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Abstract: Actually, huge amounts of data are generated at distributed heterogeneous sources, to create and to share 

information on several domains. Thus, data scientists need to develop appropriate and efficient management 

strategies to cope with the heterogeneity and the interoperability issues of data sources. In fact, ontology as 

schema-less graph model and ontology matching as dynamic real-time large-scale data integration enabler 

are addressed to design and develop advanced management mechanisms. However, given the large-scale 

context, we adopt ontology partitioning strategies, which split ontologies into a set of disjoint partitions, as a 

crucial part to reduce the computational complexity and to improve the performance of the ontology 

matching process. To this end, this paper proposes a novel approach for large-scale ontology partitioning 

through parallel Markov-based clustering strategy using Spark framework. This latter offers the ability to 

run in-memory computations to provide faster and expressive partitioning and to increase the speed of the 

matching system. The results drawn by our strategy over real-world ontologies demonstrate significant 

performance which makes it suitable to be incorporated in our large-scale ontology matching system. 

1 INTRODUCTION 

Nowadays, the proliferation and the adoption of 

emerging technologies have spawned new research 

disciplines. Every day, enormous amounts of data 

are generated in several sectors (Manufacturing, 

health, social life etc.) resulting in what-is now 

called Big Data (Bello-orgaz et al., 2016; Jin, 2015). 

Therefore, appropriate processing and harnessing of 

this data could reveal sound knowledge and valuable 

insights and could herald new impetus potentials to 

sustain productivity growth. 

Given the fact that Big Data reside at distributed, 

heterogeneous sources, we argue that the design and 

development of advanced Big Data management 

techniques and technologies requires effective 

integration mechanisms (cleaning, matching and 

transforming) and effective analytical exploitations. 

However, there are many challenges that encumber 

managing Big Data ranging from those caused by 

the features of Big Data, as well as, those related to 

the current data processing strategies (Chen et al., 

2013; Chen et al., 2014). 

Hence, to build efficient Knowledge-based 

systems, we address Big Data aspects from data 

management perspectives by proposing a Big Data 

management system based on semantic data models 

as a data integration enabler to cope with Big Data 

challenges (Mountasser et al., 2015). The integration 

strategy aims to aggregate various heterogeneous 

data sources to discover valuable insights in a wide 

array of domains. As a schema-less graph model, 

ontologies can describe the knowledge aspects of 

any domain and can be suitable to resolve data 

heterogeneity and interoperability issues of 

overlapped domains. 

From this regard, we have already proposed a 

dynamic large-scale ontology matching approach in 

conjunction with Big Data features that discover 

correspondences among resultant ontologies from 

each data sources (Mountasser et al., 2016). 

Moreover, we focus on decomposing large and 

complex ontologies into simpler subsets with 

performance and scalability-friendly data structures 

that contribute on the reduction of computational 

complexity and improve the performance of our 

system. However, in large scale context, massive 
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amount of ontologies entities can cause performance 

impediments during the ontology matching process 

which negatively impacts the system scalability. 

Therefore, to proceed matching of large-scale 

ontologies, ontology partitioning strategies must be 

adopted to split ontologies into a set of disjoint 

partitions to increase matching accuracy and to 

improve memory consumption. 

The objective of ontology partitioning 

approaches is to partition the entities of ontology 

into several disjoint clusters, so that, the 

cohesiveness among the entities in a cluster is high 

while the coupling crossing different clusters is low. 

For that, this paper presents a novel approach for 

large-scale ontology partitioning through parallel 

Markov-based clustering strategy over distributed 

architecture using Spark framework. 

The rest of the paper is structured as follows. In 

section 2, we describe the related work in the field of 

graph-based ontology partitioning in the large-scale 

context. Section 3 describes our proposed 

methodology and the implementation details. 

Section 4 provides a comprehensive evaluation of 

our system on real-world ontologies of various 

domains and sizes over distributed platform. 

2 RELATED WORK 

Hu et al., (2008) develop a structure-based 

partitioning algorithm that firstly, partitions the 

entities of each ontology into a set of clusters based 

on their structural proximities, then, they construct 

blocks using RDF sentences assignment to those 

clusters. 

Similarly to the latter, Algergawy et al., (2011) 

propose a hierarchical clustering-based approach 

that represents ontologies as direct acyclic graph. 

The approach represents each node its own single 

element cluster, then, the algorithm iteratively 

merges clusters in descending order of structural 

similarity. Algergawy et al., (2015) introduce a 

seeding-based clustering technique that identifies the 

seeds of clusters using a distribution condition, then; 

the remaining entities are placed into clusters based 

on a membership function. 

Unfortunately, these works perform ontology 

partitioning, far afield from the available 

opportunities of parallel platforms. In other words, 

using better computational resources can improve 

memory consumption and achieve faster results. For 

this reason, using the Hadoop distributed platform, 

Mountasser et al., (2016) propose parallel entity-

assignment clustering system that aims to partition 

large-scale ontologies by parallelizing and 

distributing clustering tasks over available 

computational resources. First, the algorithm parses 

and splits ontologies into smaller and simpler 

resource-based subsets. Using these latter, the 

system create clusters centroid through the 

combination of several metrics based on the node 

importance philosophy. Then, it assigns remaining 

nodes to their proper clusters based on several 

similarity metrics. 

3 IMPROVED MARKOV 

CLUSTERING 

Let us assume that all the ontologies used by this 

approach are in the OWL form. Ontologies in this 

form can be organized as a Directed Acyclic Graph 

with its nodes describing entities of ontology and the 

edges between nodes describing the relations 

(taxonomic and non-taxonomic) between entities.  

Our goal of ontology clustering is dividing 

ontology into a set of clusters with related entities 

based on a graph structure. To the best of our 

knowledge, there is no study relating the large scale 

ontology partitioning using Markov clustering 

models. Consequently, this paper introduced a novel 

approach for parallel large-scale ontology 

partitioning using Markov clustering strategy.  

3.1 Preliminaries 

In this section, we highlight some pertinent 

definitions and concepts concerning graph 

description and Markov clustering strategies, used 

throughout this approach. 

3.1.1 Ontology Parsing 

Our approach builds a finite ergodic Markov chain 

model of ontology by mapping ontology classes to 

states in the Markov chain and by mapping all 

relations between classes to state transitions. Hence, 

ontology is modelled as a directed acyclic graph by 

considering concepts as a finite set of nodes and 

including taxonomic and non-taxonomic 

relationships between classes as a finite set of 

directed edges. 

3.1.2 Notations 

Throughout this paper, we assume that G = (V, E) is 

a directed acyclic graph with V and E represent the 

node set and edge set respectively. Let A be the 



adjacency matrix corresponding to the graph G, with 

A(i, j) denoting the weight of the edge between the 

vertex vi and the vertex vj. If the graph is non-

weighted, which is the case of ontologies, then, the 

weight on each edge is fixed to 1. 

A column stochastic matrix M associated to a 

graph G can be interpreted as the matrix of the 

transition probabilities of a random walk defined on 

the graph, e.g. the ith column of M represents the 

transition probabilities out of the vertex vi. The most 

appropriate way of deriving a column stochastic 

transition matrix M for a graph G is to simply 

normalize the columns of the adjacency matrix to 

sum to 1. Moreover, we define the canonical 

transition matrix by MG = AD−1, where D is the 

diagonal degree matrix of the graph G. 

3.2 Markov Clustering Approaches 

The Markov clustering algorithm is a commonly 

used graph-based clustering strategy that 

incorporated the structure of the graphs to reveal the 

clusters structure. 

Markov clustering algorithm (MCL) has been 

adopted in a wide range of applications (Enright et 

al., 2002; Wong et al., 2008). The algorithm allows 

the search for structurally homogeneous subsets by 

considering a random walk on the graph based on 

the paradigm that a “random walk that visits a dense 

cluster will likely not leave the cluster until many of 

its vertices have been visited.”. Rather than 

simulating random walks, MCL iteratively 

transforms the stochastic flow matrix associated 

with the graph. It offers various advantages. It is 

significantly tolerant to noise and behaves robustly 

(Chen and Ji, 2010). 

3.2.1 Markov Clustering 

MCL algorithm is an iterative process that applies 

three operators- expansion, inflation and pruning- to 

the stochastic matrix until convergence. The 

stochastic matrix M associated with a graph G is 

defined by normalizing all columns of the adjacency 

matrix of G. These operators are mapping the space 

of the stochastic matrix to itself (Satuluri and 

Parthasarathy, 2009). 

Expand operation: simulates a random walk on 

the graph (i.e. normal matrix squaring). Thus, it 

increases the flow between existing nodes. 

Expand (M) = M * M (1) 

Inflate operation: regulates the flow in the graph, 

strengthens the strong flows and weakens the weak 

ones. Each element of the matrix is raised to the 

power of inflation parameter r, then, matrix 

normalization is performed so that columns sum to 

1.

 

Figure 1: The improved parallel balanced regularized Markov clustering process. 



The parameter r can control the outcome of the 

algorithm by determining the granularity of the 

obtained clusters, in such a way that, larger 

parameter (r) can produce finer granularity, and 

more clusters. 

𝐼𝑛𝑓𝑙𝑎𝑡𝑒 (𝑀) =
𝑀 (𝑖 , 𝑗)r

∑ 𝑀 (𝑘 , 𝑗)r𝑛
𝑘=1

 (2) 

Pruning operation: In each column, entries’ 

having values less than some threshold (heuristically 

computed) is removed, and the remaining entries are 

normalized to make the column sum to 1. This step 

aims to reduce the non-zero value in the matrix and 

hence reduces memory consumption, which helps to 

accelerate the convergence of the process. Finally, 

the iteration is interrupted upon reaching a matrix 

that is invariant under k expansions and inflations. 

However, in spite of its advantages, MCL has 

drawn several limitations; MCL lacks scalability and 

suffers from fragmentation issue (large clusters and 

singleton cluster) which is not ideal in large-scale 

cases. 

3.2.2 Regularized Markov Clustering 

To retain the strengths of MCL and reduce its 

limitations Satuluri and Parthasarathy, (2010) 

proposed a regularized variant of MCL that 

improves the accuracy and the scalability of the 

clustering process. Regularized MCL was proposed 

as a variant of MCL to produce more accurate 

results and typically more compact clusters than 

MCL. The RMCL algorithm resolves the output 

fragmentation issues through regularizing the 

distribution flow out of the node on conjunction to 

its neighbours (Satuluri, 2012). Therefore, the 

Expand operator in MCL algorithm is replaced by 

the regularize operator which updates the flow 

distribution of each node. 

Regularize (M) = M * MG (3) 

where MG is the canonical flow matrix of the graph 

G. 

Essentially, the impact of the regularize operator 

consists on setting the out-flow distribution of a 

node to be the weighted average of the out-flow 

distributions of its neighbours (Ginanjar et al., 

2016). This operator ensures the permanent 

influence of the original topology of the graph on 

clustering process beyond the first iteration. 

 

 

 

3.2.3 Balanced Regularized Markov 
Clustering 

The BRMCL is a balanced variant that preserves the 

native features of R-MCL. Instead of using MG as 

the weight matrix, we construct a new regularization 

MR using both the current flow matrix M and the 

canonical flow matrix MG. For that, given a flow 

matrix M associated with the graph, the following 

concepts must be defined: 

 Node mass: Defined as the sum total of the 

flows into the node, in such a way that, nodes 

with higher mass attract more nodes in the 

graph towards them. 

𝑚𝑎𝑠𝑠(𝑖) = ∑ 𝑀(𝑗 , 𝑖)

𝑗

 (4) 

 Node propensity: Defined as the weighted 

average of the masses of the nodes that flows 

into this node. 

𝑝𝑟𝑜𝑝𝑒𝑛𝑠𝑖𝑡𝑦(𝑖) = ∑ 𝑀(𝑗 , 𝑖)

𝑗

∗ 𝑚𝑎𝑠𝑠(𝑗) (5) 

The distribution of masses of the “Attractor” 

nodes is a proto-indicator of the distribution of final 

cluster sizes (i.e. nodes imbalanced clusters reflects 

imbalanced masses distribution). The aim is to push 

more nodes towards attractors having lower mass, 

thus requires that weight of each neighbour of a 

given node in the regularization matrix MG must be 

in inverse proportion to the propensity of the 

neighbour. This means that at each iteration step, we 

need to construct a new regularization matrix MR 

while maintaining the rest of R-MCL unchanged. 

The new regularization matrix MR is given by: 

MR = normalize (MG * P-b) (6) 

where P is the diagonal matrix with the propensity 

vector p along the diagonal.  

The normalize operation rescales each column so 

that each column sums to 1. We notice that, the 

balance parameter b specifies the extent to which 

higher-propensity neighbours are to be penalized, in 

such a way that higher the value of b is the greater 

the penalty on high-propensity neighbours. 

3.3 Improved Parallel Markov 
Clustering 

Given the introduced approaches, there are still 

some critical limiting factors in working with 

Markov clustering especially for large scale graphs, 

since the performance of the ontology clustering 



(partitioning) process can be a critical part of the 

upcoming ontology matching process performance. 

Regularized Markov Clustering still suffers from 

the scalability and storage issues, resulting from 

high time and space complexity of the clustering 

process (Bustamam et al., 2012). At the core of the 

Regularized variants of Markov clustering, we can 

notice that its complexity is dominated by the 

iteratively sparse matrix-matrix multiplication and 

normalization steps, which is an intensive and time-

consuming component. Thus, for scalability and 

performance-gain reasons, we need to develop 

computationally efficient algorithm that performs 

parallel sparse matrix-matrix computations and 

parallel sparse Markov matrix normalizations in 

order to improve the MCL performance. 

To overcome the above MCL’s issues, we 

propose a parallel Markov clustering approach that 

tries to improve the performance of the Markov 

Clustering by implementing parallel tasks for 

expansion, inflation and pruning operators using 

Spark framework (See Figure 1), which is a fast and 

general-purpose cluster computing system. 

3.3.1 Apache Spark Framework 

Apache Spark is a unified programming 

environment that provides computing framework 

designed for scheduling, distributing, and 

monitoring applications that consist of many 

computational tasks across many commodity worker 

machines (computing cluster) (Shanahan and Dai, 

2015). 

The computational engine Spark Core provides 

the basic functionality of Spark, including 

components for memory management, task 

scheduling and fault recovery mechanisms, 

interacting with storage systems. Furthermore, it 

offers the ability to run in-memory computations to 

provide faster and expressive processing and 

increase the speed of system. In-memory processing 

is faster since no time is spent in moving the data 

and processes, in and out of the hard disk. 

Accordingly, Spark caches much of the input data on 

memory for further explorations leading to more 

performance iterative algorithms that access the 

same data repeatedly. 

3.3.2 Our Implementation 

In order to improve the MCL performance, the 

parallel implementation of the Regularized Markov 

Clustering algorithm constitutes an important 

challenge. Thereby, we introduce a very fast Markov 

clustering algorithm using Spark framework to 

perform parallel sparse matrix-matrix computations 

operations, which are at the heart of Markov 

clustering. 

First of all, the resulting graphs from large scale 

ontology are generally sparse; thus, Markov 

clustering storage issues can be resolved using 

distributed sparse matrix data structures offered by 

the resilient distributed datasets (RDD) (Bosagh et 

al., 2016), which are partitioned collections of 

objects spread across many compute nodes that can 

be manipulated in parallel. These matrices are 

distributed across computational nodes by entries 

using CoordinateMatrix implementation, by rows 

via RowMatrix or via blocks by implementing 

BlockMatrix. 

Moreover, the distributed sparse matrices offered 

by Spark ignore the large amount of zero entries, 

found in the initial stochastic matrices of Markov 

clustering algorithms. Hence, the distributed 

matrices can reduce the computational load by 

avoiding the additions and multiplications with null 

entries, since the zero values do not influence any of 

the Markov clustering operations. Furthermore, 

Spark comes with a library containing common 

computational functionality (Spark MLlib) (Meng et 

al., 2016), especially for matrix-matrix 

computations. These properties are the primary 

source of acceleration of our system. 

Besides, Spark provides a way to parallelize our 

Markov clustering strategy across clusters, while 

hiding the complexity of distributed clustering 

programming, network communication, and fault 

tolerance in order to ensure the effective and reliable 

use of cache memory and the process balanced load. 

These latter is enhanced by dividing data according 

to performance and scalability-friendly data 

structures, aiming to dynamically adapt the system 

to fine-grained allocation of both resources and 

computations based on the workload. The pseudo-

code for our parallel Markov Clustering 

implementation is given in the following: 

Input: An ontology O, Balance 

parameter b, Inflation rate r 

Output: Clusters Set C={C1,C2,…,Cn} 

 

{//Phase 1: Ontology Parsing} 

 //get ontology concepts 

Nodes:= Concepts(O) 

//taxonomic and non-taxonomix 

Edges:= Relations(O) 

//create associated graph 

 G := CreateGraph(Nodes,Edges); 

//Graph adjacency matrix 

 A := Adjacency(G) 

{//Phase 2: Markov Clustering} 



A := A + I // Add self-loops 

//Initialize M as the canonical 

flow matrix 

M := MG := A*D−1  

repeat 

// Compute mass vector 

mass(i)=∑jM(j,i) 

// Compute propensity vector 

p(i)=∑jM(j,i)*mass(j) 

P := diag(p) 

// Compute regularized matrix 

//Normalize MR so that each column 

sums to 1. 

MR := MG*P−b 

M := Mreg := M*MR 

M := Minf := Inflate(M, r) 

M := Prune(M) 

until M converges 

Interpret M as clustering Sets 

4 EXPERIMENTAL 

EVALUATION 

In order to evaluate the performance of our approach 

and the execution time, we conducted a set of 

experiments using a distributed architecture. We 

implemented our system in Java; ontologies were 

parsed using Jena Apache. All processes are 

elaborated within Apache Spark Framework as 

programming environment that provides computing 

framework designed for scheduling distributing 

computational tasks across many computing nodes. 

4.1 Data Sets 

The Performance of our approach is evaluated over 

the anatomy data set that contains two large 

ontologies of human and mouse anatomy which 

contains 3306 and 2746 concepts respectively, and 

the DBpedia ontology release DBpedia_2015_10. 

4.2 Experimental Architecture 

All the experiments were carried out using the 

Apache Spark which is an open source, in-memory 

analytics computing framework. For this 

experimentation, we use a cluster of 10 slave 

machines and one master machine. Each node is 

equipped with 3.4 GHz Intel(R) Core i3(R) with 4 

GB memory, Java 1.8 and Ubuntu 14.04 LTS. 

4.3 Experimental Results 

In order to incorporate the Markov clustering 

approach in our large-scale ontology matching 

system, we must evaluate the scalability of the 

clustering approach. In our implementation, we 

attempt to validate the performance and the 

effectiveness of the proposed approach via a set of 

experiments on real world ontologies. 

The simulation ran by using default expansion 

parameter (square), parameters of inflation r= 1.5; 2 

and 2.5, balanced parameter b= 0, 1.5, and 2 and 

pruning threshold ϵ=0.000001. The simulation is 

performed several times with different parameters of 

inflation to look at the speed and the number of 

formed clusters. 

The number of resulting clusters from the 

improved BRMCL simulation using the inflation 

rates 1.5, 2 and 2.5 vary from 1523 to 2136 clusters 

for Human ontology, from 1622 to 1968 clusters for 

Mouse ontology and from 519 to 533 clusters for 

DBpedia ontology. We can notice that varying the 

inflation parameter can result in clustering of 

different granularities, in such a way that, if the 

inflation parameter gets higher, the clustering 

algorithm predicts more clusters with smaller size. 

  

Figure 2: Clustering Time related to the inflation rate and 

the balance parameter. 

As shown in Figure 2, we clearly notice that the 

runtime of our clustering implementation is related 

to the inflation rate and the balance parameter. Thus, 

having more balanced clusters can be achieved by 

increasing the balance parameter, for the reason that 

higher values of this latter lead to more severe down 

weighting of nodes with high propensity values, 

which consequently, provoke more iteration 

operations and lead to a slower convergence for the 

clustering process. By contrast, the incorporation of 

the balanced strategy improves the clustering quality 

by allowing the discovery of balanced clusters (See 

Table 1, Table 2 and Table 3). 



Despite these impediments, our parallel Markov-

Based clustering implementation demonstrates 

significant performance and provides faster and 

expressive partitioning of the large-scale ontologies. 

Table 1: Clustering results for the Human ontology. 

 
Clusters 

Number 

Clustering 

Time 

% of 

Balanced 

Clusters 

b = 0 

r = 1.5 1523 16,492 s 11% 

r = 2 1785 17,032 s 27% 

r= 2.5 2136 17,336 s 33% 

b = 1.5 

r = 1.5 1523 17,715 s 21% 

r = 2 1785 18,277 s 28% 

r= 2.5 2136 19,442 s 33% 

b = 2 

r = 1.5 1523 19,017 s 28% 

r = 2 1785 19,271 s 35% 

r= 2.5 2136 21,318 s 46% 

Table 2: Clustering results for the Mouse ontology. 

 
Clusters 

Number 

Clustering 

Time 

% of 

Balanced 

Clusters 

b = 0 

r = 1.5 1622 12,853 s 15% 

r = 2 1787 13,071 s 17% 

r= 2.5 1968 13,473 s 22% 

b = 1.5 

r = 1.5 1622 13,002 s 35% 

r = 2 1787 13,611 s 46% 

r= 2.5 1968 13,881 s 51% 

b = 2 

r = 1.5 1622 13,659 s 41% 

r = 2 1787 13,986 s 58% 

r= 2.5 1968 15,013 s 63% 

Table 3: Clustering results for the DBpedia ontology. 

 
Clusters 

Number 

Clustering 

Time 

% of 

Balanced 

Clusters 

b = 0 

r = 1.5 519 3,112 s 44% 

r = 2 527 4,016 s 51% 

r= 2.5 533 6,562 s 53% 

b = 1.5 

r = 1.5 519 3,279 s 47% 

r = 2 527 3,665 s 59% 

r= 2.5 533 4,279 s 68% 

b = 2 

r = 1.5 519 4,385 s 47% 

r = 2 527 5,901 s 61% 

r= 2.5 533 8,185 s 70% 

5 CONCLUSIONS 

In this paper, we presented our parallel Markov-

based partitioning strategy considered as a crucial 

part of the large-scale ontology matching process, 

which aims to cope with the velocity issues and to 

increase the performance of the matching system. 

Our strategy provides faster and expressive 

partitioning through dynamic, real-time in-memory 

computations based on the Spark distributed 

programming environment. 

From the results drawn by our strategy over real-

world ontologies, it is apparent that our parallel 

Markov-based partitioning approach presents 

significant performance results for partitioning large 

ontologies, which consequently make the approach 

suitable to be incorporated in our large-scale 

ontology matching system. 
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