
The Challenge of using Map-reduce to Query Open Data

Mauro Pelucchi1, Giuseppe Psaila2 and Maurizio Toccu3

1University of Bergamo, Italy (current affiliation: Tabulaex srl, Milan, Italy)
2University of Bergamo, Italy

3University of Milano Bicocca, Italy

Keywords: Retrieval of Open Data, Single Item Extraction, Map-reduce.

Abstract: For transparency and democracy reasons, a few years ago Public Administrations started publishing data sets
concerning public services and territories. These data sets are called open, because they are publicly available
through many web sites.
Due to the rapid growth of open data corpora, both in terms of number of corpora and in terms of open data
sets available in each single corpus, the need for a centralized query engine arises, able to select single data
items from within a mess of heterogeneous open data sets. We gave a first answer to this need in (Pelucchi
et al., 2017), where we defined a technique for blindly querying a corpus of open data. In this paper, we face
the challenge of implementing this technique on top of the Map-Reduce approach, the most famous solution
to parallelize computational tasks in the Big Data world.

1 INTRODUCTION

Public Administrations, like central and local govern-
ments, are publishing more and more data sets con-
cerning their activities and citizens. Since these data
sets are open, i.e., publicly available for any interested
people and organizations, they are called Open Data.
The motivation for such an effort is transparency, a
key factor in democracy. However, in (Carrara et al.,
2015) the notion of Open Data Value Chain has been
introduced: the idea is that by making data sets pub-
licly available, citizens and organizations can make
decisions concerning economical activities that gen-
erate new value (increasing the local or global GDP),
taxes increase and largely compensate the effort to
publish Open Data. This is the ROI (Return of In-
vestment) of publishing Open Data (see Figure 1).

Analysts and journalists (e.g.) that need to find
the right data for their research or article have to visit
many portals and spend a lot of time in searching data
sets, downloading them and looking into them for the
desired pieces of information.

Here is our view of the problem: if there were a
central system that provides a centralized and global
view of open data sets, users could query this system
to retrieve open data sets that better fit their needs.

In (Pelucchi et al., 2017) we addressed the first
part of the problem, i.e., defining a technique for
querying an open data corpus in a blind way. In fact,

users (e.g., analysts and journalists) do not actually
know names and structures of data sets; in contrast,
they make hypotheses that the query engine should
solve w.r.t. real data sets. For this reason, the tech-
nique mixes a query expansion mechanism, which re-
lies on string similarity matching, and the classical
VSM Vector Space Model approach of information re-
trieval.

In this paper, we face the challenge of developing
the Hammer prototype, the testbed built for validat-
ing our technique, by exploiting the Map-Reduce ap-
proach, in several parts of the computation. This ap-
proach is very popular in the area of Big Data, since it
parallelizes the computation in a native way and eas-
ily scales when the number of nodes involved in the
computation increases. As shown in (Dean and Ghe-
mawat, 2008), Map-Reduce is a programming model
for processing large and complex data sets based on
two primitive functions: a map function, that pro-
cesses source data and generates a set of intermediate
key/value pairs, and a reduce function, that takes the
intermediate set and merges all values with the same
key. We will show how the prototype behaves in dif-
ferent configurations of the testbed, showing that the
Map-Reduce approach is promising, but requires very
efficient implementations.

The paper is organized as follows. Section 2
shows the concept of blind way to querying Open
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Figure 1: The Open Data Value Chain.

Data, defines the problem (Section 2.1) and summa-
rizes the retrieval technique (2.2). Section 3 describes
the Hammer prototype and how the Map-Reduce ap-
proach is exploited. Section 4 presents the experimen-
tal settings and the results in terms of execution times.
Section 5 discusses some related work and Section 6
draws conclusions and future work.

2 BLINDLY QUERYING OPEN
DATA PORTALS

“Every day I wake up and ask, ‘how can I flow data
better, manage data better, analyze data better?”’ says
Rollin Ford, the CIO of Wal-Mart, like reported by
(Cukier, 2010). Data are everywhere and now they are
not only within information systems of organizations,
but the web provides a mess of data: Open Data are a
meaningful and valuable part.

Users of Open Data Portals wishing to retrieve
useful pieces of information from within the mess of
published data sets, have to face several issues.

• Only keyword-based search. Search engines pro-
vided by open data portals usually provide users
with a simple keyword-based retrieval, thinking
about data sets as documents without structure.
However, data sets are usually structured data
sets, provided as CSV (comma separated values)
files (often, the first row reports the names of
fields and the other rows are the actual data set)
or JSON files.

• Large Data Sets. Usually, data sets contain hun-
dreds or thousands of items; often, users are inter-
ested in a few of them, those with certain charac-
teristics. Traditional search engines provided by

portals return the entire data set, instead of return-
ing only the items of interest.

• Heterogeneity of data sets. The structure of data
sets is not coherent, even though two data sets
concern the same topic. In fact, different fields,
different names for similar fields and, even, dif-
ferent languages are often used. For an analyst,
it becomes very difficult to get the desired items
sparse in such a mess of data sets.

• Schema Unawareness. Finally, the user cannot be
aware of the real schema of thousands of data sets,
as well as he/she cannot knows the names of thou-
sands of data sets in advance.

The consequence of these considerations is that
analysts must query open data corpora in a blind way,
i.e., they do not know names and structures of data
sets, but should formulate a query by means of which
they express what they are looking for. At this point,
it is responsibility of the query mechanism to address
the query to the data sets that possibly match the
user’s wishes.

2.1 Problem Definition

We now define the problem, by reporting some formal
definitions.

Definition 1: Data Set. An Open Data Set ods is
described by a tuple

ods: <ods id, dataset name, schema, metadata>
where ods id is a unique identifier; dataset name is
the name of the data set (not unique); schema is a
set of field names; metadata is a set of pairs (la-
bel, value), which are additional meta-data associated
with the data set. �
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Definition 2: Instance and Items. With Instance,
we denote the actual content of data sets. It is a set of
items, where an item is a row of a CSV file, as well as
a flat object in a JSON vector. �
Definition 3: Corpus and Catalog. With C = {ods1,
ods2, . . .} , we denote the corpus of Open Data sets.
The catalog of the corpus is the list of descriptions,
i.e., meta-data, of data sets in C (see Definition 1). �

Now, we introduce the concept of query, by ex-
plaining the way we intend the notion of Blind Query-
ing.

Definition 4: Query. Given a Data Set Name dn, a
set P of field names (properties) of interest P = { pn1,
pn2, . . .} and a selection condition sc on field values,
a query q is a triple q: <dn, P, sc>. �

As an example, suppose a journalist wants to get
information about high schools located in a given city
named “My City”. The query could be
q :<dn=Schools,

P= {Name, Address, Reputation},
sc= (City="My City" AND

Type="High School")>.

However, there could not exist a data set with
name Schools, as well as desired schools could be
in another data set named SchoolInstitutes. So,
items of interest could be obtained by a different
query, i.e.,
nq1 :<dn=SchoolInstitutes,

P= {Name, Address, Reputation},
sc= (City="My City" AND

Type="High School")>.
Query nq1 is obtained by rewriting query

q: the data set name q.dn =Schools is sub-
stituted with SchoolInstitutes, becoming
nq1.dn =SchoolInstitutes.

Another possible rewritten query could be ob-
tained by changing property Type with SchoolType.
In this case, we obtain the following rewritten query
nq2.
nq2 :<dn=Schools,

P= {Name, Address, Reputation},
sc= (City="My City" AND

SchoolType="High School")>.
In practice, the substitution of a term with a simi-

lar one originates a new query that could find out data
sets containing items of interest for the user. Never-
theless, a third query nq3 could be obtained by substi-
tuting two terms.
nq3 :<dn=SchoolInstitutes,

P= {Name, Address, Reputation},

sc= (City="My City" AND
SchoolType="High School")>.

Query nq3 looks for a data set named
SchoolInstitutes and selects items with field
SchoolType having value "High School".

Queries nq1, nq2 and nq3, similar to the original
one q, constitute the neighborhood of q; for this rea-
son, they are called Neighbour Queries.

The concept of neighbour queries explains our
idea of blind querying. Since users cannot know
names and structure of thousands of data sets in ad-
vance , they formulate a query q, making some hy-
potheses about data set name and property names. At
this point, the system generates a pool of neighbour
queries, by looking for similar terms in the catalog of
the corpus. Then, for each neighbour query, the sys-
tem looks for data sets that match the query and con-
tains items satisfying the selection condition. Here-
after, we summarize the problem.

Problem 1: Given an open data corpus C and a query
q, return the result set RS = {o1, o2, . . .}, that con-
tains items (rows or JSON objects) oi retrieved in data
sets ods j∈ C (oi ∈ Instance(ods j)) such that oi sat-
isfies query q or a neighbour query nq obtained by
rewriting query q. �

The above problem is formulated in a generic way.
In the next Section, we present the technique we de-
veloped to solve the problem.

2.2 Retrieval Technique

The technique we developed to blindly query a cor-
pus of Open Data is fully explained in (Pelucchi et al.,
2017). Here, we report a synthetic description, in or-
der to let the reader understand the rest of the paper.

The proposed technique is built around a query
mechanism based on the Vector Space Model (Man-
ning et al., 2008), encompassed in a multi-step pro-
cess devised to deal with the high heterogeneity of
open data sets and the blindly query approach (the
user does not know the actual schema of data sets in
the corpus).

• Step 1: Query Assessment. Terms in the query
are searched within the catalog. If some term t
is missing, t is replaced with term t, the term in
the meta-data catalog with the highest similarity
score w.r.t. t. We obtain the assessed query q.

• Step 2: Keyword Selection. Keywords are selected
from terms in the assessed query q, in order to
find the most representative/informative terms for
finding potentially relevant data sets.
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Figure 2: Crawling and Indexing Remote Open Data Por-
tals.

• Step 3: Neighbour Queries. For each selected
keyword, a pool of similar terms which are
present in the meta-data catalog are identified, in
order to derive, from the assessed query q, the
Neighbour Queries, i.e., queries which are simi-
lar to q. For a neighbour query, the set of rele-
vant keywords is obtained from the set of relevant
keywords for q by replacing original terms with
similar terms. Both q and the derived neighbour
queries are in the set Q of queries to process.

• Step 4: VSM Data Set Retrieval. For each query
in Q, the selected keywords are used to retrieve
data sets based on the Vector Space Model: in this
way, the set of possibly relevant data sets is ob-
tained. The Keyword Relevance Measure krm is
the cosine similarity measure.

• Step 5: Schema Fitting. The full set of field names
in each query in Q is compared with the schema
of each selected data set: the Schema Fitting De-
gree is higher for data sets whose schema better
fits the query.
The general Relevance Measure rm for a data
set is a combination of krm and s f d: only data
sets with rm greater than or equal to a minimum
threshold th are selected (relevant data sets).

• Step 6: Instance Filtering. Instances of relevant
data sets are processed in order to filter out and
keep only the items (rows or JSON objects) that
satisfy the selection condition.

As a result, at the end of the process the user is
provided with the set of items (CSV records or JSON
objects) that satisfy the initial query and the rewritten
ones.

In this paper, we do not focus on the capability of
the technique to retrieve the desired items, which is
discussed in (Pelucchi et al., 2017) in terms of recall
and precision. Here, we discuss the challenge of im-
plementing such a technique by exploiting the Map-
Reduce approach.

3 MAP-REDUCE IN THE
HAMMER PROTOTYPE

In this section, we present the Hammer prototype, that
is the testbed for the technique shortly presented in
Section 2.2 and deeply presented in (Pelucchi et al.,
2017). The final perspective application of this tech-
nique is to build a centralized query engine for many
open data portals, in order to further simplify the work
of open data users. This perspective is simple and at-
tracting. However, open data corpora are becoming
larger and larger: we can say that we are going to-
wards the Big Open Data World. The consequence is
that it is not possible to deal with queries from scratch,
but it is necessary to perform preliminary computa-
tion in order to get acceptable execution time during
query processing. For this reason, three main services
are provided by the Hammer prototype:

1. Open Data Portal Crawling: a portal is queried to
get the list of open data sets they publish, getting
their schema and meta-data, so that a local catalog
of data sets is locally built;

2. Indexing: the inverted index to perform step 4 of
the technique (VSM Dataset Retrieval) is built;

3. Querying: queries are actually executed and eval-
uated on the actual content of data sets.

However, the possible large number of data sets
in a corpus could make the process highly inefficient,
if executed on one single computer. Also because, in
our vision, the Hammer prototype should be able to
deal with several open data portals, previously con-
figured. The final goal of our project is to build a
centralized query engine for open data portals.

Therefore, the challenge of our work is to make
possible to parallelize time consuming operations, on
the basis of the Map-Reduce approach. In fact, this
approach could easily scale, by increasing the num-
ber of nodes involved in the execution of the process.
Consequently, it could be beneficial for implementing
our query technique.

Having in mind the perspective of Big Open Data,
in the Hammer prototype we used modern technol-
ogy for Big Data management. In particular, we
adopted MongoDB as DBMS to manage local stor-
age, in that it is schema less and allows us to store
heterogeneous JSON collections. Another tool we
exploited is Apache Hadoop, that supports the Map-
Reduce technique, in order to parallelize long com-
putational tasks. In the following, we present the two
processing phases and the devised components in de-
tails.
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Figure 3: Building the Inverted Index for three open data sets by applying the Map-Reduce approach.

3.1 Crawler

This component gets information about the data sets
contained in the corpus published by an open data
portal and builds the local catalog. Figure 2 is use-
ful to clarify.

The crawler has been designed to connect with
several platforms usually adopted to publish open
data portals. Depending on the platform, the crawler
relies on a specific connector. Several connectors
were built, but, in particular, the most useful ones are
the following: the CKAN Connector, for the standard
platform named Comprehensive Knowledge Archive
Network; the Socrata Connector, for Socrata Open
Data Portals. Since these platforms are the ones
mostly used to build open data publishing services,
our prototype is ready to connect with a large vari-
ety of different open data services. Nevertheless, it is
easy to extend the crawler with new connectors.

3.2 Indexer

The Indexer builds the Inverted Index IN. This is ex-
ploited by the technique presented in Section 2.2, to
perform the VSM Dataset Retrieval. In the Hammer
prototype, the Indexer component extracts terms and
labels from schema and meta-data of each open data
set in the corpus C. The indexer creates an inverted

index of terms and labels, i.e., a data structure that
implements a function

TermWeighForDataSets : t→{ods id,w} (1)

that, given a term t, returns a set of pairs denoting
the ods id of the data set and the weight w (number
between 0 and 1)

Within Indexer we adopted the Map-Reduce tech-
nique; for each data set and for each label in the
schema and in the meta-data, the map primitive gen-
erates a pair <t, ods id>. Then, the reduce primitive
transforms the set of pairs into a nested structure

IN= { <t,ods list: { ods id1, . . . , ods idn}> }

where ods list is the list of ids of data sets for which t
is a label in schema or in meta-data. This structure is
the inverted index IN.

Finally, the inverted index IN is stored into the lo-
cal database.

The advantage of using the Map-Reduce approach
is that it natively implements map and reduce primi-
tives in a distributed environment, thus permitting to
distribute the computation among several servers.

Figure 3 shows how the process works. Suppose
three open data sets labeled d1, d2 and d3 are in the
corpus C. Their schema appear in the upper left side
of the figure. The map primitive generates the set of
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Figure 4: The Retrieval Process.

tuples that describe each data sets. These tuples are
reported in the central part of the figure. Recall that
each tuple associates a term, in this case a property
name, with the data set identifier. Finally, the reduce
primitive fuses all tuples with the same label: we ob-
tain the nested structures reported on the right hand
side of the figure, i.e., the inverted index IN.

3.3 Query Engine

At query time, the Query Engine exploits the inverted
index IN to retrieve the list of data sets relevant for
the query (it is better to say: for each neighbor query
nq ∈ Q).

Figure 4 depicts how the query engine works: it
receives the query and generates the set Q of queries
to process. Then, by exploiting the catalog and the
inverted index IN, it determines relevant data sets
and then provides (as output) the items within those
data sets that satisfy at least one selection condition
nq.sc of a query nq ∈ Q. Thus, the Query Engine
must implement all the steps of the retrieval tech-
nique introduced in Section 2.2. However, steps from
1 to 3, i.e., from query assessment to query expan-
sion, are not suitable for parallelization with Map-
Reduce, because they strongly rely on the compu-
tation of the Jaro-Winkler string similarity measure
(Cohen, 1998). These steps are implemented by a
single-thread process.

In contrast, step 4 (VSM Dataset Retrieval), Step
5 and Step 6 can be implemented by exploiting again
the Map-Reduce approach.

• Step VSM Dataset Retrieval and Step Schema Fit-
ting determine, for each neighbour query nq ∈ Q,
the list of relevant data sets, i.e., those data sets
which items of interest for the user are likely to
be extracted from. To this end, a relevance mea-

sure rm for a data set ods w.r.t. a neighbour query
nq is defined as:

rm(ods, nq)=
(1−α)× krm(ods, nq)+α× sfd(ods, nq)

krm(ods, nq) is the Keyword-based Relevance
Measure, i.e., the relevance of a data set on the
basis of relevant keywords in query nq; sfd is the
Schema Fitting Degree, i.e., a measure between 0
and 1 that evaluates if the schema of the data set
ods is suitable for the query nq. α ∈ [0,1] is a pa-
rameter that permits to balance the contribution of
both krm and sfd to the overall relevance measure.
The outcome of this step is the set RD= {odsi} of
relevant data sets.

• For each odsi ∈ RD, Instance(rdi) is collected
from the open data portal and temporarily stored
into the local storage.

• The result set RS of relevant items is obtained by
evaluating the selection condition provided with
the neighbour query nq for which the data set was
retrieved. Again, the Map-Reduce approach is a
good solution to deal with heterogeneous items in
a parallel way.

The keyword-based relevance measure
krm(ods,nq) is computed by adopting the vec-
tor space model approach.

Consider a neighbour query nq ∈ Q (where Q is
the set of queries to process): its set of keywords
K(nq) can be represented as a vector v = <k1, . . . ,
kn>. The vector w(nq) = <w1, . . . , wn> represents
the weight wi of each term ki in the set of keywords
K(nq); this weight is conventionally set to 1, i.e.,
wi = 1 (but different settings could be defined, de-
pending on the role of each term in the query).

Given a data set identifier ods id, vector
W(ods id)= <w1,. . . ,wn> }

is the vector of weights of each keyword ki for data set
identified by ods id, as obtained by evaluating func-
tion TermWehighForDataSetrs through the inverted
index IN.

The Keyword-based Relevance Measure krm(ods,
nq) for the data set ods (identified by ods id) w.r.t.
query nq is the cosine of the angle between vectors
w(nq) and W(ods id). The maximum value of rmi is
1, obtained when the data set is associated with all the
keywords, while values less than 1 but greater than 0
denote partial matching. A minimum threshold th is
used to discard less relevant data sets and keep only
those such that rm(ods, nq) ≥ th.

For each relevant data set, the Query Engine
downloads its instance from the Open Data Por-
tal. Instances are stored into a collection within the
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Figure 5: Retrieving relevant items by applying Map-Reduce.

NoSql MongoDB database. This way, we exploit the
schema-less feature of MongoDB, since the actual
schema of each retrieved data set can be very different
from each other. Instead, MongoDB is very useful to
manage heterogeneity.

Map-Reduce is exploited to select items as well.
First of all, the Query Engine assigns a unique iden-
tifier to each item within the downloaded data sets.
In order to deal with heterogeneity of these objects
and easily select them, for each item and each field
(property) in the item, the map primitive generates a
triple <oid, f ield value>. Then, the reduce primitive
transforms the set of triples into a nested structure
{ < f ield, value, oid list: { oid1, . . . , odn}>

in order to aggregate all items having the same value
for a given field.

To illustrate, consider a query q. Figure 5 il-
lustrates the process. Based on the set of key-
words K(q), we match two data sets d1 and d2 that
have sufficient relevance w.r.t. the minimum thresh-
old th=0.3 (in Figure 5, rm1 =rm(d1,nq)=0.5 and
rm2 =rm(d2,nq)=0.75)). Their instances are down-
loaded and items are processed by the map primitive
(see Figure 5). Then, the reduce primitive aggregates
triples based on the equality of field name and value.
Finally, the items that match the selection condition
(in Figure 5, the gray item on the right-hand side) are
selected. In the example, only object with oid3 is se-

lected.

4 EXPERIMENTS

We implemented our technique within the Hammer
prototype, so as to evaluate the effectiveness of the
technique and study performance. In this section, we
discuss execution times, to evaluate the effectiveness
of the Map-Reduce approach. Instead, the effective-
ness of the retrieval technique in terms of recall and
precision is reported in (Pelucchi et al., 2017).

4.1 Testbed

We assembled a testbed for evaluating the Hammer
prototype. It is a cluster of Hadoop nodes. We tested
it in two different environments: the first one was on
local PCs and it was used for development and tuning;
the second environment was configured on Google
Cloud Platform and it was used to evaluate perfor-
mance in an industrial settings (i.e., with networking
connections having low latency and high throughput
during the download of datasets). Table 1 summarize
the different configurations of our tests.
Notice the three different configurations of the
Hadoop ecosystem: with 1 single node for storage
and computation; with 1 node for storage and 3 for
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Table 1: Configurations of the Testbed.

Configuration Storage Cluster

1. Single Node (Development CLuster)
1 Node
(1 virtual CPU
and 3 GB of memory)

1 Node
(1 virtual CPU
and 3 GB of memory)

2. Multiple Nodes (Development Cluster)
1 Node
(1 virtual CPU
and 3 GB of memory)

3 Node
(1 virtual CPU
and 3 GB of memory)

3. Multiple Nodes (Google Cloud Platform)
2 Node
(1 virtual CPU
and 3.75 GB of memory)

3 Node
(1 virtual CPU
and 3.75 GB of memory)

Figure 6: Architecture of the Prototype.

computation; (on Google Cloud Platform) with 5
nodes, 3 devoted to perform crawling, inverted in-
dex creation and query execution, 2 devoted to stor-
age (one node for the main instance of MongoDB and
one node hosting a replica). Figure 6 shows the archi-
tecture.

Experiments were performed on a set of 2301
open data sets published by the Africa Open Data por-
tal1. These open data sets are prepared in a non ho-
mogeneous way, as far as field names and conventions
are concerned: Africa Open Data aggregates data sets
from a lot of different organizations. This fact makes
the search more difficult than with an homogeneous
corpus: data sets are different by format, type and ar-
gument.

4.2 Crawling and Indexing

First, we tested crawling and indexing. The results
are reported in Table 2, for the three different config-
urations.
First of all, notice the execution times for crawl-
ing. A dramatic improvement is obtained by pass-
ing from configuration 1 (one node) to configuration

1https://africaopendata.org/

Table 2: Response times (in sec) for crawling and indexing.

Configuration Crawling Indexing
1 7524 972
2 3276 792
3 2448 774

2 (4 nodes), even in the development environment.
Then, configuration 3 (on Google Cloud Platforms)
further reduces execution times. The overall gain is
from more than 2 hours to 40 minutes.

As far as indexing is concerned, increasing the
number of nodes is not particularly effective. In fact,
passing from configuration 1 (one node) to configu-
ration 2 (4 nodes) we save 180 secs, i.e., the 18%.
In contrast, moving to configuration 3 (Google Cloud
Platform), just a few seconds are saved. This is due
to the reduce primitives, that must aggregate sparse
tuples coming from the map primitive.

4.3 Querying

We run 6 different queries. They are reported in Fig-
ure 7. Hereafter, we describe them to help the reader
to understand what kind of queries it is possible to
perform.

• Information about nutrition in Kenya. In query
q1, we look for analytical information (number of
cases of underweight, stunting and wasting) about
malnutrition in the regions of Monbasa, Nairobi
and Turkana in Kenya.

• Civil unions statistics. In query q2, we look for
information about civil unions since 2012, where
the age of both spouses is at least 35. The at-
tribute extract are year, month, spouse1age and
spouse2age.

• Availability of water. Query q3 retrieves in-
formation about availability of water, a seri-
ous problem in Africa; it looks for distribution
points that are functional (note the condition,
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Table 3: Time of execution in seconds for each steps of the querying process.

Configuration 1
Query

Assessment
Keyword
Selection

Neighbour
Queries

VSM Data
Set Retrieval

Schema
Fitting

Instance
Filtering

Total
time

q1 107 10 529 1535 7740 6 9927
q2 114 11 257 576 8453 2410 11821
q3 82 10 179 746 8156 5615 14788
q4 61 14 313 609 8969 2414 12380
q5 60 19 35 93 455 218 880
q6 45 9 28 29 262 37 410

Configuration 2
Query

Assessment
Keyword
Selection

Neighbour
Queries

VSM Data
Set Retrieval

Schema
Fitting

Instance
Filtering

Total
time

q1 105 12 534 990 4967 3 6611
q2 117 11 257 456 5624 1099 7564
q3 91 13 165 707 4591 2577 8144
q4 64 12 321 439 4086 1475 6397
q5 61 21 32 47 203 95 459
q6 34 11 37 20 139 21 262

Configuration 3
Query

Assessment
Keyword
Selection

Neighbour
Queries

VSM Data
Set Retrieval

Schema
Fitting

Instance
Filtering

Total
time

q1 98 9 433 895 2345 2 3782
q2 99 7 212 432 2478 725 3953
q3 87 9 134 654 1572 759 3215
q4 59 7 291 321 804 1077 2559
q5 48 11 21 23 159 48 310
q6 21 6 23 15 82 12 159

where we consider two possible values for field
functional-status (functional and yes).

• Public schools metrics. Query q4 looks for in-
formation about the number of teachers in pub-
lic schools, for each county. The query returns
county, schooltype and noofteachers.

• Water consumptions. In query q5, we look for
data about per capita water consumptions at the
date of December, 31 2013 (the date is written as
"2013-12-31t00:00:00").

• National Export statistics of Orchids. Query q6
retrieves data about orchids export in terms of
weight (field kg) and money.

Tables 3 summarizes execution times in secs, re-
porting the details for each step described in Section
2.2. The table is divided in three groups, one for each
configuration.

The Query Engine was configured with the fol-
lowing minimum thresholds: th= 0.3 is the minimum
threshold for data set relevance measure, th sim=0.8
is the minimum threshold for Jaro-Winkler (Cohen,
1998) string similarity metric (to build neighbour

queries) with up to three alternative terms for each
substituted term. This setting is the one (see (Peluc-
chi et al., 2017)) that obtained the best performance
in terms of recall and precision, but it is also the one
that retrieves the highest number of data sets. This is
why we adopted this setting to test execution times.

The reader can see that, at the current stage of de-
velopment, execution times are very long, in some
cases several hours (when thousands of neighbour
queries must be processed). In particular, a not effi-
cient step is Schema Fitting, because the schema of a
data set retrieved by the VSM Dataset Retrieval must
be fitted against all the neighbour queries. Currently,
this step is not optimized: we plan to do that in the
near future.2

Instead, the execution time of step 6 Instance Fil-
tering strongly depends on the actual size of down-
loaded data set instances.

2Number of neighbour queries generated for each origi-
nal query: 243 for q1, 562 for q2, 81 for q3, 91 for q4, 263
for q5 and 9 for q6.
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q1:<dn=nutrition,
P= {county, underweight, stuting,

wasting},
sc= (county = "Monbasa"

OR county = "Nairobi"
OR county = "Turkana")>

q2 :<dn=civilunions,
P= {year, month, spouse1age,

spouse2age},
sc= (year = 2012 AND (spouse1age >= 35

OR spouse2age >= 35)>
q3 :<dn=wateravailability,

P= {district, location, position,
wateravailability} ,

sc= (functional-status = "functional"
OR functional-status = "yes" )>

q4 :<dn=teachers,
P= {county, schooltype,

noofteachers} ,
sc= (schooltype="public")>

q5 :<dn=waterconsumption,
P= {city, date, description,

consumption per capita} ,
sc= (date = "2013-12-31t00:00:00")>

q6 :<dn=national-export,
P= {commodity, kg, money} ,
sc= (commodity = "Orchids")>

Figure 7: Queries for the Experimental Evaluation.

Anyway, as far as the effectiveness of Map-Reduce,
the results are promising: both step 4 VSM Dataset
Retrieval and Step 6 Instance Filtering strongly re-
duce their execution time. Thus, we can expect that
a configuration with a larger number of computing
nodes will better parallelize the execution and will ob-
tain faster response times. Finally, the reader can no-
tice that the configuration on Google Cloud Platform
is always the oe with better performance: a better vir-
tual environment and an excellent network infrastruc-
ture speed up the prototype.

5 RELATED WORKS

The world of Open Data is becoming more and more
important for many human activities. Just to cite some
areas that can get benefits, we cite Neuro-Sciences
(Wiener et al., 2016), prediction of tourists’ response
(Pantano et al., 2016) and improvements to digital
cartography (Davies et al., 2017). These works are
proving the concept of Open Data Value Chain: the
wide adoption of Open Data by researchers and ana-
lysts shows that the effort of public administrations is
motivated and must be carried on.

We now focus on Open Data Management re-
search. This area is young and in progress. In par-
ticular, at the best of our knowledge, our approach is
novel and no similar systems are available, at the mo-
ment. Anyway, some works have been done.

An interesting paper is (Braunschweig et al.,
2012), where the authors observe characteristics of
fifty Open Data repositories. As a result, they sketch
our vision of a central search engine.

In (Liu et al., 2006), the authors note that there is
a growing number of applications that require access
to both structured and unstructured data. Such collec-
tions of data have been referred to as dataspaces, and
Dataspace Support Platforms (DSSP) were proposed
to offer several services over dataspaces. One of the
key services of a DSSP is seamless querying on the
data. The Hammer prototype can be seen as DSSP of
Open Data, while (Liu et al., 2006) proposes a DSSP
of web pages.

In (Kononenko et al., 2014), the authors re-
ported their experience in using Elasticsearch (dis-
tributed full-text search engine) to resolve the prob-
lem of heterogeneity of Open data sets from feder-
ated sources. Lucene-based frameworks, like Elas-
ticsearch and Apache Solr (see (Nagi, 2015)), are al-
ternatives to the Hammer prototype, but they usually
don’t retrieve single items satisfying a selection con-
dition.

In (Schwarte et al., 2011), the authors describe
their approach and their idea to build a pool of feder-
ated Open Data Corpora with SPARQL as query lan-
guage. However, we considered SPARQL only for
people that are highly skilled in computer science: our
query technique is very easy to use and it is designed
for analysts with medium-level or low-level skills in
computer science.

The benefit of Map-Reduce approach are de-
scribed in (Dean and Ghemawat, 2010). In few
words, Map-Reduce automatically parallelizes and
executes the program on a large cluster of commod-
ity machines. In (Vavilapalli et al., 2013), the au-
thors present YARN Yet Another Resource Negotiator
and they provide experimental evidence demonstrat-
ing the improvements of use YARN on production
environments. YARN is the basic component within
Hadoop that handles the actual execution of the Map-
Reduce tasks.

6 CONCLUSION

In this paper, we present the current state of develop-
ment of the Hammer prototype, a testbed for a novel
technique to query corpora of Open Data sets. In par-
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ticular, in this work we faced the challenge of paral-
lelizing many parts of the prototype by applying the
Map-Reduce approach, in order to evaluate the fea-
sibility of this Big Data approach in the area of Big
Open Data. Specifically, the Hammer prototype im-
plements the retrieval technique presented in (Peluc-
chi et al., 2017). We demonstrated that the adoption
of modern standard technology specifically designed
for big data management, such as Apache Hadoop and
MongoDB, can be effective in this context, in partic-
ular increasing the number of nodes in the Apache
Hadoop ecosystem, even though the retrieval tech-
nique produces a large number of rewritten queries
(neighbour queries) and several parts of the prototype
are currently not optimized.

As far as the effectiveness of the query technique
is concerned, i.e., evaluation of the capability to re-
trieve what users want, we refer to our previous work
(Pelucchi et al., 2017), in which the technique has
been extensively introduced and evaluated on a cor-
pus of open data sets. In that paper we showed that
the technique is actually effective, in particular in
comparison with a tool like Apache Solr, that is a
stand-alone search engine. We discovered that, al-
though Apache Solr behaves quite well, our technique
is capable of better focusing on data sets of interest;
furthermore, it extracts only items of interest (while
Apache Solr does not in a classic configuration).

In the future work, we will optimize the imple-
mentation of many components of the Hammer proto-
type, in order to get near real time response times. In
particular, we plan to replace the native Hadoop im-
plementation with Spark on a Hadoop Cluster to ob-
tain dramatic improvement of performance (accord-
ing to (Zaharia et al., 2010), Spark is 10x faster then
Hadoop).

Finally, we will extend queries to provide com-
plex features such as join and spatial joins ((Bordogna
and Psaila, 2004)) of retrieved data sets. In particular,
we are considering, as a starting point, the concept of
query disambiguation, in order to improve the genera-
tion of neighbour queries; a work we are considering
as a starting point is (Bordogna et al., 2012). Fur-
thermore, we think that a post processing of results is
necessary, in particular when thousands of items are
retrieved. We think that useful operators could be de-
fined, similar to those introduced in (Bordogna et al.,
2008).

Similarly, the adoption of NoSQL databases for
persistent storage of retrieved results could be use-
ful, since the Hammer prototype provides collec-
tions of heterogeneous JSON objects, possibly geo-
referenced. A good idea could be to integrate the
concept of blind querying and the Hammer engine as

part of the J-CO-QL query language (Bordogna et al.,
2017), which is able to query heterogeneous collec-
tions of possibly geo-tagged JSON objects, providing
high-level operators which natively deal with spatial
representation and properties.
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