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1 OBJECTIVES 

One of the problems related to the use of hearing 

aids (HAs) is the difficulty in obtaining a best fit by 

adjusting different settings, such as those related to 

the gain and compression in different frequency 

bands. To help guide the process of fitting, some 

studies have proposed the use of neural responses to 

different sounds to give objective measures of 

hearing aid performance (e.g. Billings et al., 2011, 

Dajani et al., 2013).  

In this work, we propose taking this approach 

one step further and use the information extracted 

from the brain’s frequency following response 

(FFR) to speech sounds to automatically adjust the 

settings of HAs via a brain-computer interface (BCI) 

(Fig. 1). 

Figure 1: Schematic showing how a brain-computer 

interface (BCI) would use the speech-evoked frequency 

following response to automatically adjust hearing aids. 

2 METHODS 

2.1 Proposed BCI based on the Speech 
FFR 

The speech FFR is particularly interesting because it 

reflects auditory processing by several nuclei, but 

unlike cortical responses which are highly 

abstracted, it is still recognizable as a “speech-like” 

signal that contains a fundamental frequency (F0) 

that follows that of the stimulus, as well as higher 

frequency components that follow those in the 

stimulus up to the upper limit of neural phase-

locking. In fact, if played back as an audio 

recording, the speech FFR can be intelligible. 

The question then becomes how to use the rich 

spectro-temporal information present in the speech 

FFR to improve the experience of the impaired 

listener who wears a HA. Some possibilities include 

adjusting the settings of the HA so that: 

1) The FFR returns to a more “normal-hearing” 

pattern. However, this may not be possible in 

principle due to the nonlinear properties of the 

cochlea (Giguère and Smoorenburg, 1999). 

2) The correlation between spectral content of the 

FFR and stimulus is maximized (Kraus and 

Anderson, 2012). However, this may not be a 

desirable target since the FFR reflects 

transformations in different nuclei of the 

auditory pathway (Dajani et al., 2013). 

3) A normal balance is restored between the 

envelope FFR (eFFR), which follows the 

envelope at F0 and its low frequency harmonics, 

and the spectral FFR (sFFR) which primarily 

follows the harmonics around the first or second 

formants (Anderson et al., 2013). However, 

although it has been suggested that imbalance 

between these two responses occurs in hearing 

impairment, the extent and implication of this 

imbalance is not yet fully understood. 

4) The separation between neural responses to 

different phonetic classes is maximized in tasks 

of automatic classification. The hypothesis is 

that this would allow the hearing aid user, 

particularly if suffering from profound hearing 

impairment, to discriminate better between the 

different phonetic classes. Our goal is to 

develop and test this approach. 
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2.2 Data Collection 

The speech FFRs of 22 (11F, 11M) normal-hearing 

adult subjects (20-35 years) to four 100ms synthetic 

English vowel stimuli with F0=100Hz 

(F1:/a/=700Hz, /ɔ/=600Hz, /U/=500Hz, /u/=300Hz) 

at four levels (55, 65, 75, 85 dBA) were recorded. 

Repeated-measures ANOVAs were performed on 

the RMS-amplitude of the spectral data for F0 and 

then for the combination of its next five harmonics 

(H2 to H6) in the eFFR, and for F1 and then for the 

combination of F1 and one harmonic on either side 

of it in the sFFR. Post-hoc pairwise comparisons 

with Holm-Bonferonni corrections were also 

performed. 

This baseline dataset will be used with an 

automatic classification task before proceeding to 

speech FFRs collected from hearing impaired 

subjects and implementing the full BCI.  

3 RESULTS 

Significant effects of level were found at F0 in the 

eFFR and at F1 in the sFFR (p<0.01 in all cases).  

The combined harmonics show effects of level 

(p<0.001 in all cases), as well as significant pairwise 

comparisons between most levels. Interestingly, 

although F0 exhibits change in the eFFR across all 

four of the vowel stimuli, its amplitude does not 

grow consistently with increasing level, and it in fact 

appears to saturate at 65 dBA and then decrease in 

amplitude in all of the vowel stimuli except for /u/, 

which exhibits strictly increasing growth.  

The trend that emerges is one of increasing 

spectral richness with increasing level via the growth 

of the harmonics of F0 in the eFFR and via the 

growth of the first formant and its related harmonics 

in the sFFR.  

Initial machine learning models aimed at 

exploiting these trends appear promising.  Using a 

10-fold cross-validation technique, a support-vector 

machine was trained and tested on a mix of features 

from both the eFFR and sFFR.   A mean vowel 

classification accuracy of 80.5% was achieved when 

the model was restricted to the 85dBA case, which is 

comparable to the result reported by Sadeghian et al. 

(2015). Additionally, a correlative algorithm that 

was used to predict sound level across all vowel 

categories yielded a   2.2-fold increase in 

accuracy versus the null model, and a 79% reduction 

in misclassifications of levels greater than 10dB 

from the target. Since the spectra of within-subject 

test-retest trials are highly correlated (ranging from 

r=0.79 to r=0.96 across all vowels), we would 

expect much higher classification accuracy on 

models trained solely on individual subjects, 

provided that enough individual data is recorded.  

4 DISCUSSION 

These findings suggest that effects of sound level 

can be observed in the speech FFR of normal 

hearing adults, both with respect to the neural 

encoding of the envelope and the spectral fine 

structure of the speech signal. Machine learning 

techniques can be used to automatically classify 

vowels and sound level, particularly in individual 

subjects. This approach will be used to tune hearing 

aids to maximize the separation between the 

responses to different vowels and levels, with the 

aim of improving perceptual discrimination and 

loudness control in hearing aid users. 

ACKNOWLEDGEMENTS 

Funding provided by the Natural Sciences and 

Engineering Research Council of Canada. 

REFERENCES 

Anderson S., Parbery-Clark A., White-Schwoch T., 
Drehob S., Kraus N. (2013). Effects of hearing loss on 
the subcortical representation of speech cues. Journal 
of the Acoustical Society of America, 133(5), 3030-
3038. 

Billings, C. J., Tremblay, K. L., & Miller, C. W. (2011). 
Aided cortical auditory evoked potentials in response 
to changes in hearing aid gain. International Journal 
of Audiology, 50(7), 459–467. 

Dajani, H. R., Heffernan, B. P., & Giguere, C. (2013). 
Improving hearing aid fitting using the speech-evoked 
auditory brainstem response. In Proceedings of the 
Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society 
(EMBC), pp. 2812–2815. 

Giguère C., & Smoorenburg G. F. (1999). Computational 
modeling of outer haircell damage: Implications for 
hearing aid signal processing. In Psychoacoustics, 
Physiology, and Models of Hearing, edited by Dau T., 
Hohmann V., & Kollmeier B., World Scientific, 
Singapore, 1999. 

Kraus, N., & Anderson, S. (2012). Hearing Matters: cABR 
May Improve Hearing Aid Outcomes. The Hearing 
Journal, 65(11), 56. 

Sadeghian, A., Dajani, H. R., & Chan, A. D. C. (2015). 
Classification of speech-evoked brainstem responses 
to English vowels. Speech Communication, 68, 69–84. 


