness and effectiveness of OF performance and par-
titions quality in terms of DBI. Starting from these
findings, further experiments can be done. First, it is
possible to adopt a hierarchical clustering algorithm
in order to better deal with larger datasets, improving
both speed and accuracy in clusters discovery. More-
over, a genetic algorithm can be applied to tune the
ANFIS parameters (De Santis et al., 2017) (e.g. rule
weights and MF shape) once it is synthesised by the
clustering algorithm.
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Figure 5: Simulation results onTsSconsidering the best solution of each run illustrated through a box-plot representation. Top
and bottom box sides correspond to first and third quantiles,respectively, whereas the red dash corresponds to the median. Top
and bottom whiskers extremities correspond to the maximum and minimum points not considered as outliers, respectively.
These latter are marked with a red+ symbol. In (a) are shown the OF values; in (b) the number of MFs; in (c) the DBI
associated to the clustering solution which models eachANFIS.


