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Abstract: Unmanned aerial vehicles (UAV) equipped with a navigation system and an embedded camera can be used to
estimate the position of a desired target. The relative position of the UAV along with knowledge of camera
orientation and imagery data can be used to produce bearing measurements that allow estimation of target
position. The filter methods applied are prone to biases due to noisy measurements. Further noise may be
encountered depending on the UAV trajectory for target localisation. This work presents the implementation
of an Unscented Kalman Filter (UKF) to estimate the position of a target on the 3D cartesian plane within a
small indoor scenario. A small UAV with a single board computer, equipped with a frontal camera and moving
in an oval trajectory at a fixed height was employed. Such a trajectory enabled an experimental comparison
of UAV simulation data with UAV real-time flight data for indoor conditions. Optitrack Motion system and
the Robot Operative System (ROS) were used to retrieve the drone position and exchange information at high
rates.

1 INTRODUCTION wing vehicles with visible cameras on (Hosseinpoor
et al., 2016); (Wang et al., 2016). (Ponda, 2008) pre-
sented the use of an Extended Kalman Filter for target
localisation with a fixed-wing drone and a gimballed
camera, showing simulation results of a localised ob-
ject being orbited by the drone at 100 ft height and
with an orbit of 50 ft radius, achieving the final es-
timated values after 100 measurements. Similarly,
(Redding et al., 2008) used a Recursive Least Squares

Unmanned Aerial Vehicles (UAV) have proven to be
a reliable platforms for research. The quadrotor UAV
has been one of the most popular among the different
UAV types, due to the easy architecture and its ca-
pabilities in reaching areas where no other UAV can.
The small size and the vertical take-off and landing

are two of the main advantages this UAV offers. (RLS) filter to estimate the target position, achiev-

. This paper presents the use of a small quadrqtoring experimental results using a fixed-wing miniature
with an onboard embedded camera for target localisa- yrone with a circular orbit of 50 m radius and 60 m al-
tion on indoor conditions at low he|ght._ Visual Mea- tityde, obtaining an estimation with an error of 10.9 m
surements of the target based on the pixel position 0N 4¢er 20 seconds of trajectory. (Deneault et al., 2008)
the image can be transformed into two bearing mea- o osented the tracking for ground targets using an Un-
surements, dependent upon the vehicle position andgqe e Transformation. To obtain the required mea-
orientation (Ponda, .2008)' The use of bearing anglessurements, mean and covariance data for the target
basgd only on the plxell po_5|t|on'|s not enough to de- position as a function of the SLAM states and cam-
termine the target localisation without the range (and o, measurements were used (Hou and Yu, 2014)
‘|’<V'tlh nmsg_l meaj‘éf,f”’!e”.ts)'l therefo(rje an U_nscentedshow the use of a Pelican quadrotor for target locali-

alman Filter ( ).'.S Implemented to estimate a sation, using a configuration of a frontal camera, ul-
sta.tlona_lry target posn.lon whitin the 3D plane. The trasonic and laser sensors. The use of these three de-
estimation results are mflu_enced by the drone_strajec— vices determined the current drone position. An on-
tory. Therefore an oval trajectory was chosen in order board visible camera was used for object colour de-

to vary both measured angles whitin a small area.  yqtion, experiments shows the target localisation us-

Several pieces of research have been done relatedng this setup. (Jung et al., 2016) presented the use
to target localisation with UAV, like the use of fixed
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of an UKF to estimate the position of a moving tar- 3 PLATFORM VEHICLE AND
get with three different process model. Simulations SCENARIO
on Matlab show different estimation error for each

model where a camera pointing downwards is track- p pejican quadrotor from Ascending Technologies

ing the moving target for landing purposes. (Gomez- (agcTec) was chosen as the prototype to develop the

Ba!der_as etal, 20]:3) used a quadrotor for target lo- experiments, as its physical architecture made of car-

calisation and tracking, controlling the UAV based on o, fipre and both well distributed sensors and com-

the target localisation to keep it on the field of view, onents make it a reliable platform for research pur-

all under indoor conditions. poses. This quadrotor offers plenty of space and var-
ious interfaces for individual components and pay-
loads. Figure 3.

2 TECHNICAL APPROACH

A simple projection of the target on the image is pre-
sented in Figure 1. Where the camera pointing axis is
well known, the UAV position is obtained by a motion
capture system and the orientation by the onboard In-
ertial Measurement Unit (IMU). This way the pixel
location can be transformed into two bearing angles
(a1 anday) from the camera pointing axis toMyec- igure 3: Quadrotor AscTec Pelican used to develop the
tor that passes though the target and the camera focaEXperimems_

point. Using a series of rotations from the camera

frame to the UAV body frame, and from the body g pagjc electronic components are the AscTec Au-
frame to the earth fra}me, these angle_s can be COMopilot, motor controllers and a single board com-
verted into overall azimuth and elevation angis ( , ior named the Mastermind. The AscTec Autopi-
andg), Figure 2, which define the bearing angles be- |4 150 known as Flight-Control-Unit(FCU), contains
tween the UAV and the target. the High Level Processor and the Low Level Proces-

sor (LLP and HLP) running at 1 kHz, which are in

charge of aircraft control. The LLP handles sensor

data processing and data fusion, as well as an stable
cry attitude control algorithm. The HLP is open for the
s user purposes, like the implementation of control al-
gorithms, sensor fusion, etc.

The AscTec Mastermind is an onboard processor
board, its weight of 400 grams and size 10X10X5 cm
offers an extremely high processing power, high data
. . o rates and a great variety of standard PC interfaces.
F_lgulre 1._:_mage measurement projection based on the targetFeatures like a Dual Core Atom, a Core 2 Duo, or a
pixet posttion. Core i7, WIFI, Firewire and hardware serial ports are
supported. Running Ubuntu 14.04 as operative sys-
tem, the user has plenty of programming possibilities.

T a2t The Optitrack Motion Capture System, was used
‘ to retrieve the ground truth position. The full setup

Camera g e G2 ]
Focal )
Point

Target
Projection

Target

5 to get the ground truth is composed of six cameras
L , connected to a 12-port POE switch, along with a host

computer with Optitrack Motive application, that runs
and streams the current position of the rigid body at
120 Hz. The position is published on ROS and re-
Figure 2: Azimuth and Elevatiof and¢. trieved by the Mastermind which is also connected to
the same wireless network, Figure 4.

The platform was also equipped with an
mvBlueFox-IGC visible camera, the images are ob-
tained through a ROS package at 20 Hz and published
into the ROS network for its future processing.
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Opitack oion Captre The measurement model involves two bearing mea-
<:>-c:>- surements and is given by
ute utp
—1/r
WH w8 tan= ()
=g = ety O
WH W (r)2+(ry)?

wherery = px—ty, Iy = py—ty, r, = pz—tz.

Pk=[px Py P} isthe quarotor positiorty =
tx ty tz}I is the target estimated position and=
[rx Tty rzH the relative vector between the vehicle
and the target respectively, Figure 5.

Figure 4: Quadrotor Control System overview.

4 VISION-BASED TARGET
LOCALISATION

5 UNSCENTED KALMAN FILTER

This section describes the problem of target locali-

sation USing ViSion-Only. The measurements are ob- The UKF a|g0rithm is Composed by the time up-
tained from the camera on the quadrotor. For the pur- date and measurement update Steps_ The time up-
pose of this project, the image processing for target gate includes the weights and sigma points calcu-
recognition is assumed and the pixel location corre- |ations, whereas the measurement update uses the

sponding to the centre of the target is available. This sijgma points to generate the covariance matrices and
way, the images from the image sensors can be con-the kalman gain respectively.

verted into bearings-only measurements, which can

be processed using the UKF to estimate the location ;

of the target. Considering that the target is station- 51 TimeUpdate
ary, the estimation time and accuracy will be highly
influenced by the drone’s path. In this case an oval
with radius ofrl = 1 m (in the short axis) and radius

First, weights are defined as:

r2=1.5m (in the long axis) and a constant height of A
0.5 m were chosen in order to vary the measurements Wi, = n+A )
as much as possible in a reduced area. 1 _
The target dynamics model is assumed to be linear W = m i=12,..n (6)
but the measurement model is still non-linear, giving
the following system dynamics, wheren is the dimension of the state vector axnd
is an arbitrary constant. The sigma points at time step
k calculate as:
Xer1r = Prpr X +Wk 1)
Zx = h +W 2
= hXo+V @ Sc1 = chol((n+ AP y) 6)
where®y, 1 is the state transition matrix of the Xo = R (7
system from the timé& to k+ 1 andW andV are the o i) .
process and measurement noise, which are uncorre- Xy = Xk*1+52—1 1=12..n (8
lated, GauzsRifm and V\t/_hittla with zero mean and covari- Xign) = Re1— ngl i=1,2..n (9)
anceQy an respectively.
eQ« pectively X1 = Xo XX (10)

cholmeans cholesky decomposition it mean
ith row vector ofS. The time update equations are:

2n
CEp
,/ s = = e ,7“;77\7\7(777\\77 o 2n X X
Figure 5: Target and vehicle vector representation o = i;)WI{ ORI XE}T T
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5.2 Measurement Update ~ [20 50 0 O

Xo= 120 ,Rp=|0 50 O|,A=0 (26)
The augmented sigma points are calculated as fol- 20 0 0 50
lows:

in both cases, the quadrotor trajectory is running
at 15Hz (step k=0.066 sec) and 0.01 radians per step.

S = chol((n+X)Ry) (13) At every step the camera takes an image which is pro-
X 2 (14) cessed to locate the target. Once the pixel that repre-
0) k ; ; < nival i
( . sents the centre of the target is obtained this pixel is
X5 = %+ gi') i=12..n (15) mapped into the bearing angles, which will be taken
) _ by the UKF along with the drone position and orien-
Xom = %~ Si i=12..n (16) tation, to estimate the 3D target position.
% = Ko Xy X 9 61 simulation
2n
% = i;\Mh(x‘) (18) Gazebo Simulator and ROS were used as the virtual
B ] environment to simulate the estimation, the package
The measurement update equations are: rotors_simulator (Furrer et al., 2016) provides some

multi-rotor models such as the AscTec Hummingbird,

2n the AscTec Pelican, or the AscTec Firefly. In the
P, = 'Z)VVI{h(Xi) —2Hh(X)—2}" +R19)  package files, the user can select the model to work
1= with as well as plenty of sensors. The Pelican quadro-
2n . anT tor and a visible camera were selected. An small black

Pe = ,Z)\M{f(xi) —%HNX) =%} (20)  cylinder was used as a target for simulations(Figure
= 6), positioned on the 3D plane coordinates 2.85, 0.05

The Kalman gain is calculated as: and 0.0 (x, y, z respectively). For this simulation, the
noise that affects the measurementis coming from the
Kq = PPt (1) camera. White gaussian noise with zero mean noise

was added with standard deviation= 0.007. Fig-
Finally, the estimated states and it's covariance ure 7 shows the target position and UAV trajectory,

matrix are: whereas Figures 9-11 show the estimated results for
each axis.
X = et Klz— %) (22)
Pc = Po—KPK{ (23)
For this scenario with an stationary target, the pro-
cess noise is zero because the target position is con- B3

stant. The process model, process error covariance
matrix and the measurement covariance error are:

Figure 6: Image retrieved from the virtual image sensor

100 0 00 pointing at the target.
Py-1=10 1 0,x=1(0 0 O (24)
0 01 0 0O
2 0 6.2 Experiments
R=|% o 25)
2 The experiments were performed in indoor condi-
tions. To control the Pelican quadrotor position,
Optitrack Motion Capture was used to feedback the
6 SIMULATION AND ground truth, which is published by ROS at 120 Hz.
EXPERIMENTAL RESULTS As a target on the real UAV flight experiments a red

cup was used for simplicity, positioned in the same
The target estimation algorithm for simulations and coordinates as on simulations(Figure 11). The im-
experiments was initialised with the following param- age sensor used for the experiment was the BlueFox
eters, IGC202C, publishing images at 20 Hz on ROS. The
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Ovalrajectoryfortrget ocalistion Several tests with the target and Drone being station-
ary were made in order to get the variance of this
Ao noise,0? = 4.65X107° ando3 = 6.5X1078. Figure
07 12 shows the target position and UAV trajectory, Fig-
061 ure 13 shows the noisy measurements and Figures 14-
§ @ 16 show the estimated results for each axis.
£04-
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Figure 7: 3D view of the flight path on simulations and tar-
get position.

Y position in metres

Figure 11: Image retrieved from the image sensor on exper-
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Figure 10: Estimation oK (z) on simulation.

use of gimbal was not necessary, because the target
never left the camera field of view. The noise on
the measurement is coming from the image sensor.
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50 X Position Estimat of the vector range between the drone and the target.
ol | The final errors foiX(x) andX(y) on simulation were

I 0.07 m and 0.028 m, as opposed to 0.018 m and 0.05
Soriy 7 m for experimental results. The simulation was ran
al | 1 under Gazebo Simulator and ROS, whereas for UAV

real-time flight experiments Optitrack and ROS were

h used to perform the full estimation algorithm. The

o T | complete set-up allowed us to perform the estimation

0! . . - " = . o in real-time, anq achieving the target po§_ition aftgr 30

Number o Measuremerts ] seconds of trajectory. The use of additional, differ-
Figure 14: Estimation o (x) on experiment. ent trajectories would reduce the estimation time like
showed (Ponda, 2008), although for indoor environ-
" Y Position Estimat ments with a reduced area, the presented trajectory
| and estimator performed successfully.

121
— Estimated position
10F —Real position 4
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