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Abstract: Accurate, relevant, and timely combat identification (CID) enables warfighters to locate and identify critical 
airborne targets with high precision. The current CID processes included a wide combination of platforms, 
sensors, networks, and decision makers. There are diversified doctrines, rules of engagements, knowledge 
databases, and expert systems used in the current process to make the decision making very complex. 
Furthermore, the CID decision process is still very manual. Decision makers are constantly overwhelmed 
with the cognitive reasoning required. Soar is a cognitive architecture that can be used to model complex 
reasoning, cognitive functions, and decision making for warfighting processes like the ones in a kill chain. 
In this paper, we present a feasibility study of Soar, and in particular the reinforcement learning (RL) 
module, for optimal decision making using existing expert systems and smart data.  The system has the 
potential to scale up and automate CID decision-making to reduce the cognitive load of human operators.  

1 INTRODUCTION 

Accurate, relevant, and timely combat identification 
(CID) enables warfighters to locate and identify 
critical airborne targets with high precision.  The 
current CID processes include the use multiple 
platforms, sensors, networks and decision makers. 
There are diversified doctrines, rules of 
engagements, knowledge repositories, and expert 
systems used in the current process to address the 
complexity of decision making challenges.  
Figure 1 shows many people (watch stations) that 
are involved in a CID decision-making process for a 
Combat Information Center (CIC). However, the 
process is still very manual. Decision makers such as 
Tactical Action Officers (TAOs) and Air Defense 
Officers (ADOs) are constantly overwhelmed with 
the cognitive reasoning required (Scruggs, 2009). 

The core for the research presented in this paper 
is to investigate the efficacy of artificial intelligence 
(AI) systems that utilize Machine Learning (ML) for 
using, fusing, and improving on existing knowledge 
models for CID cognitive functions that lead to 
timely and automatic decision-making, such as to 
reduce cognitive burden in the operational 
environment. The contribution of the paper is that 

we present and demonstrate a working 
implementation: it applies the rule-based Soar 
system jointly with the reinforcement learning 
algorithm that is suitable for the CID application 
domain. While we know Soar can handle large 
numbers of rules (Laird, 2012), this a 
position/opinion, rather than fact, which we will 
require future work to prove, that the methodology 
and framework can be potentially scaled up to large 
amount of knowledge bases and ontologies related to 
CID. 

 

Figure 1: Complex decision making in the CID current 
process. 
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2 METHODS 

2.1 Soar and Reinforcement Learning 

Soar (Laird, 2012) is a cognitive architecture that 
scalably integrates a rule-based system with many 
other capabilities, including RL and long-term 
memory. The main decision cycle involves rules that 
propose new operators, as well as preferences for 
selecting amongst them; an architectural operator-
selection process; and application rules that modify 
agent state. The reinforcement learning module 
(Soar-RL) modifies numeric preferences for 
selecting operators based on a reward signal, either 
via internal or external source(s).  Soar has been 
used in modeling large-scale complex cognitive 
functions for warfighting processes like the ones in a 
kill chain (Jones et al., 1999). 

In this paper, we will show how to use Soar and 
specifically the reinforcement learning (Soar-RL) 
module to learn an effective combination of existing 
CID features for decision-making, as identified by 
experts and systems, in an operational environment. 

2.2 Combat ID 

There are many challenges in the CID process, 
including 1) an extremely short time for fusion, 
decision-making, and targeting; 2) uncertain and/or 
missing data outside sensor (e.g., radar, radio) 
ranges; 3) manual decision-making; 4) 
heterogeneous data sources for decision making; and 
5) multiple decision-makers in the loop. 

Existing CID methods, sensors, and systems 
include basic CID categories and methodologies as 
follows: 
1. Procedural. Procedural methods involve 

analysis of a target’s “behaviors,” to include 
such things as flight profile and point of original 

2. Non-cooperative. These methods gather ID 
information on a target without that target’s 
intentional cooperation/participation.  

3. Cooperative. Cooperative CID requires active 
participation on the part of the target. A 
common example would be an identification 
friend or foe (IFF) transponder.  

4. Intelligence and ID Fusion methods. 
Information derived from various networks 
comprises the final CID method. 

The existing methods involve wide ranges of 
participating platforms such as Destroyers, Cruisers, 
Carriers, F/A-18s and E-2Ds; Participating Sensors 
such as Radar, Forward Looking Infrared (FLIR), 
Identification Friend or Foe (IFF), Precision 

Participation Location Identifier (PPLI), National 
Technical Means (NTM); and Participating 
Networks and Systems such as the Aegis combat 
system, Cooperative Engagement Capability (CEC) 
and Link-16.  There are diversified doctrines, rules 
of engagements (ROE), knowledge databases and 
expert systems, as smart data used in the current 
process.  Many existing rules, expert systems and 
smart data may be obselete, incomplete, or have low 
confidence levels. Some models may be conflicted 
with each other, even wrong or not adapative to a 
local environment. There is a critical need to 
research methodologies to better use, fuse and 
improve on all these models to advance the art of 
CID a higher symbolic level.   

This paper evaluates Soar-RL as a tool for this 
purpose due to the fact it can train and fuse the 
system at a symbolic level. The complex CID 
cognitive functions are mapped to the models 
including decision-making, sensor fusion, analytic 
processes and workflow initially and then Soar-RL 
is applied to integrate them together.  

CID decision-making requires a fusion of 
existing rules.  For example, as shown in Figure 2, a 
state at time t can be a track profile of a flying object 
with observable data containing longitude/latitude 
(x/y position), altitude (z), speed, acceleration, IFF, 
point of origin, heading, type, class, etc.  The goal is 
to classify the CID of the object as friendly, foe or 
unknown. So an existing model can be “if an 
unknown object is at the position x,y, there is a 
probability of p11, p12 or p13 that the object’s point of 
origin  to be A, B  or C respectively. There is 
another model saying “if an unknown object’s point 
of origin is from A or B there is probability  of p21, 
p22 or p23 that the object is a foe respectively.  So 
when an object is observed at (x,y), then the 
probability of the object being a foe is the maximum 
of the combined p11*p21 ,p11*p22 ,p11*p23 ,p12*p21 
,p12*p22, p12*p23 ,p13*p21 ,p13*p22, and p13*p23.  

 

Figure 2: Example of CID requires a fusion of existing 
rules. 



 

3 SIMULATION 

In order to provide a case for feasibility, Table 1 
shows simple three rules, with which a Probability 
of Hostile (POH) is specified initially as existing 
CID rules. We also assume Probability of Non-
Hostile (PONH)=1-POH. These rules are not real-
life CID rules but used as examples in the 
simulation.  

Table 1: Simple Rules Used in Simulation. 

State Existing CID Rules 

X,Y 1.If X<10 && Y<10 then 
POH=0.0001 

Z 2. If Z<6 then POH=0.2 

Mode 3. If mode=4 then POH=0.00001 

The goal for Soar-RL was to learn and adjust the 
preferences of these rules dynamically which are the 
same as POH in this case. The actions for the 
reinforcement learning are the two decisions (hostile 
or non-hostile) for a flying object based on the 
observable data (i.e., State s) for the object at time t. 
The preference of a decision (i.e., hostile or non-
hostile) is the expected total POH for each decision 
(action) at time t, computed using a recursive 
formula in Soar-RL. For example, when 
x=9,y=9,z=4 and mode=4 at time t 

• POH for Rule 1: 0.0001 
• POH for Rule 2: 0.2 
• POH for Rule 3: 0.00001  

So the combined POH or the preference Q(t+1) 
for the decision hostile is 0.20011 

Similarly,  
• PONH for Rule 1: 0.9999 
• PONH for Rule 2: 0.8 
• PONH for Rule 3: 0.99999  

The combined PONH is 2.79998.  The 
normalized POH and PONH is 0.933 and 0.067 
respectively.  In the greedy algorithm of Soar-RL, if 
POH >PONH, the decision is hostile; else non-
hostile.  The Soar-RL decides non-hostile for the 
current state.  Then the preference of deciding 
hostile or non-hostile that has been updated or 
learned from the formula below: 

,௧ାଵݏ)ܳ  ܽ௧ାଵ) = ,௧ݏ)ܳ ܽ௧) + ݎ)ߙ max∈ߛ+ ௧ାଵݏ)ܳ , ܽ) − ,௧ݏ)ܳ ܽ௧))  
 
The default learning-rate α=0.3 and discount-

rate γ=0.9. The learning formula requires a teacher’s 

feedback (correct decision is rewarded with r=1 and 
incorrect decision r=-1).  The POH or preference is 
computed as follows; 

• Preference Q(st+1,at+1) for Rule 1 with the 
decision at+1 hostile= 0.0001 since this rule is 
not activated 

• Preference Q(st+1,at+1) for Rule 1 with the 
decision at+1 non-hostile = 0.9999+0.3(1-
2.79989)/3=0.819911 where Q(st+1,a)=0; 
Q(st,at)=2.79989. Since all three rules 
contributed to the Q-value for the decision, the 
change of Q-value 0.3(1-2.79989) is divided 
among the three rules.  

Similarly: 
• Preference Q(st+1,at+1) for Rule 2 with the 

decision at+1 hostile= 0.2  
• Preference Q(st+1,at+1) for Rule 2 with the 

decision at+1 non-hostile = 0.8+0.3(1-
2.79989)/3=0.620011. 

• Preference Q(st+1,at+1) for Rule 3 with the 
decision at+1 hostile = 0.00001  

• Preference Q(st+1,at+1) for Rule 3 with the 
decision at+1 non-hostile = 0.99999+0.3(1-
2.79989)/3=0.820001  

For the three simple rules, Table 2 shows the 
total 8 possible training examples and their ground 
truths were used to train a Soar-RL agent. 

Table 2: Total 8 training examples and ground truths of 
hostility were used in the simulation: for the purposes of 
the experiment, the truthful “hostility” is annotated.. “Y” 
means hostile and “N” means non-hostile. (Mooren, 
2017). 

Track 
# X-value Y-value Z-value MODE Hostility 

1 5 5 5 0 Y 

2 12 12 5 0 Y 

3 5 5 12 0 Y 

4 5 5 5 4 N 

5 5 5 12 4 N 

6 12 12 12 4 N 

7 12 12 5 4 N 

8 12 12 12 0 N 

Figure 3 shows the screen shots of the examples 
when the Soar-RL agent made correct and incorrect 
decisions and how they are rewarded from the 
environment by the teacher who knows ground truth. 



 

4 RESULTS 

Table 3 shows the 8 data points in Table 2 were fed 
sequentially to the Soar-RL agent in Figure 3. Soar 
made decisions (i.e., the “Soar says” column) 
without any learning. This is a baseline run where 
the percentage of overall correctness (PAC) is 
62.5%. The baseline PAC was used for comparison 
to further runs and parameter testing. Table 4 shows 
the same 8 data points were used in the first iteration 
of the Soar-RL learning. The PAC increased to 75%. 

 

 

Figure 3: Examples of the Soar-RL training when Soar-RL 
agents made correct and incorrect decisions. 

Figure 4 shows the 8 data points were ingested 
sequentially and iteratively (5 times, a total of 40 
data points) to the Soar-RL agent. The first three 
iterations were considered as learning phases (LP). 
In a LP, the Soar-RL agent’s decision accuracy was 
not good, Soar-RL parameter was set ε=0.1 so the 
agent can explore, i.e., 10% of the time the agent 
made a decision randomly instead of considering the 
POHs.  In an operational phase, the agent’s decision 
accuracy was dramatically improved (due to the 

learning in the previous phase) and ready to operate 
the parameters set to be greedy with ε=0 (see 
Section 4 for the discussion of the parameters). The 
agent makes decisions strictly based on the predicted 
POHs. The PAC went from 62.5% to 87.5% for the 
4 track iterations (total 32 training data points) as 
shown in Figure 4. The statistical significance p-
value was 0.04, where the null hypothesis was that 
there is no difference of a PAC after a Soar-RL run 
compared to the baseline run with any learning. 
When 100 iterations (total 800 training data points) 
were applied, the PAC increased to 100% (See 
Figure 6). Considering the number of rules in the 
feasibility study is very small, the possible different 
data points for the rules are only 8, the Soar-RL 
prototype proved that the system can gradually turn 
a learning agent into an operational one using the 8 
data points iteratively. 

Table 3: Baseline Run - No Learning: The results from a 
Soar CID run where no RL was applied.  

Track 
# Soar Says 

Ground 
Truth 
(Hostile 
Y/N) 

Correct 
(Teacher’s 
Feedback) 

Overall 
Correctness 

1 not hostile Y N 

62.50% 

2 not hostile Y N 

3 not hostile Y N 

4 not hostile N Y 

5 not hostile N Y 

6 not hostile N Y 

7 not hostile N Y 

8 not hostile N Y 

Table 4:  The results from the 1st iteration Soar CID run of 
using the 8 data points.  The percentage of overall 
correction (PAC) increased to 75%. 

Track 
# Soar Says 

Ground 
Truth 
(Hostile 
Y/N) 

Correct 
(Teacher’s 
Feedback) 

Percentage 
of Overall 
Correctness 
(PAC) 

1 hostile Y Y 

75% 

2 hostile Y Y 

3 not hostile Y N 

4 hostile N N 

5 not hostile N Y 

6 not hostile N Y 

7 not hostile N Y 

8 not hostile N Y 



 

 
Figure 4: Simulation results of using the 8 data points in 
Table 2 for learning with 4 iterations of learning phases 
(LP) where ε=0.1 The last iteration (5th) was used as an 
operational phase (OP) where ε=0.  By changing the RL 
parameters, the Soar-RL agent is gradually changed from 
LPs to an OP. 

5 DISCUSSION (MOOREN 2017) 

There are two learning-policies available in 
Soar/RL: Q-Learning and SARSA. The two 
algorithms control how the data will be treated and 
how the expected future reward is chosen (Laird, 
2012). Both are based on the concept of Temporal 
Difference (TD) learning, where specific methods 
estimate value functions prior to user input to 
modify the final reward (Sutton & Barto, 1998). Q-
learning is an off-policy TD method where the 
future reward is maximized and SARSA is a TD 
method where the future reward is the value of the 
selected operator. 

Once the learning policy has been established the 
important parameter decides how the actions will be 
chosen. As an agent can only improve when 
integrated with an environment, the environment 
needs to be explored. There are multiple exploration 
strategies in Soar. An exploration policy allows for 
decision making based on numeric preferences. 
There are two main methods: ε-greedy and softmax.  

Greedy strategies look to exploit immediate 
maximized rewards (Sutton & Barto, 1998). The 
integration of ε adds a randomness to the selection. 
As ε decreases there is less randomness in selection, 
as it increases more. Ε-greedy strategies seek to 
maximize reward return, but may sometimes select 
an action at random. The utility of randomness has 
been proven in certain scenarios and in fact certain 

optimality proofs require non-zero probability of 
exploring some states. 

Figure 5 displays performance improvement 
overall with a higher degree of randomness, ε=0.1 in 
comparison to the other two depicted selections. The 
ε-greedy methods perform better due to their 
continued exploration (Sutton & Barto, 1998).  

The second exploration strategy is softmax. 
Softmax behaves like greedy strategies in selecting 
the maximum reward but ranks and weighs the 
remaining actions depending on associated value 
estimates (Sutton & Barto, 1998). A variation of 
softmax is the Boltzmann distribution. Which uses 
an additional variable called “temperature” to further 
effect the possibility of randomness. Soar sets a 
default temperature value of 25.  

Deciding which exploration strategy would be 
most useful is important because it will determine if 
an environment is still being explored or if it is 
being exploited. In terms of the two main strategies 
discussed earlier there may be benefits of one over 
the other based on variable settings. ε-greedy is 
primarily an exploitation strategy, but as ε increases, 
there is more exploration due to the randomness. 
Softmax/Boltzmann is a combination determined by 
the temperature setting. Exploration versus 
exploitation has long been considered a dilemma 
(Tokic, 2010). 

The selection of the learning rate is also 
important to developing a stable RL system. The 
default value for learning rate in Soar is 0.3, with a 
range of 0–1. If the learning rate is set approaching 
one, the system will learn quickly. If the learning 
rate is set approaching zero, the system will learn 
more slowly; when set at 0, the system will not 
update reward values. To stabilize a RL application 
it is feasible to lower the learning rate once the 
percentage of correct decisions has maximized.  

 

Figure 5: ε-greedy performance comparison. (Sutton & 
Barto, 1998). 
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Figure 6: A comparison of ε-greedy action-value methods 
for the CID problem (Mooren, 2017). 

Figure 6 shows statistical analysis of the PACs 
including both the LP and OP. The hypothesis test 
was there is no difference of a combined PAC after a 
Soar-RL run compared to the baseline run (no 
learning). The one-tail p-value for the combined LP 
and OP Run 4 is p = 0.0027. Run 6 had the highest 
overall LP/OP due to the amount of samples (100 
iterations for 800 data points); p = 0.0006. The p-
values in all cases of extended sampling, less Run 7 
(p=0.1206) was proven to be statistically significant 
and less than the alpha value of 0.05. Therefore, we 
reject the null hypothesis and accept the alternative 
hypothesis. The integration of RL into a rudimentary 
CID problem was successful. 

6 CONCLUSIONS 

In conclusion, we characterized the CID problem 
and apply the Soar-RL method to learn, adapt, 
incorporate existing knowledge, models and expert 
systems as production rules the CID decision 
making application. Specifically, we showed it is 
feasible that it is feasible that Soar-RL incorporated 
in a combat system can learn from the feedback of 
human operators and leverage the existing 
knowledge bases. The trained Soar agent can be 
used to adapt to the future situations and reduce the 
cognitive burdens of human operators.  While the 
scope of this initial research is limited, the results 
are favorable to a dramatic modernization of CID. In 
addition to establishing proof of concept, these 
findings can aid future research to develop a robust 
system that can mimic and/or aid the decision-
making abilities of a human operator. While this 
research does focus on a sea-based naval 
application, the framework and methodology can 
also be expanded and scaled up to DOD-wide 
implementations. 
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