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Operational maturity of biological control systems have fuelled the inspiration for a large number of mathe-
matical and logical models for control, automation and optimisation. The human brain represents the most
sophisticated control architecture known to us and is a central motivation for several research attempts across
various domains. In the present work, we introduce an algorithm for mathematical optimisation that derives its
intuition from the hierarchical and distributed operations of the human motor system. The system comprises
global leaders, local leaders and an effector population that adapt dynamically to attain global optimisation via
a feedback mechanism coupled with the structural hierarchy. The hierarchical system operation is distributed
into local control for movement and global controllers that facilitate gross motion and decision making. We
present our algorithm as a variant of the classical Differential Evolution algorithm, introducing a hierarchical
crossover operation. The discussed approach is tested exhaustively on standard test functions as well as the
CEC 2017 benchmark. Our algorithm significantly outperforms various standard algorithms as well as their

popular variants as discussed in the results.

1 INTRODUCTION

Evolutionary algorithms are classified as meta-
heuristic search algorithms, where possible solution
elements span the n-dimensional search space to find
the global optimum solution. Over the years, nat-
ural phenomena and biological processes have laid
the foundation for several algorithms for control and
optimization that have highlighted their applicabil-
ity in solving intricate optimization problems. For
instance, at the cellular level in the E.Coli Bac-
terium, there is sensing and locomotion involved in
seeking nourishment and avoiding harmful chemi-
cals. These behavioral characteristics fuelled the in-
spiration for the Bacterial Foraging Optimization al-
gorithm (Passino, 2002)(Onwubolu and Babu, 2013).
Particle Swarm Optimization (Kennedy and Eberhart,
1995) is a swarm intelligence algorithm based on be-
havior of birds and fishes that models these particles
as they traverse an n-dimensional search space and
share information in order to obtain global optimum.

From a biological control point, the human brain
represents one of the most advanced architectures and
several research attempts seek to mimic its functional
accuracy, precision and efficiency. The brain func-
tion activities can be broadly classified into 2 cate-
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gories: sensory and motor operations. Sensory corti-
cal functions inspired the concept of neural networks
that are being scaled successfully in deep learning to
solve vast amount of problems.

The human motor function represents a distributed
neural and hierarchical control system. It can be clas-
sified as having local control functions for movement
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Figure 1: Hierarchy of Motor Control in Humans.
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as well as higher level controllers for gross motion
and decision making. The execution of motor op-
eration involves distributed brain structures at differ-
ent levels of hierarchy. These include the pre-frontal
cortex, motor cortex, spinal cord, anterior horn cells
etc (Shaw et al., 1982). For executing an action se-
quence, a sequence of actions is implemented by a
string of subsequences of actions each implemented
in a different part of the body. The operational struc-
ture has been depicted in Figure 1(Passino, 2005).
For optimality of actions, neurons act in unison. The
neurons in the motor cortex act like global leaders
and send inhibitory or facilitatory influence over ante-
rior horn cells, the local leaders, located in the spinal
cord(Shaw et al., 1982). These local leaders are con-
nected to muscle fibers, the effectors, through a pe-
ripheral nerve and neuromuscular junction. Efficient
execution of task requires feedback based facilitation
and inhibition of the effectors over the anterior horn
cells. These sequence of operations realise the opti-
mal convergence of the system leading to smooth mo-
tor execution.

The present work introduces an algorithm mod-
elled intuitively on the distributed and hierarchical op-
eration of the brain motor function.

The Classical DE Algorithm (Storn and Price,

1995), proposed by Storn and Price has been hailed as
one of the premier evolutionary algorithms, owing to
its simple yet effective structure(Das and Suganthan,
2011). However, in recent times, it has been criticized
for its slow convergence rate and inability to effec-
tively optimize multimodal composite functions(Das
and Suganthan, 2011). This work focusses on sup-
plementing the algorithm’s performance through the
introduction of hierarchical influence in the pipeline.
The architecture enables the algorithm to control the
flow of agents through the cummulative effect of
global and local leaders in the hierarchy.
The proposed approach, Hierarchy Influenced Differ-
ential Evolution (HIDE), has been subjected to ex-
haustive analysis on the hybrid and composite ob-
jective functions of the CEC 2017 benchmark(Awad
et al., 2016). Comparison with the classical DE algo-
rithm and its other popular variants including JADE
and PSODE (Zhang and Sanderson, 2009) highlights
the particular viability of the schemed approach in
solving complex optimization tasks. We show that
even with fixed parameters, HIDE is able to outper-
form adaptive architectures such as JADE by a re-
spectable margin, as discussed in the result sections.

2 CLASSICAL DIFFERENTIAL
EVOLUTION
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Figure 2: Motion planning of individuals in DE on two di-
mensional example of objective function.

The classical Differential Evolution (DE) algorithm
is a population-based global optimization algorithm,
utilizing a crossover and mutation approach to gen-
erate new individuals in the population for achieving
optimum solutions(Das and Suganthan, 2011). For
each individual x; that belongs to the population for
generation G, DE randomly samples three individu-
als from the population namely x,1 G, X,2,¢ and x,3 G.
Employing these randomly chosen points, a new in-
dividual trial vector, v;, is generated using equation
(1):
Vi =Xr1,6 + F(X2,6 — X3,6) (D

Where, F is called the differential weight (Usually
lies between [0, 1]).
To obtain the updated position of the individual,
a crossover operation is implemented between x; g
and v;, controlled by the parameter CR called the
crossover probability. The value for CR always lies
between [0, 1].

3 HIERARCHY INFLUENCED
DIFFERENTIAL EVOLUTION

Taking inspiration from the human motor system, we
model the hierarchical motor operations in our op-
timization agents, where we define a global leader
which influences the action of several distributed lo-
cal leaders and the particle agents which act as the
effectors. The global leader is analogous to the de-
cision making and planning section in the motor sys-
tem hierarchy whilst, the local leaders correspond to
motion generators acting under the influence of the
global leader.

The position of each particle in the population
is affected by the influence of global leader and lo-



cal leaders, while also being affected by a randomly
chosen particle from the population to induce some
stochasticity in the optimization pipeline. We first
model the influence of the global leader on the lo-
cal leaders and the influences of the local leaders on
each population element using equation (3) and (4).
We introduce a hierarchical crossover between the
two influencing equations governed by a hierarchical
crossover parameter HC.

Analogously to the brain motor operation as de-
picted in Figure 1, the update of particle positions re-
quires generating feedback for the leaders as a part of
the optimization procedure, and hence the local lead-
ers and the global leader are updated based on their
objective function value generated from the perturba-
tions in population particles. This series of events
comprise of one optimization pass (one generation
step). On execution of several optimization passes as

Algorithm 1: Hierarchy Influenced Differential Evolution.

1: procedure START

2: Initialize parameters (HC, F, P, N;, NP).

3: Generate initial global leader g; as a random
point.

4: Generate N; local leader points around gj,
global leader.

5: Generate NP points for population P around
the local leaders using a Normal distribution with
identity covariance.

6: while Termination criteria is not met do
7: for each individual x; g in P do
8: Determine the corresponding local

leader x;, ¢ from the set of all local leader based
on nearest position.

9: Let u = 0 be an empty vector.

10: Let G and G; be the current generation
and total generations of the procedure.

11: if G < (HC * G;) then

12: u; = E, from (3).

13: else

14: u; = E; from (4).

15: end if

16: x§ = BinomialCrossover(u;, x; g, CR)

17: if f(x}) < f(xic) then

18: Replace x; g with x; in the next
generation.

19: end if

20: end for

21: Alter local leaders in each population
cluster based on objective function value.

22: Compute updated global leader g; .

23: end while
24: end procedure

described, the system is able to converge to an opti-
mal configuration, analogous to the successful execu-
tion of the required task as shown in the final steps of
Figure 1.

For each particle x; g, i =0, 1,2, ... NP — 1 for gen-
eration G, the trial vector x§ of the particle, is governed
by the hierarchical crossover operation and a mutation
operation as follows :

[ E, ifG<HCxG,

wi= { E;, otherwise 2)
Eg = g1+ F(x1,.6—%G) 3)
Ej=x1,6+F(xig—xc) 4)

for each dimension j of x;; G:

) _ J xjic ifrand(0,1) <HC
Yji = { uj;  otherwise ©)

x,,GH:{ X i fg) <ftio) )

XiG, Otherwise

where,
G; is the total number of generations,
Xi,G+1 1s the vector position of x; ¢ for next generation
F is factor responsible for amplification of differen-
tial variation,
f is the objective function,
X 1s the current position of the individual for
generation G,
u; is the intermediate trial vector of the current
individual,
E, represents the global and local leader interaction,
E; represents the local leader and effector interaction,
g1 is the global leader for generation G,
x1;G is the position of the local leader for current
individual,

Algorithm 2: Binomial_Crossover(u, x, CR).

1: procedure START

2: Let X' = 0 be an empty vector.

3: Select arandom integer k = irand({1,2,...,d});
where d = number of dimensions

4 for each dimension j do
5 if random(0,1) < CR or j == k then
6: Set x; = u;
7: else
8: Set x’j =x;j
9 end if
10 end for
11: end procedure
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Figure 3: Hierarchical Decisive Motion planning of indi-
viduals in HIDE on two dimensional example of objective
function. The position vectors resulting from the influence
of global leader and local leaders are both represented as
E; and E; on the contour of a two dimensional objective
function.

x.gEP; ref0,1,.. NP-1]
x; ; is the trial vector

X, is randomly chosen particle from the popula-
tion to induce stochasticity. The hierarchical opera-
tion is affected by the global leader g; and the local
leader x;, ¢ through the parametric equations (3) and
(4). Switching between the two is governed by the
hierarchical crossover parameter HC.

3.1 Hierarchical Crossover

Convergence trend in HIDE is largely pivoted about
(3) and (4), which in unison, lend a hierarchical struc-
ture to the algorithm. A successful optimization algo-
rithm involves establishing a trade-off between explo-
ration and exploitation. Achieving global optimiza-
tion can be visualized as collaboration of two forces,
exploration over a larger subspace followed by inten-
sive exploitation over the resulting search space gov-
erned by clusters. Phase 1, involving (3) is marked
by the interaction between the global and local lead-
ers representing decision planning and facilitation of
gross motion. This is followed by phase 2, involving
(4) wherein the local leaders interact with and guide
their effector population to control intricate motion
over the constraint subspace to achieve smooth con-
vergence. Robust covergence necessitates an optimal
transition from phase 1 to phase 2 in the hierarchy.
This hierarchical transition is characterized by our
proposed parameter, HC. The value of HC belongs to
[0,1]. An optimal value for HC was observed experi-
mentally to lie about one-quarter. For the purpose of
our experiments, we have fixed HC to be 0.27. Thus,
this defines a deterministic cut after 27% of the total

generation budget. The crossover probability defined
here was observed to be mostly 50% smaller in com-
parison to other DE variants.

The HIDE algorithm achieves a performance im-
provement in the early optimization phase (G | HC *
G;) by replacing clusters of the initially generated
candidate solutions with the locally best. This strat-
egy rules out a number of mutation vectors that are
more unfavorable in terms of performance gain. Ad-
ditionally, by focusing on mutants of the globally best
candidate solution the search space is explored rather
quickly during this phase. After the population ad-
vances to HC * G, generations, the algorithm changes
its reference point (the trial vector) to the locally best
candidate solutions of a certain cluster. That is, hav-
ing approached a closer distance from the optimal,
the algorithm is able to exploit the search space. Our
proposition is complemented by the observations in
our results section wherein we significantly outper-
form several popular algorithms on involved multi-
modal hybrid and composite functions in higher di-
mensions.

4 RESULTS AND DISCUSSIONS

All evaluations were performed using Python 2.7.12
with Scipy(Oliphant, 2007) and Numpy(Van Der Walt
et al., 2011) for numerical computations and Mat-
plotlib (Hunter, 2007) package for graphical repre-
sentation of the result data. This section is divided
into two sub-sections: Section A provides description
about the problem set used for analysis of algorith-
mic efficiency and accuracy, and section B comprises
of tabular and graphical data to reinforce the claim of
superiority of the proposed approach.

Table 1: Algorithm Parameter Settings used for compari-
sion.

Algorithm | Parameter | Value
F 0.5
DE CR 0.9
w 0.7298
[ 1.49618
PSODE [ 1.49618
F re[0.9,1.0)
CR re[0.95,1.0)
p 0.05
JADE c 0T
HC 0.27
HIDE F 0.48
CR 0.9
N 5




Table 2:

Objective Function Value for Dimension: 30.

fid DE JADE PSO-DE HIDE

best mean best mean best mean best mean
A 100.001508 | 4334.43848 | 100.001338 | 100.056201 | 364.295574 | 4236.36321 | 100.0 100.0
i) 40412441.0 | 5.1296e+19 | 200.0 1535352368| 332899.0 9.59068e+11 200.0 159855.5
f 17926.8728 | 22131.5427 | 69304.9261 | 74080.7004 | 15792.5475 | 21683.2090 | 3679.81159 | 8999.94726
fa 481.255055 | 519.422652 | 403.633939 | 442.206911 | 468.341175 | 479.341966 | 400.004163 | 443.016156
fs 689.041352 | 737.79326 | 667.50756 | 735.204027 | 715.904429 | 746.548906 | 685.40454 | 738.842184
fe 643.626307 | 652.582714 | 651.39169 | 655.142819 | 642.724237 | 655.106996 | 644.701241 | 652.002395
fa 883.347367 | 962.591129 | 779.907693 | 818.344111 | 790.014281 | 854.285524 | 812.923573 | 856.90477
I3 923.37426 | 967.251501 | 931.500175 | 957.362003 | 915.414882 | 960.486239 | 930.288539 | 964.11663
fo 5652.48396 | 7878.78144 | 4953.05469 | 5146.60095 | 6018.41719 | 9042.41018 | 4003.11807 | 4734.98436
fio 3596.63104 | 4536.98976 | 4012.72329 | 4204.18969 | 3934.60671 | 4863.74111 | 3793.78177 | 4346.74134
S 1162.40596 | 1184.63401 | 1152.74853 | 1174.58813 | 1165.14499 | 1189.17178 | 1149.74849 | 1171.13041
fiz 56679.4351 | 317650.613 | 24821.1717 | 58930.0902 | 10221.0774 | 161046.055 | 9208.28924 | 41947.2226
fiz 3002.02949 | 18794.8359 | 4276.90774 | 13775.8162 | 3871.27983 | 10612.2635 | 1664.06241 | 2453.60697
fia 1773.18079 | 5502.16038 | 1496.21986 | 42868.9158 | 1555.45276 | 4029.80853 | 1462.92685 | 1504.19151
fis 1860.43566 | 2484.68996 | 1688.05046 | 2222.67432 | 1651.74747 | 2223.06054 | 1611.07440 | 1852.66177
fie 2517.43962 | 2827.00496 | 2344.19818 | 2621.61868 | 2239.24272 | 2664.11466 | 2298.04196 | 2691.67481
fiz 2321.17594 | 2604.52977 | 2062.89802 | 2546.99559 | 2107.43677 | 2457.34021 | 1820.80664 | 2418.72383
fis 38987.2824 | 94156.3285 | 11841.6081 | 184888.162 | 62294.8532 | 118430.289 | 12578.0037 | 23024.1119
fio 2043.46988 | 3010.23537 | 1959.71819 | 2156.95787 | 3049.52231 | 6840.40839 | 1949.27171 | 1987.86676
120 2625.53915 | 2864.83261 | 2706.31444 | 2805.60006 | 2619.99649 | 2895.10724 | 2753.80621 | 2966.03579
f 2412.08175 | 2504.77777 | 2414.52134 | 2456.71898 | 2431.74029 | 2478.84135 | 2200.0 2442.73431
f2 2300.48179 | 5655.56932 | 2300.0 4157.69878 | 2307.72135 | 6811.06916 | 2300.00998 | 6795.24842
23 3050.65450 | 3572.96506 | 2772.00202 | 2946.74932 | 2764.92246 | 3199.87436 | 2883.27689 | 3543.83934
Sfoa 3104.62369 | 3290.69875 | 2891.55764 | 2965.22556 | 2911.63347 | 2983.77293 | 2500.0 2940.75997
fas 2916.18065 | 2946.71175 | 2875.10684 | 2881.09138 | 2875.49884 | 2889.94367 | 2874.17111 | 2877.48490
S 4043.69140 | 6756.3724 | 2900.0 3266.51098 | 2800.00780 | 3273.12876 | 2900.0 3298.49053
fa 3200.00585 | 3998.87649 | 3145.81035 | 3189.82261 | 3145.42523 | 3639.63413 | 3132.81628 | 3284.28897
fog 3290.74402 | 3326.26398 | 3100.0 3131.02731 | 3195.48683 | 3225.59405 | 3100.0 3115.50582
f29 3720.31459 | 4115.18580 | 3305.31013 | 3626.88755 | 3535.95229 | 3867.59306 | 3352.84505 | 3709.10237
f30 3359.03076 | 3900.82666 | 3263.49653 | 3749.61072 | 3312.63502 | 3524.71447 | 3298.70464 | 3421.71532
w/t/l | 2/0/28 0/0/30 8/2/20 11/0/19 4/0/26 1/0/29 15/2/13 17/0/13

Table 3: Objective Function Value for Dimension: 50.

fid DE JADE PSO-DE HIDE

best mean best mean best mean best mean
f 5884574.87 | 367294248.3 136.072384 | 3708.75086 | 5811.21899 | 154233.646 | 106.072862 | 3665.41927
f 4.7181e+24 | 3.3649e+44 | 2635725.0 | 5.0237e+26 | 2.2121e+19 | 2.5445e+23 | 2.2799¢e+17 | 1.0072e+31
f3 45520.9663 | 62237.2968 | 143481.793 | 156166.762 | 52308.4274 | 64435.2406 | 44613.2999 | 58182.8373
f4 574.400328 | 801.384952 | 418.580378 | 470.113207 | 477.080964 | 574.528479 | 400.005049 | 447.775413
fs 816.394775 | 843.258843 | 809.89948 | 834.13126 | 778.59312 | 831.066954 | 791.405194 | 830.218472
fe 652.54191 | 655.794152 | 633.21788 | 654.893828 | 653.291336 | 658.183613 | 645.25633 | 656.060597
fi 1109.02123 | 1263.03848 | 889.036574 | 944.90319 | 915.153525 | 1047.43879 | 989.957862 | 1186.2487
f3 1139.27892 | 1175.8931 | 1118.3391 | 1144.60474 | 1092.62639 | 1159.03235 | 1100.4760 | 1168.5299
fo 22196.3878 | 29218.7759 | 11958.2800 | 13174.6623 | 24753.0405 | 32233.9545 | 10251.4763 | 14752.7168
fio 6228.49289 | 7289.18367 | 6054.70769 | 6833.30631 | 6207.79530 | 7055.59523 | 6050.43437 | 6609.80456
fu 1170.85860 | 1258.51763 | 1202.69485 | 1232.20426 | 1206.15456 | 1252.93954 | 1156.4396 | 1205.2544
fiz 677263.079 | 16987989.9 | 74784.6159 | 530814.648 | 584300.698 | 3448448.79 | 126908.215 | 494471.075
fi3 6005.53530 | 16893.94992 2041.48812 | 4332.5945 | 1572.25297 | 4301.82960 | 1484.76179 | 7760.05613
fia 38490.5323 | 174367.450 | 2466.04705 | 238838.470 | 16327.4231 | 67939.0002 | 2967.8184 | 26290.3161
fis 2278.14122 | 26989.2555 | 13553.0418 | 25636.7696 | 3443.58734 | 9167.26709 | 1938.20040 | 14976.7218
fie 2722.02601 | 3176.91690 | 2345.40070 | 2916.56101 | 2521.93881 | 3146.04527 | 2436.44933 | 2978.37746
fir 2799.94977 | 3289.61565 | 2568.38357 | 2907.86927 | 2887.28110 | 3236.95792 | 2561.37030 | 2874.96503
fis 264037.125 | 872072.477 | 36176.5867 | 113941.317 | 26965.2851 | 114846.121 | 260540.781 | 536454.326
fio 10051.9124 | 20380.2571 | 2089.17225 | 7763.17234 | 9905.85082 | 16555.7569 | 2013.12690 | 3609.25896
fo 2950.92319 | 3274.33401 | 3041.81309 | 3113.28946 | 2991.58929 | 3361.82394 | 2495.03177 | 3080.13747
f 2596.7256 | 2689.68836 | 2526.19089 | 2597.6771 | 2555.8788 | 2642.38159 | 2447.75827 | 2570.91101
f2 9713.99324 | 10803.6537 | 10759.5967 | 11032.8809 | 8918.43626 | 10465.0224 | 8181.4460 | 9755.0703
a3 3451.10494 | 4200.17442 | 2971.16064 | 3237.77866 | 2977.55496 | 3490.63975 | 2851.65025 | 3162.31362
foa 3434.46502 | 3682.84670 | 3103.95517 | 3185.38267 | 3036.79960 | 3158.33050s| 3136.92774 | 3284.65609
fas 3141.14488 | 3292.30344 | 2931.16295 | 2962.47175 | 2931.92695 | 3008.89535 | 2931.14231 | 2954.76783
f26 4906.13284 | 7989.49096 | 2900.0 3346.87403 | 2900.44189 | 3653.75774 | 2900.0 3262.66849
fa2 3200.01070 | 3792.64558 | 3143.03805 | 3184.64635 | 3158.17823 | 3397.13032 | 3141.01087 | 3176.01152
S8 3300.01082 | 3431.57091 | 3240.72586 | 3288.25303 | 3263.20714 | 3300.25760 | 3243.63199 | 3294.37323
fro 3812.47551 | 4605.34953 | 3533.94574 | 3956.83524 | 3955.32453 | 4364.18129 | 3653.67555 | 3966.47195
f30 3673.71196 | 5813.17375 | 3916.72571 | 4869.08933 | 3730.30935 | 5143.07870 | 3346.48367 | 4747.88675
w/t/l | 0/0/30 0/0/30 8/1/21 9/0/21 4/0/26 3/0/27 17/1/12 18/0/12

4.1 Problem Set Description

The set of objective functions considered for test-
ing the proposed algorithm and compare its perfor-
mance against classical DE and its variants PSODE

and JADE have been taken from the CEC 2017 set
of benchmark functions. Exhaustive comparisons
and analysis have been depicted on dimensions D
= 10, 30, 50 and 100 for a clear understanding of



Table 4: Objective Function Value for Dimension: 100.

fid DE JADE PSO-DE HIDE

best mean best mean best mean best mean
N 3427212e+3| 1380728e+4| 141.263356 | 13516.69893 6067123.52 | 29751976.5 | 122.398748 | 11708.8236
ij) 4.196e+84 | 1.547e+112 | 8.737e+74 | 2.543e+87 | 6.153e+66 | 3.211e+73 | 3.8835e+80 | 8.891e+114
f3 228808.969 | 262699.687 | 312244.360 | 332179.290 | 241427.723 | 257462.977 | 220765.083 | 251901.109
fa 1975.65115 | 2752.24606 | 539.386275 | 677.05465 | 777.314462 | 836.965399 | 531.169819 | 621.219143
fs 1223.53650 | 1286.15333 | 1249.19503 | 1307.11012 | 1248.41013 | 1310.88765 | 1068.11742 | 1272.47682
fe 651.65013 | 657.84974 | 654.70934 | 659.421427 | 656.87704 | 662.31841 | 642.33355 | 654.13275
fi 1614.00386 | 1920.79772 | 1367.06653 | 1536.35787 | 1311.84975 | 1534.20776 | 1562.37977 | 2076.70250
I3 1595.41873 | 1736.36737 | 1672.56784 | 1768.08243 | 1678.12726 | 1761.9405 | 1293.55211 | 1592.16298
fo 59726.5146 | 71986.0439 | 28906.9090 | 30336.7453 | 63640.3313 | 74961.2209 | 23466.5750 | 27067.0295
fio 12005.8897 | 14725.3483 | 14227.8019 | 15355.6218 | 12937.0278 | 14972.9507 | 11153.5868 | 13298.0921
fu 7540.6179 | 11481.2601 | 40447.5486 | 57228.6836 | 3521.90152 | 4544.80401 | 5380.43205 | 9916.34769
fiz 529993877 | 1881773e+3| 3893556.27 | 6415173.60 | 26105108.9 | 41876679.1 | 3680108.18 | 10059039.6
fi3 7943.9249 | 508209.562 | 4622.69855 | 8892.77599 | 8246.51529 | 12675.8455 | 2976.84135 | 11376.9863
fia 728122.833 | 1329183.17 | 132194.795 | 365560.881 | 548410.338 | 941547.524 | 234045.940 | 867160.306
fis 2660.46578 | 181957.060 | 1799.50650 | 3362.50960 | 1899.07344 | 2914.44348 | 1976.78912 | 4485.4152
fie 4749.25466 | 5847.82673 | 4817.48373 | 5632.3022 | 3852.7000 | 5228.6635 | 3519.49494 | 4796.80272
fiz 4397.49635 | 4958.41818 | 3842.20601 | 4450.17742 | 3790.72056 | 4730.99458 | 3582.78588 | 5463.21694
fis 1357845.39 | 1938893.27 | 146426.273 | 763318.822 | 1004224.20 | 2315010.2 | 631040.146 | 1335739.59
fio 2482.1701 | 26455.7069 | 2098.9496 | 4767.52953 | 2263.72515 | 3927.45994 | 2071.07706 | 3664.15987
20 4968.49743 | 5436.60405 | 5231.02648 | 5690.74899 | 5109.46056 | 5781.30083 | 3627.77789 | 5228.43066
fa 3180.74665 | 3355.4783 | 2921.90012 | 3085.6922 | 2885.57408 | 3127.35683 | 2926.35039 | 3199.98618
f 17808.8977 | 19562.9866 | 19213.3756 | 20278.9290 | 18695.5223 | 20167.41374 17548.3390 | 19547.1512
3 4907.51964 | 5819.20786 | 3352.5569 | 4222.43689 | 3582.04355 | 4779.92124 | 3418.98320 | 3609.0985
S 5173.24940 | 5946.12042 | 4060.95130 | 4095.42951 | 3801.36858 | 4042.42685 | 3998.05402 | 4216.82489
fs 4089.11891 | 4548.28576 | 3153.48541 | 3236.61784 | 3348.38226 | 3407.52658 | 3176.3038 | 3264.31853
fa6 8557.49856 | 20159.1145 | 2900.07737 | 11924.79947 3021.13602 | 8682.03543 | 2900.00038 | 7867.5518
for 3200.02335 | 3772.40915 | 3194.80921 | 3201.67073 | 3200.02417 | 3494.61813 | 3200.02354 | 3200.02395
fas 4947.74515 | 5948.21315 | 3295.12291 | 3340.28038 | 3456.82843 | 3542.57130 | 3300.80769 | 3354.71733
S 6004.77442 | 7090.64254 | 5208.71172 | 5970.62868 | 5462.32863 | 6178.55906 | 4541.19547 | 5739.29154
fo 7798.10621 | 202435555 | 3584.97477 | 10674.2173 | 3920.32703 | 7139.46072 | 3850.31709 | 15318.5546
w/t/l | 0/0/30 0/0/30 8/0/22 8/0/22 5/0/25 6/0/24 17/0/13 16/0/14

the strengths of the proposed algorithm. Objective
functions f; — f3 are simple unimodal functions and
fa — fio are multimodal functions with a high num-
ber of local optima values. Functions fij; — f>9 are
all hybrid functions using a combination of functions
from f; — fio. The set of composite function range
from f>1 — f30 and merges the properties of the sub-
functions better while incorporating the basic func-
tions as well as hybrid functions to increase complex-
ity while maintaining continuity around the global op-
tima.

4.2 Parameter Settings

The work seeks to allow transparency in results by
establishing a base for fair and clear comparisons in
the analysis of the algorithms. The fixed values for
the parameters have been depicted in table 1. The
value of F and CR have been set as 0.5 and 0.9 for DE
across all experiments, as recommended in the orig-
inal document in (Storn and Price, 1995), (Mezura-
Montes et al., 2006), (Brest et al., 2006). The param-
eters for JADE were selected as suggested in the ini-
tial work (Zhang and Sanderson, 2009). The values of
parameters for PSO-DE have been retained from (Liu
et al., 2010) as it is one of the more cited and pres-
tiguous works. Also, we utilize the same parameter
definitions for PSO as cited in this article by the ini-
tial authors in (Poli et al., 2007). The population size

for initialised to 100 for all the algorithms as it is the
uniformly recommended value by all of these papers.
A total of 100 independant iterations were performed
to obtain consistent result values to permit a uniform
examination of the algorithm behaviour.

4.3 Numerical and Graphical Results

In tables 2-4, the best and mean values obtained for
the population agents in the simulation runs have been
reported, and the optimum values for each objective
function have been highlighted in bold. For the sake
of clarity, the comparison results in each table have
been summarized in “w/t/I” format wherein w rep-
resents the number of objective functions where the
algorithm outperforms all other algorithms, ¢ speci-
fies the number of objective functions where it is tied
as the best algorithm for the objective function and 1
represents the number of test functions where it does
not finish first. The utilization of the evaluation met-
ric facilitates a definitive comparison of the different
algorithms under consideration.

As represented in Table 2, On D = 30, HIDE
achieved maximum number of wins in both best and
mean case (17 and 18 respectively). JADE achieved
second position with 8 and 9 wins in the best and
mean case. The decent performance of JADE can be
attributed to the adaptive nature of its parameter se-
lection which enables enhancement of its convergence



Function:22, Function:22, Dimension: 30

Function:22, Function:22,

oE DE

-- HIDE

) @

Figure 4: Comparative convergence profiles for test functions from CEC 2017 Benchmark over D = 10,30,50,100.

rate.

The results for D = 50 and D = 100 (higher di-
mensions) have been summarized in tables 3 and 4.
On D = 50, HIDE depicted exceptional performance,
outperforming all other algorithms. It registered 17
wins in the best case and 18 wins in the mean case.
Classical DE shows no wins in any case in high di-
mensional settings owing to its slow convergence rate
and inability to attain global optimum thus highlight-
ing the usefulness of the modifications introduced in
the variants including HIDE. Similarly for D = 100,
HIDE again outperforms all other algorithms by an
appreciable margin. From a functional standpoint,
It would be worthwhile to highlight that HIDE out-
performed the other 3 compared algorithms on ma-
jority on the composite and hybrid functions, partic-
ularly on the higher dimensional settings. The effi-
ciency of HIDE can be attributed to the hierarchical
nature of crossover selection and concurrency in vec-
tor configurations at the higher hierarchy levels. The
tabular results reinforce the fact that HIDE outper-
forms JADE, PSODE and DE. On close analysis, it
can be witnessed that HIDE falls behind the other al-
gorithms on a small fraction of unimodal functions
such as fs5, f7 on lower dimensions due to fast con-
vergence during early stages of execution. However,
the performance of higher dimensions, particularly on

the more involved functions highlights utility for real
world problems.

The tabular results are complemented through the
graphical representations in Figure 4. For the sake of
clarity, representations of higher dimensional prob-
lems span more number of iterations than those for
lower dimensional settings. Analysis of the plots
clearly depicts that HIDE shows better convergence
rate as compared to other algorithms. As the analy-
sis transcends to higher dimensional settings, the pro-
posed approach outperforms the other algorithms on
majority of the objective functions with respect to
both convergence rate and optimality. the superiority
of our algorithm in higher dimensions (50 and 100)
is clearly evident from Figure 4 (c,d,g,h,k,1). Figure
4 (a,b,i,j) depict that for functions where HIDE and
the other variants may depict similar trends on lower
dimensions, HIDE eventually excels and surpasses
them in higher dimensions in most scenarios. Almost
all figures are representative of a faster convergence
rate for HIDE on higher dimensions. This remarkable
trait in HIDE enhances its utility for high dimensional
problems where fast convergence to global optimum
value is required, hence making it superior to the other
considered algorithms and several variants of the DE
algorithm.



5 CONCLUSION

Differential Evolution has been regarded as one of the
most successful optimization algorithms and over the
years, several variants have been proposed to enhance
its convergence rate and performance. In the present
work, we introduced a hierarchy influenced variant of
the classical DE algorithm and modeled the same on
the brain motor operation. The algorithm was char-
acterized by global leader, local leaders and an ef-
fector population. The global leader and distributed
local leaders interacted to facilitate gross motion via
a greedy exploration strategy. The local leaders and
their effectors interacted to control intricate motion
for smooth convergence. A hierarchical crossover pa-
rameter was introduced to characterize the hierarchi-
cal transition between the two interactions. The influ-
ence of the vector configurations at the higher levels
of hierarchy enabled the algorithm to avoid local min-
ima in most objective functions. The same is comple-
mented through our result observations wherein we
significantly outperform several popular algorithm on
complex multimodal functions in higher dimensional
settings. Our proposed approach has sought to es-
tablish a viable tradeoff between fast optimization,
robust convergence and low number of control pa-
rameters. The performance analysis of the algorithm
highlights the particular effectiveness of the proposed
approach on high dimensional hybrid and composite
functions. The observed results provide sufficient mo-
tivation to extend the scope of the work to complex
high dimensional real life problems including image
enhancement, traveling salesman problem and flexi-
ble job-shop scheduling.
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