
Parallel Markov-based Clustering Strategy for Large-scale

Ontology Partitioning

Imadeddine Mountasser1, Brahim Ouhbi1 and Bouchra Frikh2
1LM2I Laboratory, ENSAM, Moulay Ismaïl University, Marjane II, B.P.4024 Meknès, Morocco

2LTTI Laboratory, ESTF, Sidi Mohamed Ben Abdellah University, B.P.1796 Atlas, Fès, Morocco

Keywords: Knowledge-based Systems, Big Data Integration, Parallel Large-Scale Ontology Partitioning, Markov

Clustering, Distributed Architecture.

Abstract: Actually, huge amounts of data are generated at distributed heterogeneous sources, to create and to share

information on several domains. Thus, data scientists need to develop appropriate and efficient management

strategies to cope with the heterogeneity and the interoperability issues of data sources. In fact, ontology as

schema-less graph model and ontology matching as dynamic real-time large-scale data integration enabler

are addressed to design and develop advanced management mechanisms. However, given the large-scale

context, we adopt ontology partitioning strategies, which split ontologies into a set of disjoint partitions, as a

crucial part to reduce the computational complexity and to improve the performance of the ontology

matching process. To this end, this paper proposes a novel approach for large-scale ontology partitioning

through parallel Markov-based clustering strategy using Spark framework. This latter offers the ability to

run in-memory computations to provide faster and expressive partitioning and to increase the speed of the

matching system. The results drawn by our strategy over real-world ontologies demonstrate significant

performance which makes it suitable to be incorporated in our large-scale ontology matching system.

1 INTRODUCTION

Nowadays, the proliferation and the adoption of

emerging technologies have spawned new research

disciplines. Every day, enormous amounts of data

are generated in several sectors (Manufacturing,

health, social life etc.) resulting in what-is now

called Big Data (Bello-orgaz et al., 2016; Jin, 2015).

Therefore, appropriate processing and harnessing of

this data could reveal sound knowledge and valuable

insights and could herald new impetus potentials to

sustain productivity growth.

Given the fact that Big Data reside at distributed,

heterogeneous sources, we argue that the design and

development of advanced Big Data management

techniques and technologies requires effective

integration mechanisms (cleaning, matching and

transforming) and effective analytical exploitations.

However, there are many challenges that encumber

managing Big Data ranging from those caused by

the features of Big Data, as well as, those related to

the current data processing strategies (Chen et al.,

2013; Chen et al., 2014).

Hence, to build efficient Knowledge-based

systems, we address Big Data aspects from data

management perspectives by proposing a Big Data

management system based on semantic data models

as a data integration enabler to cope with Big Data

challenges (Mountasser et al., 2015). The integration

strategy aims to aggregate various heterogeneous

data sources to discover valuable insights in a wide

array of domains. As a schema-less graph model,

ontologies can describe the knowledge aspects of

any domain and can be suitable to resolve data

heterogeneity and interoperability issues of

overlapped domains.

From this regard, we have already proposed a

dynamic large-scale ontology matching approach in

conjunction with Big Data features that discover

correspondences among resultant ontologies from

each data sources (Mountasser et al., 2016).

Moreover, we focus on decomposing large and

complex ontologies into simpler subsets with

performance and scalability-friendly data structures

that contribute on the reduction of computational

complexity and improve the performance of our

system. However, in large scale context, massive

Mountasser I., Ouhbi B. and Frikh B.
Parallel Markov-based Clustering Strategy for Large-scale Ontology Partitioning.
DOI: 10.5220/0006504001950202
In Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (KEOD 2017), pages 195-202
ISBN: 978-989-758-272-1
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

amount of ontologies entities can cause performance

impediments during the ontology matching process

which negatively impacts the system scalability.

Therefore, to proceed matching of large-scale

ontologies, ontology partitioning strategies must be

adopted to split ontologies into a set of disjoint

partitions to increase matching accuracy and to

improve memory consumption.

The objective of ontology partitioning

approaches is to partition the entities of ontology

into several disjoint clusters, so that, the

cohesiveness among the entities in a cluster is high

while the coupling crossing different clusters is low.

For that, this paper presents a novel approach for

large-scale ontology partitioning through parallel

Markov-based clustering strategy over distributed

architecture using Spark framework.

The rest of the paper is structured as follows. In

section 2, we describe the related work in the field of

graph-based ontology partitioning in the large-scale

context. Section 3 describes our proposed

methodology and the implementation details.

Section 4 provides a comprehensive evaluation of

our system on real-world ontologies of various

domains and sizes over distributed platform.

2 RELATED WORK

Hu et al., (2008) develop a structure-based

partitioning algorithm that firstly, partitions the

entities of each ontology into a set of clusters based

on their structural proximities, then, they construct

blocks using RDF sentences assignment to those

clusters.

Similarly to the latter, Algergawy et al., (2011)

propose a hierarchical clustering-based approach

that represents ontologies as direct acyclic graph.

The approach represents each node its own single

element cluster, then, the algorithm iteratively

merges clusters in descending order of structural

similarity. Algergawy et al., (2015) introduce a

seeding-based clustering technique that identifies the

seeds of clusters using a distribution condition, then;

the remaining entities are placed into clusters based

on a membership function.

Unfortunately, these works perform ontology

partitioning, far afield from the available

opportunities of parallel platforms. In other words,

using better computational resources can improve

memory consumption and achieve faster results. For

this reason, using the Hadoop distributed platform,

Mountasser et al., (2016) propose parallel entity-

assignment clustering system that aims to partition

large-scale ontologies by parallelizing and

distributing clustering tasks over available

computational resources. First, the algorithm parses

and splits ontologies into smaller and simpler

resource-based subsets. Using these latter, the

system create clusters centroid through the

combination of several metrics based on the node

importance philosophy. Then, it assigns remaining

nodes to their proper clusters based on several

similarity metrics.

3 IMPROVED MARKOV

CLUSTERING

Let us assume that all the ontologies used by this

approach are in the OWL form. Ontologies in this

form can be organized as a Directed Acyclic Graph

with its nodes describing entities of ontology and the

edges between nodes describing the relations

(taxonomic and non-taxonomic) between entities.

Our goal of ontology clustering is dividing

ontology into a set of clusters with related entities

based on a graph structure. To the best of our

knowledge, there is no study relating the large scale

ontology partitioning using Markov clustering

models. Consequently, this paper introduced a novel

approach for parallel large-scale ontology

partitioning using Markov clustering strategy.

3.1 Preliminaries

In this section, we highlight some pertinent

definitions and concepts concerning graph

description and Markov clustering strategies, used

throughout this approach.

3.1.1 Ontology Parsing

Our approach builds a finite ergodic Markov chain

model of ontology by mapping ontology classes to

states in the Markov chain and by mapping all

relations between classes to state transitions. Hence,

ontology is modelled as a directed acyclic graph by

considering concepts as a finite set of nodes and

including taxonomic and non-taxonomic

relationships between classes as a finite set of

directed edges.

3.1.2 Notations

Throughout this paper, we assume that G = (V, E) is

a directed acyclic graph with V and E represent the

node set and edge set respectively. Let A be the

adjacency matrix corresponding to the graph G, with

A(i, j) denoting the weight of the edge between the

vertex vi and the vertex vj. If the graph is non-

weighted, which is the case of ontologies, then, the

weight on each edge is fixed to 1.

A column stochastic matrix M associated to a

graph G can be interpreted as the matrix of the

transition probabilities of a random walk defined on

the graph, e.g. the ith column of M represents the

transition probabilities out of the vertex vi. The most

appropriate way of deriving a column stochastic

transition matrix M for a graph G is to simply

normalize the columns of the adjacency matrix to

sum to 1. Moreover, we define the canonical

transition matrix by MG = AD−1, where D is the

diagonal degree matrix of the graph G.

3.2 Markov Clustering Approaches

The Markov clustering algorithm is a commonly

used graph-based clustering strategy that

incorporated the structure of the graphs to reveal the

clusters structure.

Markov clustering algorithm (MCL) has been

adopted in a wide range of applications (Enright et

al., 2002; Wong et al., 2008). The algorithm allows

the search for structurally homogeneous subsets by

considering a random walk on the graph based on

the paradigm that a “random walk that visits a dense

cluster will likely not leave the cluster until many of

its vertices have been visited.”. Rather than

simulating random walks, MCL iteratively

transforms the stochastic flow matrix associated

with the graph. It offers various advantages. It is

significantly tolerant to noise and behaves robustly

(Chen and Ji, 2010).

3.2.1 Markov Clustering

MCL algorithm is an iterative process that applies

three operators- expansion, inflation and pruning- to

the stochastic matrix until convergence. The

stochastic matrix M associated with a graph G is

defined by normalizing all columns of the adjacency

matrix of G. These operators are mapping the space

of the stochastic matrix to itself (Satuluri and

Parthasarathy, 2009).

Expand operation: simulates a random walk on

the graph (i.e. normal matrix squaring). Thus, it

increases the flow between existing nodes.

Expand (M) = M * M (1)

Inflate operation: regulates the flow in the graph,

strengthens the strong flows and weakens the weak

ones. Each element of the matrix is raised to the

power of inflation parameter r, then, matrix

normalization is performed so that columns sum to

1.

Figure 1: The improved parallel balanced regularized Markov clustering process.

The parameter r can control the outcome of the

algorithm by determining the granularity of the

obtained clusters, in such a way that, larger

parameter (r) can produce finer granularity, and

more clusters.

𝐼𝑛𝑓𝑙𝑎𝑡𝑒 (𝑀) =
𝑀 (𝑖 , 𝑗)r

∑ 𝑀 (𝑘 , 𝑗)r𝑛
𝑘=1

 (2)

Pruning operation: In each column, entries’

having values less than some threshold (heuristically

computed) is removed, and the remaining entries are

normalized to make the column sum to 1. This step

aims to reduce the non-zero value in the matrix and

hence reduces memory consumption, which helps to

accelerate the convergence of the process. Finally,

the iteration is interrupted upon reaching a matrix

that is invariant under k expansions and inflations.

However, in spite of its advantages, MCL has

drawn several limitations; MCL lacks scalability and

suffers from fragmentation issue (large clusters and

singleton cluster) which is not ideal in large-scale

cases.

3.2.2 Regularized Markov Clustering

To retain the strengths of MCL and reduce its

limitations Satuluri and Parthasarathy, (2010)

proposed a regularized variant of MCL that

improves the accuracy and the scalability of the

clustering process. Regularized MCL was proposed

as a variant of MCL to produce more accurate

results and typically more compact clusters than

MCL. The RMCL algorithm resolves the output

fragmentation issues through regularizing the

distribution flow out of the node on conjunction to

its neighbours (Satuluri, 2012). Therefore, the

Expand operator in MCL algorithm is replaced by

the regularize operator which updates the flow

distribution of each node.

Regularize (M) = M * MG (3)

where MG is the canonical flow matrix of the graph

G.

Essentially, the impact of the regularize operator

consists on setting the out-flow distribution of a

node to be the weighted average of the out-flow

distributions of its neighbours (Ginanjar et al.,

2016). This operator ensures the permanent

influence of the original topology of the graph on

clustering process beyond the first iteration.

3.2.3 Balanced Regularized Markov
Clustering

The BRMCL is a balanced variant that preserves the

native features of R-MCL. Instead of using MG as

the weight matrix, we construct a new regularization

MR using both the current flow matrix M and the

canonical flow matrix MG. For that, given a flow

matrix M associated with the graph, the following

concepts must be defined:

 Node mass: Defined as the sum total of the

flows into the node, in such a way that, nodes

with higher mass attract more nodes in the

graph towards them.

𝑚𝑎𝑠𝑠(𝑖) = ∑ 𝑀(𝑗 , 𝑖)

𝑗

 (4)

 Node propensity: Defined as the weighted

average of the masses of the nodes that flows

into this node.

𝑝𝑟𝑜𝑝𝑒𝑛𝑠𝑖𝑡𝑦(𝑖) = ∑ 𝑀(𝑗 , 𝑖)

𝑗

∗ 𝑚𝑎𝑠𝑠(𝑗) (5)

The distribution of masses of the “Attractor”

nodes is a proto-indicator of the distribution of final

cluster sizes (i.e. nodes imbalanced clusters reflects

imbalanced masses distribution). The aim is to push

more nodes towards attractors having lower mass,

thus requires that weight of each neighbour of a

given node in the regularization matrix MG must be

in inverse proportion to the propensity of the

neighbour. This means that at each iteration step, we

need to construct a new regularization matrix MR

while maintaining the rest of R-MCL unchanged.

The new regularization matrix MR is given by:

MR = normalize (MG * P-b) (6)

where P is the diagonal matrix with the propensity

vector p along the diagonal.

The normalize operation rescales each column so

that each column sums to 1. We notice that, the

balance parameter b specifies the extent to which

higher-propensity neighbours are to be penalized, in

such a way that higher the value of b is the greater

the penalty on high-propensity neighbours.

3.3 Improved Parallel Markov
Clustering

Given the introduced approaches, there are still

some critical limiting factors in working with

Markov clustering especially for large scale graphs,

since the performance of the ontology clustering

(partitioning) process can be a critical part of the

upcoming ontology matching process performance.

Regularized Markov Clustering still suffers from

the scalability and storage issues, resulting from

high time and space complexity of the clustering

process (Bustamam et al., 2012). At the core of the

Regularized variants of Markov clustering, we can

notice that its complexity is dominated by the

iteratively sparse matrix-matrix multiplication and

normalization steps, which is an intensive and time-

consuming component. Thus, for scalability and

performance-gain reasons, we need to develop

computationally efficient algorithm that performs

parallel sparse matrix-matrix computations and

parallel sparse Markov matrix normalizations in

order to improve the MCL performance.

To overcome the above MCL’s issues, we

propose a parallel Markov clustering approach that

tries to improve the performance of the Markov

Clustering by implementing parallel tasks for

expansion, inflation and pruning operators using

Spark framework (See Figure 1), which is a fast and

general-purpose cluster computing system.

3.3.1 Apache Spark Framework

Apache Spark is a unified programming

environment that provides computing framework

designed for scheduling, distributing, and

monitoring applications that consist of many

computational tasks across many commodity worker

machines (computing cluster) (Shanahan and Dai,

2015).

The computational engine Spark Core provides

the basic functionality of Spark, including

components for memory management, task

scheduling and fault recovery mechanisms,

interacting with storage systems. Furthermore, it

offers the ability to run in-memory computations to

provide faster and expressive processing and

increase the speed of system. In-memory processing

is faster since no time is spent in moving the data

and processes, in and out of the hard disk.

Accordingly, Spark caches much of the input data on

memory for further explorations leading to more

performance iterative algorithms that access the

same data repeatedly.

3.3.2 Our Implementation

In order to improve the MCL performance, the

parallel implementation of the Regularized Markov

Clustering algorithm constitutes an important

challenge. Thereby, we introduce a very fast Markov

clustering algorithm using Spark framework to

perform parallel sparse matrix-matrix computations

operations, which are at the heart of Markov

clustering.

First of all, the resulting graphs from large scale

ontology are generally sparse; thus, Markov

clustering storage issues can be resolved using

distributed sparse matrix data structures offered by

the resilient distributed datasets (RDD) (Bosagh et

al., 2016), which are partitioned collections of

objects spread across many compute nodes that can

be manipulated in parallel. These matrices are

distributed across computational nodes by entries

using CoordinateMatrix implementation, by rows

via RowMatrix or via blocks by implementing

BlockMatrix.

Moreover, the distributed sparse matrices offered

by Spark ignore the large amount of zero entries,

found in the initial stochastic matrices of Markov

clustering algorithms. Hence, the distributed

matrices can reduce the computational load by

avoiding the additions and multiplications with null

entries, since the zero values do not influence any of

the Markov clustering operations. Furthermore,

Spark comes with a library containing common

computational functionality (Spark MLlib) (Meng et

al., 2016), especially for matrix-matrix

computations. These properties are the primary

source of acceleration of our system.

Besides, Spark provides a way to parallelize our

Markov clustering strategy across clusters, while

hiding the complexity of distributed clustering

programming, network communication, and fault

tolerance in order to ensure the effective and reliable

use of cache memory and the process balanced load.

These latter is enhanced by dividing data according

to performance and scalability-friendly data

structures, aiming to dynamically adapt the system

to fine-grained allocation of both resources and

computations based on the workload. The pseudo-

code for our parallel Markov Clustering

implementation is given in the following:

Input: An ontology O, Balance

parameter b, Inflation rate r

Output: Clusters Set C={C1,C2,…,Cn}

{//Phase 1: Ontology Parsing}

 //get ontology concepts

Nodes:= Concepts(O)

//taxonomic and non-taxonomix

Edges:= Relations(O)

//create associated graph

 G := CreateGraph(Nodes,Edges);

//Graph adjacency matrix

 A := Adjacency(G)

{//Phase 2: Markov Clustering}

A := A + I // Add self-loops

//Initialize M as the canonical

flow matrix

M := MG := A*D−1

repeat

// Compute mass vector

mass(i)=∑jM(j,i)

// Compute propensity vector

p(i)=∑jM(j,i)*mass(j)

P := diag(p)

// Compute regularized matrix

//Normalize MR so that each column

sums to 1.

MR := MG*P−b

M := Mreg := M*MR

M := Minf := Inflate(M, r)

M := Prune(M)

until M converges

Interpret M as clustering Sets

4 EXPERIMENTAL

EVALUATION

In order to evaluate the performance of our approach

and the execution time, we conducted a set of

experiments using a distributed architecture. We

implemented our system in Java; ontologies were

parsed using Jena Apache. All processes are

elaborated within Apache Spark Framework as

programming environment that provides computing

framework designed for scheduling distributing

computational tasks across many computing nodes.

4.1 Data Sets

The Performance of our approach is evaluated over

the anatomy data set that contains two large

ontologies of human and mouse anatomy which

contains 3306 and 2746 concepts respectively, and

the DBpedia ontology release DBpedia_2015_10.

4.2 Experimental Architecture

All the experiments were carried out using the

Apache Spark which is an open source, in-memory

analytics computing framework. For this

experimentation, we use a cluster of 10 slave

machines and one master machine. Each node is

equipped with 3.4 GHz Intel(R) Core i3(R) with 4

GB memory, Java 1.8 and Ubuntu 14.04 LTS.

4.3 Experimental Results

In order to incorporate the Markov clustering

approach in our large-scale ontology matching

system, we must evaluate the scalability of the

clustering approach. In our implementation, we

attempt to validate the performance and the

effectiveness of the proposed approach via a set of

experiments on real world ontologies.

The simulation ran by using default expansion

parameter (square), parameters of inflation r= 1.5; 2

and 2.5, balanced parameter b= 0, 1.5, and 2 and

pruning threshold ϵ=0.000001. The simulation is

performed several times with different parameters of

inflation to look at the speed and the number of

formed clusters.

The number of resulting clusters from the

improved BRMCL simulation using the inflation

rates 1.5, 2 and 2.5 vary from 1523 to 2136 clusters

for Human ontology, from 1622 to 1968 clusters for

Mouse ontology and from 519 to 533 clusters for

DBpedia ontology. We can notice that varying the

inflation parameter can result in clustering of

different granularities, in such a way that, if the

inflation parameter gets higher, the clustering

algorithm predicts more clusters with smaller size.

Figure 2: Clustering Time related to the inflation rate and

the balance parameter.

As shown in Figure 2, we clearly notice that the

runtime of our clustering implementation is related

to the inflation rate and the balance parameter. Thus,

having more balanced clusters can be achieved by

increasing the balance parameter, for the reason that

higher values of this latter lead to more severe down

weighting of nodes with high propensity values,

which consequently, provoke more iteration

operations and lead to a slower convergence for the

clustering process. By contrast, the incorporation of

the balanced strategy improves the clustering quality

by allowing the discovery of balanced clusters (See

Table 1, Table 2 and Table 3).

Despite these impediments, our parallel Markov-

Based clustering implementation demonstrates

significant performance and provides faster and

expressive partitioning of the large-scale ontologies.

Table 1: Clustering results for the Human ontology.

Clusters

Number

Clustering

Time

% of

Balanced

Clusters

b = 0

r = 1.5 1523 16,492 s 11%

r = 2 1785 17,032 s 27%

r= 2.5 2136 17,336 s 33%

b = 1.5

r = 1.5 1523 17,715 s 21%

r = 2 1785 18,277 s 28%

r= 2.5 2136 19,442 s 33%

b = 2

r = 1.5 1523 19,017 s 28%

r = 2 1785 19,271 s 35%

r= 2.5 2136 21,318 s 46%

Table 2: Clustering results for the Mouse ontology.

Clusters

Number

Clustering

Time

% of

Balanced

Clusters

b = 0

r = 1.5 1622 12,853 s 15%

r = 2 1787 13,071 s 17%

r= 2.5 1968 13,473 s 22%

b = 1.5

r = 1.5 1622 13,002 s 35%

r = 2 1787 13,611 s 46%

r= 2.5 1968 13,881 s 51%

b = 2

r = 1.5 1622 13,659 s 41%

r = 2 1787 13,986 s 58%

r= 2.5 1968 15,013 s 63%

Table 3: Clustering results for the DBpedia ontology.

Clusters

Number

Clustering

Time

% of

Balanced

Clusters

b = 0

r = 1.5 519 3,112 s 44%

r = 2 527 4,016 s 51%

r= 2.5 533 6,562 s 53%

b = 1.5

r = 1.5 519 3,279 s 47%

r = 2 527 3,665 s 59%

r= 2.5 533 4,279 s 68%

b = 2

r = 1.5 519 4,385 s 47%

r = 2 527 5,901 s 61%

r= 2.5 533 8,185 s 70%

5 CONCLUSIONS

In this paper, we presented our parallel Markov-

based partitioning strategy considered as a crucial

part of the large-scale ontology matching process,

which aims to cope with the velocity issues and to

increase the performance of the matching system.

Our strategy provides faster and expressive

partitioning through dynamic, real-time in-memory

computations based on the Spark distributed

programming environment.

From the results drawn by our strategy over real-

world ontologies, it is apparent that our parallel

Markov-based partitioning approach presents

significant performance results for partitioning large

ontologies, which consequently make the approach

suitable to be incorporated in our large-scale

ontology matching system.

REFERENCES

Algergawy, A., Babalou, S., Kargar, M.J. and

Davarpanah, S.H., 2015, September. Seecont: A new

seeding-based clustering approach for ontology

matching. In East European Conference on Advances

in Databases and Information Systems (pp. 245-258).

Springer International Publishing.

Algergawy, A., Massmann, S. and Rahm, E., 2011,

September. A clustering-based approach for large-

scale ontology matching. In East European

Conference on Advances in Databases and

Information Systems (pp. 415-428). Springer Berlin

Heidelberg.

Bello-Orgaz, G., Jung, J.J. and Camacho, D., 2016. Social

big data: Recent achievements and new challenges.

Information Fusion, 28, pp.45-59.

Bosagh Zadeh, R., Meng, X., Ulanov, A., Yavuz, B., Pu,

L., Venkataraman, S., Sparks, E., Staple, A. and

Zaharia, M., 2016, August. Matrix computations and

optimization in apache spark. In Proceedings of the

22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (pp. 31-38).

ACM.

Bustamam, A., Burrage, K. and Hamilton, N.A., 2012.

Fast parallel Markov clustering in bioinformatics

using massively parallel computing on GPU with

CUDA and ELLPACK-R sparse format. IEEE/ACM

Transactions on Computational Biology and

Bioinformatics (TCBB), 9(3), pp.679-692.

Chen, C.P. and Zhang, C.Y., 2014. Data-intensive

applications, challenges, techniques and technologies:

A survey on Big Data. Information Sciences, 275,

pp.314-347.

Chen, J., Chen, Y., Du, X., Li, C., Lu, J., Zhao, S. and

Zhou, X., 2013. Big data challenge: a data

management perspective. Frontiers of Computer

Science, 7(2), pp.157-164.

Chen, Z. and Ji, H., 2010, July. Graph-based clustering for

computational linguistics: A survey. In Proceedings of

the 2010 workshop on Graph-based Methods for

Natural Language Processing (pp. 1-9). Association

for Computational Linguistics.

Enright, A.J., Van Dongen, S. and Ouzounis, C.A., 2002.

An efficient algorithm for large-scale detection of

protein families. Nucleic acids research, 30(7),

pp.1575-1584.

Ginanjar, R., Bustamam, A. and Tasman, H., 2016,

October. Implementation of regularized Markov

clustering algorithm on protein interaction networks of

schizophrenia's risk factor candidate genes. In

Advanced Computer Science and Information Systems

(ICACSIS), 2016 International Conference on (pp.

297-302). IEEE.

Hu, W., Qu, Y. and Cheng, G., 2008. Matching large

ontologies: A divide-and-conquer approach. Data &

Knowledge Engineering, 67(1), pp.140-160.

Jin, X., Wah, B.W., Cheng, X. and Wang, Y., 2015.

Significance and challenges of big data research. Big

Data Research, 2(2), pp.59-64.

Meng, X., Bradley, J., Yavuz, B., Sparks, E.,

Venkataraman, S., Liu, D., Freeman, J., Tsai, D.B.,

Amde, M., Owen, S. and Xin, D., 2016. Mllib:

Machine learning in apache spark. Journal of Machine

Learning Research, 17(34), pp.1-7.

Mountasser, I., Ouhbi, B. and Frikh, B., 2015, December.

From data to wisdom: A new multi-layer prototype for

Big Data management process. In Intelligent Systems

Design and Applications (ISDA), 2015 15th

International Conference on (pp. 104-109). IEEE.

Mountasser, I., Ouhbi, B. and Frikh, B., 2016, November.

Hybrid large-scale ontology matching strategy on big

data environment. In Proceedings of the 18th

International Conference on Information Integration

and Web-based Applications and Services (pp. 282-

287). ACM.

Satuluri, V.M., 2012. Scalable clustering of modern

networks (Doctoral dissertation, The Ohio State

University).

Satuluri, V. and Parthasarathy, S., 2009, June. Scalable

graph clustering using stochastic flows: applications to

community discovery. In Proceedings of the 15th

ACM SIGKDD international conference on

Knowledge discovery and data mining (pp. 737-746).

ACM.

Satuluri, V., Parthasarathy, S. and Ucar, D., 2010, August.

Markov clustering of protein interaction networks with

improved balance and scalability. In Proceedings of

the First ACM International Conference on

Bioinformatics and Computational Biology (pp. 247-

256). ACM.

Shanahan, J.G. and Dai, L., 2015, August. Large scale

distributed data science using apache spark. In

Proceedings of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data

Mining (pp. 2323-2324). ACM.

Wong, S. and Ragan, M.A., 2008. MACHOS: Markov

clusters of homologous subsequences. Bioinformatics,

24(13), pp.i77-i85.

