
The Ability of Cloud Computing Performance Benchmarks to
Measure Dependability

Eduardo Carvalho1, Raul Barbosa2 and Jorge Bernardino1,2
1ISEC, Polytechnic of Coimbra, Rua Pedro Nunes, Coimbra, Portugal

2CISUC - Centre for Informatics and Systems of the University of Coimbra, Coimbra, Portugal

Keywords: Cloud Benchmarking, Dependability, Fault Tolerance, Cloud Computing.

Abstract: Current benchmarks focus on evaluating performance with little efforts made to evaluate the dependability
characteristics of the cloud. Cloud computing has several advantages like scalability, elasticity and cost
reduction, this led companies to move their applications to the cloud. The availability of applications and
consequently businesses are then dependant on the cloud’s efforts to keep its services running. To guarantee
reliability and trust, benchmarking dependability is a challenging task because of the cloud layered model
which makes it difficult to predict the root of faults as higher layers are dependant of lower layers. By
integrating dependability in benchmarks as a metric, we can evaluate how well does the cloud handle itself
when faults occur, prevent those faults and check not only raw performance but also trust. In this paper, we
study the following cloud benchmarks: Spec IaaS 2016, TPCx-V, YCSB, Perfkit Benchmarker,
CloudBench, DS-Bench/D-Cloud, and evaluate if they are suitable for benchmarking dependability.

1 INTRODUCTION

Cloud computing offers on-demand dynamically
scalable resources such as computing, storage and
networking (Vazquez et al., 2014). These resources
come as a service to the user and are priced per
usage. The reduction in cost combined with the
cloud’s “infinite resources” illusion, made this
paradigm very appellative to companies who wanted
to grow fast without the risk of investing in
superfluous resources. Benchmarking these systems
to compare the services that providers offered
became mandatory, before choosing what service to
acquire and what provider presented the best
solution. In the last years, emerged cloud
benchmarks that envisaged the cloud as a paid
service and benchmarked more than database
performance (Abramova et al., 2014) (Neves et al.,
2016). The new generations of cloud benchmarks
tend to evaluate the characteristics of the cloud not
only separately but also as a cooperative scheme
because they affect each other (Neves and
Bernardino, 2015) (Oppenheimer et al., 2002).

Cloud computing is complex and large-scale,
which makes it hard to benchmark and prone to
faults. When managing these systems, faults are easy
to occur which may lead to errors and consequently

unpredicted failures (Guan et al., 2012). A failure
makes services unable to accomplish their function,
since these services are being contracted, this can
lead to loss of money and consumers trust.
Dependability is then an important aspect of the
cloud and crucial for building reliable cloud
services. Providers are focused on availability and
performance so the existing benchmarks mainly
evaluate those characteristics. Dependability is hard
to benchmark in cloud computing because of its
complexity and dynamic changes overtime. The lack
of redundancy caused by the monopolization of the
cloud, affected the cloud’s self-healing ability and
providers began to experience outages and this led to
the interest in measuring dependability.

In this paper, we study the following cloud
benchmarks: Spec IaaS 2016, TPCx-V, YCSB,
Perfkit Benchmarker, CloudBench, DS-Bench/D-
Cloud, and evaluate if they are suitable for
benchmarking dependability.

The rest of the paper is organized as follows. In
Section 2 we describe dependability and faults. In
Section 3 we present existing benchmarking tools
describing them and assessing dependability
characteristics. In Section 4 we summarize the
dependability attributes benchmarking. Finally,
Section 5 concludes the paper and propose future
work.

Carvalho, E., Barbosa, R. and Bernardino, J.
The Ability of Cloud Computing Performance Benchmarks to Measure Dependability.
DOI: 10.5220/0006472404470452
In Proceedings of the 12th International Conference on Software Technologies (ICSOFT 2017), pages 447-452
ISBN: 978-989-758-262-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

447

2 DEPENDABILITY

Dependability can be defined as the ability to
guarantee that a service will accomplish its
functions. Dependability emphasizes trust and
reliability, for a cloud to be dependable it must
guarantee its services are always available and allow
consumers to operate without having problems. To
benchmark dependability, we must ensure its
attributes are respected (Avizienis et al., 2004):
• Availability: readiness for correct service;
• Reliability: continuity of correct service;
• Safety: absence of catastrophic consequences on

the user(s) and the environment;
• Integrity: absence of improper system

alterations;
• Maintainability: ability to undergo modifications

and repairs.
The main goal of dependability is to mitigate the
chain of faults that may lead to errors that can
propagate and lead to failures which can cause more
faults. To do that the system must have (Gainaru and
Cappello, 2015):
• Fault prevention: be able to prevent faults from

happening, be robust;
• Fault tolerance: be able to avoid or mitigate

service failures in the presence of faults;
• Fault removal: be able to recover from faults

reducing then the number of faults present in the
system;

• Fault forecasting: be monitored to detect existing
faults, be able to map when similar faults happen
and estimate the consequence of those faults.

Dependability is hard to measure and compare
because each system has different failure modes and
faults are difficult to inject due to security of
privileged layers of the cloud. However, there are
ways to inject faults in the virtualization and
hardware layer. Fault tolerance and fault removal
can then be evaluated by benchmarks with the help
of proper metrics such as impact on performance
and time to recover. To achieve fault prevention and
forecasting, the system should be monitoring the
existing faults for analysts to understand the root of
the faults and how they propagate between layers.
Failure monitoring becomes, then, an important part
of the process of evaluating dependability, if a
failure happens it means that faults couldn’t be
contained and the above standards are not being
respected. A failure detection metric is suggested in
(Guan et al., 2012), it consists in measuring
Precision (Number of correctly detected failures per
Total number of failures); Sensitivity (Number of

correctly detected failures per Total number of
detected failures); Specification (Number of
correctly detected normal records per Total number
of normal records) and Accuracy (Total number of
correct detections per Total number of data records).
In the following section, we present benchmarking
tools for performance evaluation that together with
new metrics such as the ones presented above, could
be used to measure dependability.

3 BENCHMARKING TOOLS

We selected some of the most used benchmarks for
cloud computing to evaluate if they cover
dependability. In this section, we present how each
benchmark works, the metrics they use and more
important, the answer to the question “can they be
used to benchmark dependability?”.

3.1 Spec IaaS 2016

Spec IaaS 2016 benchmark was designed by SPEC
to measure the performance of public, private or
hybrid IaaS clouds using a representative real-
workload (https://www.spec.org/cloud_iaas2016/).
For this purpose, Spec uses YCSB with Cassandra
and K-Means implementation from HiBench as the
benchmark workloads. These workloads are
managed by a benchmark harness, Cloud Bench
(cbtool), this harness is responsible for creating and
destroying instances, initiate application instances
(which are a set of instances) and collect
measurements and data points as well as computing
the scores for each submission. SPEC uses YCSB
for I/O intensive testing, in more detail YCSB
workload D (95% read, 5% insert) to simulate social
network user’s activities. Apache Cassandra is the
NoSQL database used. For compute-intensive
workload SPEC uses one of the nine Hadoop
workloads, K-Means. SPEC reports eight metrics:
Elasticity, Scalability, Mean Instance Provisioning
Time, AI Provisioning Success, AI Run Success,
Total Instances, Elasticity Start Time and Elasticity
End Time. Elasticity is the average of the elasticity
measured by YCSB and K-Means, the performance
of N applications in the elasticity+scalability phase
must be similar to the elasticity in the baseline phase
where the load is constant. Scalability measures the
contribute of N applications instances compared to
the contribute of one application instance for a
successful cloud it should scale linearly. Mean
instance provisioning time measures the time it takes

ICSOFT 2017 - 12th International Conference on Software Technologies

448

the system under test to provision valid application
instances. The AI Provisioning Success measures the
amount of successfully provisioned AIs in
percentage. AI Run Success measures the percentage
of successful runs. Elasticity Start and End time
indicate when the elasticity starts and ends
respectively. Total instances indicate the number of
instances provisioned during the benchmark. This
benchmark covers mostly performance and
availability presenting no means to evaluate safety,
integrity and maintainability.

3.2 TPCx-V

TPC Express Benchmark™ V (TPC Express
Benchmark™ V - Specification, Revision 1.0.1,
2016) is one of TPC’s benchmarks for databases
running in a virtualized environment. Its
benchmarking kit is public-available in
(http://www.tpc.org/tpcx-v/default.asp). This
benchmark measures the performance of the
hypervisor, hardware, storage and networking of a
server running virtualized databases, but it
differentiates itself because it is able to model many
cloud proprieties, such as running VMs with
different load demands and varied load fluctuations
thus testing scalability and elasticity. The workload
consists of On Line Transaction Processing and
Decision Support Systems and the transaction mix
can be found in (TPC Express Benchmark™ V -
Specification, Revision 1.0.1, 2016). The primary
metrics of TPCx-V are the Reported Throughput
expressed in number of valid transactions per
second, it then takes the total 3-year pricing and
divides it by the reported throughput for a
price/performance metric. Like TPC-W it enforces
ACID transactions and has integrity rules, such as
Referential Integrity (TPC Express Benchmark™ V
- Specification, Revision 1.0.12016). To measure
elasticity, the CPU usage is measured while running
the transactions and compared with a run where
elasticity isn’t configured. It also measures
maintainability by running a Data-Maintenance
Transaction and checking how many transactions are
done in a certain response time.

3.3 YCSB – Yahoo! Cloud Serving
Benchmark

Yahoo! Cloud Serving Benchmark (Cooper et al.,
2010) is an open source framework designed to
evaluate NoSQL databases. This benchmark
provides a data generator and a set of tests that

perform specific of operations over the databases,
called workloads (Abramova et al, 2014). The
standard operations are: create, read, update and
delete. To execute the YCSB benchmark there is a
tool called YCSB Client which offers extensibility
so that we can create different workloads. This
benchmark can be used to evaluate performance and
scalability of cloud systems’ NoSQL databases, it
can do so by injecting read/write heavy workloads.
The YSCB has six pre-defined workloads
(https://github.com/brianfrankcooper/YCSB):
 Workload A: 50% reads, 50% updates.
 Workload B: 95% reads, 5% updates.
 Workload C: 100% reads.
 Workload D: 95% reads, 5% inserts.
 Workload E: 95% scans, 5% inserts.
 Workload F: Read-Modify-Write.
These loads are driven by four different distributions
which chose what record to read or write and what
operation to perform: Uniform, Zipfian, Latest,
Multinomial. The metrics used by YCSB are:
latency vs throughput for performance; for scaling it
uses a scale up and elastic speedup metric, as the
load increases the performance should remain the
same, if the system has a good scale up, for the
elastic speedup as the same workload is running one
or more servers are added and the performance
should increase; For availability YCSB measures the
impact on performance as a server is killed while the
workload is running; Replication, this tier of
evaluation measures the impact of replication on
performance and availability. Replication can be
synchronous or asynchronous, the first prevents data
loss when replicating for example in case of a
failover, the second may cause loss of data if a
failure happens before the replication is scheduled
but improves performance.

3.4 Perfkit Benchmarker

PerfKit Benchmarker is an open-source
benchmarking tool used to measure and compare
cloud offerings According to its website
(http://googlecloudplatform.github.io/PerfKitBench
marker/) it is a community effort involving over 500
participants including researchers, academic
institutions and companies together with the
originator, Google. Perfkit values for its simplicity
as it can run tests to any SSH able machine just by
installing the benchmark, its requisites and running a
set of commands or config file. The code to Perfikit
is on Github.com which is a way of showing the
public that the code can be trusted and doesn’t
favour any cloud provider, for example Google who

The Ability of Cloud Computing Performance Benchmarks to Measure Dependability

449

developed the benchmark. The benchmark can
initiate virtual machines with the selected
benchmarks in the selected cloud provider or run the
benchmarks in a local machine. Perfkit uses YCSB’s
Aerospike, Cassandra, Hadoop Terasort, HBase,
MongoDB and Redis, these are NoSQL databases
very often used in the cloud. For high performance
computing, it uses HPCC (High Performance
Computing Cluster). As for simulation workload, it
uses OLDIsim to measure the scaling capability of
the system. Then it has some minor benchmarks that
evaluate the hardware: for CPU it has Coremark and
Spec cpu 2006, for disk it has Bonnie++, Copy, Fio,
Synthetic Storage and for network it has Iperf,
Mesh, Network, Netperf and Ping. It has Unixbench
and Clusterboot as system benchmarks to evaluate
the performance of software and hardware working
together. The main metric of Perfkit Benchmark is
end-to-end time to provision which consist of
measuring the time of the following phases (Filho,
2015): Setup, Warm up, Pre-execute, Execute, Post-
Execute, Clean-up and Publish results. Setup and
Warm up is the time that the cloud provider will take
to provide the VM’s and install the benchmarks. Pre-
execute is the time it takes to load the data for the
benchmarks, execute is the time it takes to run the
benchmarks. Post-Execute is data analyses; Clean-
up is the time it takes to stop all the services
deployed by the cloud, because leaving the
benchmark accidentally running could get very
expensive and finally publishing the results that can
be viewed in Perfkit Explorer. The end-to-end time
to provision metric is complemented by the metrics
reported by the benchmarks Perfkit uses. Cloud
Harmony is also a framework like Perfkit which
allows the users to launch various test on cloud
provider, however it doesn’t have a metric of its own
and it is not open-source.

3.5 Cloud Bench

Cloud Bench (Silva et al., 2013) is an open-source
framework that runs benchmarks in the cloud
through the deployment of complex applications. It
can run experiments in multiple clouds across
various regions using a single interface. The
application deployment is automated and occurs in
this order: VM creation, application configuration,
controlled execution, data collection and VM
termination. This benchmark can only be used if the
cloud is capable of doing this task without human
interaction. CloudBench uses Virtual Applications
or VApps as workloads which can be managed by it
and can run the benchmark in multiple VMs. A

VApp is defined by type, topology, configuration
steps and load behaviour. The type is the benchmark
to be run, the topology is the amount of VMs needed
for it, the configuration steps are the scripts run in in
each VM to setup the benchmark and the load
behaviour is the variation of the load to be applied to
the VApp. While the VApps run, a number of data is
collected and reported as metrics such as VM
provisioning time, failure and time to recover, time
to scale and adapt to load increased/decreases and
standard runtime metrics such as measuring
throughput, latency and bandwidth.

3.6 DS-Bench/D-Cloud

DS-Bench/D-Cloud (Ishikawa et al., 2012) is a
benchmark designed to execute dependability
evaluations in virtualized and physical environments
by measuring availability, reliability performance
and power consumption under an anomaly situation.
These anomaly situations can be hardware faults,
software faults or human errors. D-Cloud is a tool to
test the system by managing resources. This
benchmark is easy to use and comes with a GUI
where we can create a benchmark scenario and build
a script for the anomaly scenario as well. This
benchmark works with two controllers DS-Bench
controller and D-Cloud controller, the DS-Bench
controller receives the benchmark configurations
and communicates them to D-Cloud who then starts
the benchmarking process by requesting the cloud to
setup the VMs with the selected benchmarks (see
Figure 1).

Figure 1: DS-Bench/D-Cloud setup example. Adapted
from (Ishikawa et al., 2012).

4 DEPENDABILITY ANALYSES
COMPARISON

In this section, we discuss the results of our research
by summarizing the dependability characteristics of

ICSOFT 2017 - 12th International Conference on Software Technologies

450

the benchmarks presented before. Cloud computing
is a very complex set of hardware and software and
in this type of system failures are common.

It is of extreme importance to prevent and
recover from failures quickly, as there are many
services depending on the proper functioning of the
cloud, and to do this we need to study and
understand how they occur in the cloud
environment. A failure in the cloud can mean a
significant profit loss not only to the provider but
more importantly to the users. A failure can take
catastrophic proportions, such as denial of service to
clients, which can bring harm to the user. For
example, if the user is in a self-driven car that uses
cloud services for guidance, and that is why when
benchmarking the cloud, the benchmarks should
measure not only fault tolerance but also fault
prediction and recovery. To predict faults, we can
have a set of metrics that calculate based on the
pattern of software and hardware faults, when the
next fault will possibly happen.

Performance benchmarks like the ones we
present, fit in the category of microbenchmarks
referenced in (Oppenheimer et al., 2002) because
they assess some of the dependability characteristics
individually and not the end-to-end dependability of
the system. To evaluate dependability as a
macrobenchmark, the benchmark should possess an
integrated fault load and fault load injection tool to
be deployed as we run performance benchmarks as
workloads. The fault load should be realistic and
representative of real world hardware, software and
human made faults. Cloud is a large system, where
many fault scenarios can happen which makes it
difficult for a benchmark to analyse them all and
also be able to repeat them in other cloud systems.
According to Oppenheimer et al. (2002) the studies
on Internet services, large servers, and the public
telephone network indicate that human error is the
largest single cause of service unavailability.
However, having a fault simulator of human made
faults is essential but given the differences from
cloud to cloud it is very difficult to create a generic
script that covers all human made faults and
replicate them in different cloud systems. Another
concern is keeping the benchmark valid as some
cloud systems may detect they are under test and try
to trick the results by preventing the benchmark
induced faults. For this reason fault selection must
be studied and changed overtime which invalidates
previous benchmark tests and those have to be done
again. Running a dependability dedicated
benchmark in a production environment with
frequency becomes expensive because the

benchmark takes a long time and most of the time
requires human interaction to select and inject faults.
Therefore one of the solutions is benchmarking
attributes of dependability to reduce costs.

Most of the presented benchmarks lack a fault
load and evaluate only some aspects of
dependability. Availability and reliability are given
characteristics measured by the benchmarks because
most of them have a price vs performance metric.

Table 1: Comparison between benchmarks.

Table 1 presents these characteristics for all the
presented benchmarks. Under normal conditions,
Availability and Reliability exists in the systems
because the performance is not null. However, it
should be tested under a fault load to measure the
impact of failures in the system.

Integrity however is only measured by DS-
Bench/D-Cloud by checking the hard-disk for errors
and if the received data contains errors. This is a
very important characteristic to evaluate as some
applications may not be able to function if data is
corrupt, leading to system alterations and
malfunction. Maintainability is only evaluated by
some benchmarks and it’s also an important
characteristic as it guarantees the system
functionality. To measure maintainability DS-
Bench/D-Cloud and CloudBench run benchmarks
while a fault load is injected. However TPCx-V uses
a data-maintenance transaction and measures how
many transactions are done in a given time interval.
Metrics like time to recover and throughput vs
latency should be applied by benchmarks while the
system is under the influence of a fault load.

Safety is not evaluated by any of the benchmarks
and despite not being of interest now it can become
one in a near future. As self-driven cars are already
getting their system running in the cloud and a
failure could indeed cause harm to the user or the
environment. As future work, we want to use the
benchmarks to generate workload and complement
them with new metrics to measure dependability
while running a fault load during the benchmark.

The Ability of Cloud Computing Performance Benchmarks to Measure Dependability

451

5 CONCLUSIONS AND FUTURE
WORK

With companies that depend on cloud computing to
sustain their business it is critical to have a
benchmark that can help the decision makers
evaluate if the cloud provider they are choosing can
meet their requirements.

In this paper, we have presented a variety of
benchmarks and the metrics they use when
evaluating the cloud. We can conclude from our
study that the existing benchmarks for cloud
computing focus on measuring performance and
availability comparing the results with the monetary
cost and do not have strong metrics to measure all of
the dependability characteristics.

Most of the benchmarks lack fault simulation or
injection because they do not possess a fault load or
metrics to do so, which would allow to measure
maintainability. Integrity is also not measured by
benchmarks as they focus on measuring I/O disk
operations and database interactions per second and
lack a metric to measure data integrity.

Although TPCx-V provides integrity by
enforcing ACID transactions and integrity rules.
Safety is not contemplated at all by the benchmarks
as it is not yet an important characteristic to be
considered in cloud environments as the cloud’s
malfunction does not have a serious impact on the
environment or user.

As future work, we propose to integrate a fault
load and new metrics so that dependability becomes
a part of the new generation of benchmarks for cloud
systems to help providers and consumers evaluate
the impact of possible failures.

REFERENCES

Abramova, V., Bernardino J., Furtado P., 2014.Testing
Cloud Benchmark Scalability with Cassandra. In IEEE
World Congress on Services, Anchorage, AK, 2014,
pp. 434-441.

Abramova V., Bernardino J., Furtado P., 2014. Evaluating
Cassandra Scalability with YCSB. In Decker H.,
Lhotská L., Link S., Spies M., Wagner R.R. (eds)
Database and Expert Systems Applications. DEXA
2014. Lecture Notes in Computer Science, vol 8645.
Springer, Cham.

Avizienis, A., Laprie, J., Randell, B., Landwehr, C., 2004.
Basic Concepts and Taxonomy of Dependable and
Secure Computing. In IEEE Transactions on
Dependable and Secure Computing.

Cooper, B., Silberstein, A., Tam, E., Ramakrishnan, R.,
Sears, R., 2010. Benchmarking Cloud Serving
Systems with YCSB. In SoCC ’10 Proceedings of the
1st ACM symposium on Cloud computing, pp. 143-154.

Filho, I., 2015. PerfKit Benchmarking the Cloud. In
CouchBase Connect.

Gainaru A., Cappello F., 2015. “Fault and failures”.
Chapter 2 of Fault-Tolerance Techniques for High-
Performance Computing, Springer Book, Computer
Communications and Networks series, Editors:
Thomas Herault and Yves Robert.

Guan, Q., Chiu, C., Fu, S., 2012. CDA: A Cloud
Dependability Analysis Framework for Characterizing
System Dependability in Cloud Computing
Infrastructures. In IEEE 18th Pacific Rim
International Symposium on Dependable Computing.

Ishikawa, Y., Sato, M., Hanwa, T., Fujita, H., Banzai, T.,
Koizumi, H., Miura, S., 2012. DS-Bench/D-Cloud:
Dependability Measurement and Evaluation Tool. In
42nd IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 2012).

Khan M.,6 April 2017, Yahoo! Cloud Serving
Benchmark(YCSB), Available from: https://github.
com/brianfrankcooper/YCSB, (20 May 2017).

Neves, P., Bernardino, J., 2015. Big Data in the Cloud: A
Survey. In Open Journal of Big Data (OJBD), 1(2),
Pages 1-18, RonPub. [Permalink]: http://www.ronpub.
com/publications/ojbd/OJBD_2015v1i2n02_Neves.html.

Neves, P., Schmerl, B., Cámara, J., Bernardino, J., 2016.
Big Data in Cloud Computing: Features and Issues. In
Proceedings of the International Conference on
Internet of Things and Big Data – Volume 1: IoTBD,
ISBN 978-989-758-183-0, pages 307-314.

Oppenheimer, D., Brown, A., Traupman, J., Broadwell, P.,
Patterson, D., 2002. Practical issues in dependability
benchmarking. In Workshop on Evaluating and
Architecting System dependability (EASY '02).

Perfkit Benchmarker Authors, 2016, PerfkitBenchmarker,
Available from: http://googlecloudplatform.github.io/
PerfKitBenchmarker/, (25 May 2017).

Standard Performance Evaluation Corporation, 3 January
2017, SPEC Cloud™ IaaS 2016, Available from:
https://www.spec.org/cloud_iaas2016/, (17 May
2017).

Silva, M., Hines, M., Gallo, D., Liu, Q., Ryu, K., Silva,
D., 2013. CloudBench: Experiment Automation for
Cloud Environments. In IEEE International
Conference on Cloud Engineering.

Transaction Processing Performance Council, 2017,
TPCx-V, Available from: http://www.tpc.org/tpcx-
v/default.asp, (15 May 2017).

Transaction Processing Performance Council, 2016, TPC
Express Benchmark™ V - Specification, Revision
1.0.1.

Vazquez, C., Krishnan, R., John, E., 2014. Cloud
Computing Benchmarking: A Survey. In International
Conference on Grid & Cloud Computing and
applications.

ICSOFT 2017 - 12th International Conference on Software Technologies

452

