Table Interpretation and Extraction of Semantic Relationships to Synthesize Digital Documents

Martha O. Perez-Arriaga1, Trilce Estrada1 and Soraya Abad-Mota2

1Computer Science, University of New Mexico, 87131, Albuquerque, NM, U.S.A.
2Electrical and Computer Engineering, University of New Mexico, 87131, Albuquerque, NM, U.S.A.

Keywords: Table Understanding, Information Extraction, Information Integration, Semantic Analysis.

Abstract: The large number of scientific publications produced today prevents researchers from analyzing them rapidly. Automated analysis methods are needed to locate relevant facts in a large volume of information. Though publishers establish standards for scientific documents, the variety of topics, layouts, and writing styles impedes the prompt analysis of publications. A single standard across scientific fields is infeasible, but common elements tables and text exist by which to analyze publications from any domain. Tables offer an additional dimension describing direct or quantitative relationships among concepts. However, extracting tables information, and unambiguously linking it to its corresponding text to form accurate semantic relationships are non-trivial tasks. We present a comprehensive framework to conceptually represent a document by extracting its semantic relationships and context. Given a document, our framework uses its text, and tables content and structure to identify relevant concepts and relationships. Additionally, we use the Web and ontologies to perform disambiguation, establish a context, annotate relationships, and preserve provenance. Finally, our framework provides an augmented synthesis for each document in a domain-independent format. Our results show that by using information from tables we are able to increase the number of highly ranked semantic relationships by a whole order of magnitude.

1 INTRODUCTION

The rate at which scientific publications are produced has been steadily increasing year after year. The estimated growth in scientific literature is 8 – 9% per year in the past six decades (Bornmann and Mutz, 2015). This is equivalent to doubling the scientific literature every 9-10 years. Such massive production of articles has enabled the rise of scientific text mining, especially in the health sciences (Cohen and Hersh, 2005). The goal of this mining is to uncover non-trivial facts that underlie the literature; however, these facts emerge as correlations or patterns only after analyzing a large volume of documents. One of the most famous works of literature-based mining led to discover that magnesium deficiency produces migraines (Swanson, 1988). Some literature-based approaches use word frequency and co-occurrence (Srinivasan, 2004), n-grams (Sekine, 2008), and semantic relationships between concepts using fixed patterns (Hristovski et al., 2006). These methods, although efficient, are lacking in three crucial aspects (1) they lead to a large number of false conclusions, as they cannot exploit context or disambiguate concepts; (2) they rely on patterns and ignore structural and semantic relationships, as their information extraction does not consider relevant concepts with explicit relationships expressed in tables; and (3) they represent their findings for a specific domain, which cannot be extensively and repeatedly exploited. Thus, the next generation of deep text mining techniques needs more sophisticated methods for information extraction and representation.

Extracting information from the vast scientific literature is challenging because even though conferences and journals establish guidelines to publish work, articles within a field are still reported with various formats (e.g., PDF, XML), layouts (e.g., one or multi-column), and writing style. No unified vocabulary exists. For instance, publications on healthcare might use various names for the same concept (e.g., diabetes management and glycemic control). And the practice of annotating articles with metadata and ontologies is far from widely adopted. Further, a unique standard for publishing articles across scientific fields is not feasible. Our work aims to fill this gap by providing a comprehensive mechanism to (1) conceptually representing a document by extracting and anno-
tating its semantic relationships and context and (2) preserving provenance of each and every relationship, entity, and annotation included in the document’s synthesis.

Our approach takes advantage of the structured information presented in tables and the unstructured text in scientific publications. Given a document, our framework uses its tables’ content and structure to identify relevant entities and an initial set of relationships. Additionally we use the document’s text to identify metadata of the publication (e.g., Author, Title, Keywords) and context. We use the publication’s context, ontologies, and the Web to disambiguate the conceptual framework of extracted entities, and we refine the set of relationships by further searching for these entities within the text. Our approach uses an unsupervised method to rank the relevance of relationships in the context of the publication. Finally, our approach organizes the metadata, entities and semantic relationships in a domain-independent format to facilitate batch analysis. The resulting document can be used as a synthesis of a publication and can be easily searched, analyzed, and compared as it uses a controlled vocabulary, Web-based annotations, and general ontologies to represent entities and relationships. Our results show that the entities and semantic relationships extracted provide enough information to analyze a publication promptly.

The reminder of this paper is organized as follows: Section 2 describes related work. Section 3 contains our approach to understanding tables and extracting semantic relationships from publications. Section 4 contains a working example using our approach. Section 5 contains a set of experiments, results and discussion of our findings. Finally, Section 6 contains our conclusion and future directions.

2 RELATED WORK

We review briefly work on table interpretation, annotation, disambiguation, semantic relationships and summarization. Table interpretation is the process of understanding a table’s content. There is work on interpreting tables in digital documents with certain formats (e.g., HTML, PDF) (Cafarella et al., 2008; Oro and Ruffolo, 2008). Cafarella et al. present ‘weblables’ to interpret tables from a large number of web documents, enabling to query information from collected tables (Cafarella et al., 2008).

Although tables and text contain relationships between concepts, external information sources to describe concepts in a publication are necessary. The semantic web (Berners-Lee et al., 2001) contains entities and relationships. DBpedia alone represents 4.7 billion relationships as triples (Bizer et al., 2009), including the areas of people, books and scientific publications. Yet most triples from scientific publications are missing in the semantic web, it can complement scientific publications helping to explain concepts. To understand tables, Mulwad et al. annotate entities using the semantic web (Mulwad et al., 2010). Extracting tables from PDF documents poses more challenges because tables lack tags. Xonto (Oro and Ruffolo, 2008) is a system that extracts syntactic and semantic information from PDF documents using the DLP+ ontology representation language with descriptors for objects and classes. Xonto uses lemmas and part of speech tags to identify entities, but it lacks an entity disambiguation process. Texus (Rastan et al., 2015) is a method to identify, extract and understand tables. Texus is evaluated with PDF documents converted to XML. Their method performs functional and structural analyses. However, it lacks disambiguation and semantic analyses.

To disambiguate entities, some works (Abdalgader and Skabar, 2010) use a curated dictionary, such as WordNet. This suffices if publications only contain concepts from this source. Others, like Ferragina and Sciaiella, 2012 use richer sources like Wikipedia. However, Wikipedia contains a large variety of additional information, much of it increases noise. Our work differs from these approaches in that we use DBpedia (Bizer et al., 2009), which is a curated ontology derived from Wikipedia. In this case DBpedia offers the best of both worlds: it is as vast as Wikipedia, but, similarly to WordNet, it provides information in a structured and condensed form following the conventions of the Semantic Web.

A graphical tool, PaperViz (Di Sciascio et al., 2017), allows to summarize references, manage metadata and search relevant literature in collections of documents. Also, Baralis et al. (Baralis et al., 2012) summarize documents with relevant sentences using frequent itemsets. Still, researchers need to identify concrete information with descriptions pertaining to a defined context.

Regarding works on semantic relationships discovery, Hristovski et al. find relationships from text based on fixed patterns (Hristovski et al., 2006). The open information extraction (IE) method has been used successfully to find new relationships with no training data (Yates et al., 2007). However, Fader et al. state that IE can find incoherent and uninformative extractions. To improve open IE, Reverb (Fader et al., 2011) finds relationships and arguments using part of speech tags, noun phrase sentences, and semantic and
lexical constrains. Reverb uses a corpus built offline with 500 million Web sentences to match arguments in a sentence heuristically. In addition, Reverb identifies a confidence for each relationship using a logistic regression classifier with a training set of 1000 sentences from the Web and Wikipedia. Reverb performs better than the IE method Textrunner (Yates et al., 2007). We use Reverb for our relationship extraction from text because it finds new relationships and determines their importance with a confidence measure.

Generally, methods that extract semantic relationships lack a way to represent their provenance. To facilitate researchers’ work, it is important not only to find important relationships from publications, but also to systematically identify the specific sources used for their extraction and annotation.

3 THE FRAMEWORK

We provide a comprehensive framework to interpret the quantitative aspects of a document. Our approach takes advantage of the rich source of information found in tables, and their structure to identify conceptual entities and extract semantic relationships from documents. The unstructured text provides a context, to help in finding annotations of concepts, and metadata to characterize a publication. The entities and relationships are used to annotate a scientific publication to facilitate its analysis (see Figure 1).

![Framework Diagram](image)

Figure 1: The framework for table interpretation and document synthesis generation.

Our method receives as input digital publications in PDF or XML formats. The publications undergo processing to find its context and metadata to characterize each publication. Then, we automatically recognize and extract tables’ content from each publication. The structured and summarized information from tables is used to identify conceptual entities, and the general ontology DBpedia is used to annotate them. If an entity is undefined in the ontology, we search the Web for a description of this entity. Later, the entities are used to find structural and semantic relationships from tables and text. We use the SemanticScience Ontology (SIO) (Dumontier et al., 2014) to express these relationships in a standard representation (e.g., is a, is related to, is input of). Finally, this process produces a file containing metadata, entities and a set of semantic relationships found in the publication. The output is presented in a special JavaScript Object Notation (JSON) format to allow interoperability even when publications belong to different domains. Since the extracted entities and relationships primarily belong to tables, this information can be used to synthesize a publication’s quantitative content. Also, because we preserve the context of a publication and explicitly list semantic relationships, our framework facilitates querying of particular information, contrasting and comparing the claims in various documents, batch analysis, and as appropriate, discovery of scientific facts.

3.1 Context and Metadata Detection

The first relevant pieces of information that one can gather from a document are its metadata and context. Metadata refers to the information that describes the document itself, and includes data such as author, title, and keywords. Context refers to the particular field and topic addressed in the document. Metadata and context can be easily extracted from some publications that provide tags and keywords. For these cases we obtain information directly using tags such as `<author>`, `<article-title>` and `<keywords>`. However, many documents do not provide annotated data, and the extraction of metadata and context becomes non-trivial. For documents lacking a straightforward mechanism to extract their information, we convert them into text format and search for the most relevant concepts within the text. First, to recover textual information, we convert a PDF document to text format using PDFMiner (Shinyama, 2010). Then, to find the author and title of a publication, we perform pattern matching on the first page. To recover keywords that define the context of a scientific publication, we process the text (i.e., erasing long, small and stop words) and apply term-frequency inverse-document-frequency (TF-IDF) as explained in (Ramos, 2003). For each word in the document, we assess its relevance with a weight—measuring the
relative frequency of that word in the document compared to its frequency in a large, but otherwise random, collection of documents. In this case we use Wikipedia as the canonical collection of documents because of its wide and diverse range of topics. To search each word in Wikipedia, we use the API for the search engine Bing; by using a search engine rather than a static collection we are sure always to retrieve an up-to-date definition of each word. Bing’s results provide the frequencies with which to calculate the weight of each word. The resulting five concepts with the best weights are defined as the keywords or context of a publication.

Several standards exist to represent data to identify a publication (e.g., Dublin Core, Metadata Object Description Schema). Though these standards are useful to describe metadata for publications, we require a broad and domain independent vocabulary. Therefore we use the vocabulary schema.org, which was created to define and control general concepts by important search engines (Ronallo, 2012) and contains current concepts and categories commonly used on the Internet. This vocabulary derived from the Resource Description Framework (RDF) schema has different hierarchical types, containing subclasses and properties. This vocabulary is particularly useful for our framework because it can represent publications’ metadata from different domains. Specifically we use the properties ‘keywords’, ‘creator’ and ‘headline’ to characterize a publication’s context, author and title respectively. These properties are under the ScholarlyArticle type that belongs to the categories Thing, CreativeWork, and Article.

3.2 Entity Recognition, Annotation, and Disambiguation

We argue that to perform a comprehensive semantic analysis of a document, it is important to take advantage of the rich content and relationships expressed in tables and not only in text. Tables contain structured cells organized in columns and rows. Tables are useful to display summarized information and are favored by scientists and researchers across disciplines to present key results in publications (Kim et al., 2012). Tables can be abstracted as an explicit structural organization between their cells’ content by column and row (see Table 1). Generally, header cells define concepts or entities that describe the type of information in the body of the table, (e.g., Country, GDP, Population). Cells in the body of the table store values representing a particular instance of their associated entity (e.g. Canada). To take advantage of a table’s structure and content, it is necessary to perform table interpretation. Quercini and Reynaud define table interpretation as 1) classifying the column metadata, that is, identifying the data category in a particular column (e.g., Country); 2) detecting conceptual entities within the table’s cells (e.g., Argentina, Canada, Italy); and 3) finding structural relationships between columns of the table (e.g., Country has attribute GDP) (Quercini and Reynaud, 2013). However, depending on the format of the scientific publications, identifying and extracting this information might present challenges. For scientific documents in PDF, this interpretation is difficult due to the lack of tags indicating even the existence of a table.

To identify and extract tables from PDF documents, we use TAO (Perez-Arriaga et al., 2016), which identifies tables embedded in documents with different layouts, and extracts and organizes their content by row. TAO includes a page number where the table was found, a table number and metadata for each cell (i.e., content, column number, coordinates, font, size, data type, header or data label). TAO yields an annotated document in JSON format.

To identify and extract table content from well-formed XML documents, we use the tags <table-wrap> and <table> indicating the presence of tables. These tags are useful, but we cannot access them directly. Therefore, we use Xpath (Berglund et al., 2003) to detect the path of tags and locate a table within a section of a document. Once we find the tags, we organize its content by rows in JSON. To determine if a cell is a header or data, we use the tags <thead> and <tbody>. A regular expression detects the data type of a cell text. For simplicity, we detect string and numeric data types. The table is enumerated for organization purposes.

Entity Recognition. The organization of tables’ content by row supports our entity recognition process. A header cell indicates that it groups other data cells. Thus, it is more likely that it contains a concept. We also focus our attention on data cells with type string to perform entity recognition. Specifically, we use Textblok (Loria, 2014), a semantic tool for Natural Language Processing (NLP). Textblok receives text, performs noun phrase analysis and returns the entity or entities found. For example, for the text “Figure 2 shows the median curves for body mass index.”, Textblok recognizes the list of entities figure, median curves, and body mass index.

Entity Annotation. After recognizing an entity, we search the Web for a description to annotate

\[^2\text{https://www.wikipedia.org/}\]
\[^3\text{http://www.bing.com/toolbox/bingsearchapi}\]
\[^4\text{https://schema.org}\]
it. For this step, we use DBpedia (Bizer et al., 2009). DBpedia is a knowledge source that contains billions of structured relationships as triples, and is available in 125 languages. The English version contains 4.22 million entities organized as an ontology with properties (e.g., name: Diabetes, type: disease). DBpedia’s naming convention uses a capital letter for the first word, and underscores for spaces between words. For consistency, we convert an entity into this name convention. For instance, we convert the entity “Diabetes Management” into Diabetes_management.

Entity Disambiguation. If an entity contains in its abstract the words may ∨ can ∧ (mean ∨ refer ∨ stand), it indicates a need to disambiguate an entity. When an entity needs disambiguation or when it is not found in DBpedia, we use a variation of the Latent Semantic Indexing (LSI) analysis (Deerwester et al., 1990) to find a Universal Resource Locator (URL) with the closest meaning to the unresolved entity. Price indicates that LSI works even on noisy data to categorize documents using several hundred dimensions (Price, 2003). For our framework we use LSI + context. To set up a corpus for LSI, our framework performs a Web search for documents related to the unresolved entity and the context of its publication (i.e., the publication’s keywords and entity to disambiguate). From this search, we: (1) select the top \(n \) Web pages, with \(n = 100 \), and create a contextualized document collection; (2) using the documents in this collection, we build a matrix of term-document frequencies \(v_i \), where element \(v_{ij} \) represents the frequency of the \(j \)th term in the \(i \)th document (or Web page); (3) we eliminate stop words and normalize \(v_i \) vectors. We use this curated corpus along with LSI to perform a search with respect to a vector \(q \) containing sentences from the publication surrounding the unresolved entity to disambiguate. The URL whose corresponding vector \(v_i \) has the highest similarity to \(q \) is selected as the entity annotation. The entity recognition process enables us to identify concepts in headers, entity instances, and structural relationships between columns and rows from tables. As we explain in the following section, entities are the building blocks of semantic relationships and the key for their extraction.

3.3 Discovery of Relationships

Dahchour et al. define “Generic relationships” as high-level templates for relating real-world entities (Dahchour et al., 2005). More specifically, a generic semantic relationship is a unidirectional binary relationship that represents static constraints and rules, (i.e., classification, generalization, grouping, aggregation). A binary relationship \((R)\) contains the basic semantics between a generic relationship and two arguments. The relationship \((a, R, b)\) indicates that the arguments \(a\) and \(b\) are related by a relation \(R\). The arguments \((a, b)\) can be entities, properties, or values. A semantic relationship can be domain independent and represent information from different areas. Throughout this work we use binary relationships to express entity associations in a document. To search for relationships, we divide this process into two parts:

- Relationships in tables: We extract structural relationships from header cells within a table. Also, we use the entity’s annotations to describe concepts in cells, as explained in Section 3.2.
- Relationships in tables and text: To find these relationships, we use the entities found in a table and relate them to its publication’s text.

The process for relationship identification is as follows: First, we use the open information extraction tool Reverb (Fader et al., 2011), an unsupervised method to extract relationships with a confidence measure (see Section 2). We process a publication’s text with Reverb and select the relationships with high confidence \((\geq 0.70)\). Reverb is efficient, but a relationship might be incomplete. For instance, it finds, with 0.80 confidence, the relationship (obesity and weight gain, are associated, with). Therefore, we only use its output as a preliminary guide in our relationship extraction procedure. Second, the publication’s text undergoes segmentation, which is the process to separate the different sentences within the text. Third, we determine the relevance of high confidence relationships from Reverb by matching them with the set of entities we deemed important. To ensure that the relationships are complete, we perform pattern matching on the complete sentences surrounding the relationship text. For our previous example, we get the relationship (obesity and weight gain, are associated, with an increased risk of diabetes).

Finally, we use the Semanticscience Integration Ontology (SIO) to formally represent relationships in our framework. SIO defines relationships in the Bioinformatics field between entities, such as objects, processes and attributes. However, several definitions can represent relationships from any other area of
study. We select the definitions of the most general relationships from SIO as the basis to find relationships in tables within publications regardless of their area. To represent a relationship, we use pattern matching to find the definition of a relationship. If one is found, we store the identifier of the relationship’s definition from SIO and the arguments composing a relationship from a document. If a relationship is undefined in SIO, our method generates its representation using the verb found by Reverb. We store the ad-hoc relationships and use them for different publications.

3.4 Organization of Metadata, Entities and Relationships

As the final phase, our approach organizes the metadata, entities, annotations and relationships into a JSON file that synthesizes each publication in a standard and interoperable way.

The JSON - Linked Data (JSON-LD) format is a representation of information with resources and linked elements, and has been used to communicate network messages (Lanthaler and Gütl, 2012). This format was created to facilitate the use of linked data. A document in JSON-LD can define a type of information, a set of relationships, not limited to triples, and the location of other documents. Another advantage of this format is that it includes a context of a document. We should not confuse a JSON-LD document’s context with the context of a publication (i.e., keywords). Another advantage of this format is that it includes a context of a document. We should not confuse a JSON-LD document’s context with the context of a publication (i.e., keywords). A JSON-LD context refers to the location of a resource. For instance, for a document that represents relationships from SIO, the context is http://semanticscience.org/resource/. This context indicates the location of the relationships’ formal definitions. If a relationship has a definition with identifier SIO:000001. Then, the union of the context and the identifier http://semanticscience.org/resource/SIO:000001 gives access to a specific resource (e.g., a definition of a relationship).

We use JSON-LD to generate multiple records per document. The records include the publication’s metadata, entities with annotations, and the extracted semantic relationships. These records in turn contain other links, such as the ones used to annotate entities and to define relationships. By using JSON-LD records, it is easy to either store them in files or as records in NoSQL databases for querying.

4 WORKING EXAMPLE

To better describe our approach, we focus on a typical example of a multi-column publication containing tables (See Figure 2). We use The continuing epidemics of obesity and diabetes in the United States (Mokdad et al., 2001).

Figure 2: The continuing epidemics of obesity and diabetes in the United States - Publication used as example.

Context and Metadata Detection. To represent the metadata of a publication, we search for the properties: creator, headline, and keywords. Once we extract this information, we store it in our synthesis using the schema.org representation as shown in Figure 3.

Figure 3: Representation of metadata for a publication.

The annotation "schema" indicates that the concepts are defined from the schema.org vocabulary. The property "@type" defines the category (i.e., Scholarly article); "creator" specifies the authors of a publication; "headline" specifies the title; and "keywords" defines its context. By using schema.org we are able to build an explicit organization into our data representation. This organization is easily exploited for querying purposes.

Entity Recognition, Annotation, and Disambiguation. The following example demonstrates the process from table extraction to entity recognition and annotation. We use partial data (see Table 1) from Table 1: “Obesity and Diabetes Prevalence Among US Adults, by Selected Characteristics, Behavioral Risk Factor Surveillance System, 2000” in (Mokdad et al., 2001).

The first row contains concepts in headers (e.g.,
Table 1: Excerpt from “The continuing epidemics of obesity and diabetes in the United States” (Mokdad et al., 2001).

<table>
<thead>
<tr>
<th>Race</th>
<th>Obesity, % (SE)</th>
<th>Diabetes, % (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>29.3 (0.59)</td>
<td>11.0 (0.39)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>23.4 (0.77)</td>
<td>8.9 (0.59)</td>
</tr>
<tr>
<td>White</td>
<td>18.5 (0.17)</td>
<td>6.6 (0.11)</td>
</tr>
<tr>
<td>Other</td>
<td>12.0 (0.68)</td>
<td>6.7 (0.65)</td>
</tr>
</tbody>
</table>

Race, Obesity, Diabetes), and the other cells contain particular values, which can also be an entity instance or attribute. As mentioned earlier in Section 3.2, the PDF publication undergoes a process for table recognition using TAO. This process generates a JSON file with the information of the table grouped by row. The output for each cell includes column number, content, coordinates of cell on a page, font, size, data type, header or data labels. For didactic purposes we show a fragment of TAO’s output in Figure 4.

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obesity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4: TAO’s output for the first row in Table 1.
```

Using each cell’s content with data type string (e.g., “Obesity % (SE)”), Textblob recognizes the table’s entities as Race, Obesity and Diabetes. Then, our method finds the entities’ annotations from DBpedia. For the entity Diabetes, the annotation is the URI http://dbpedia.org/page/Diabetes and its description follows:

“Diabetes mellitus (DM), commonly referred to as diabetes, is a group of metabolic diseases in which there are high blood sugar levels over a prolonged period...”

Discovery of Relationships. To describe the process of discovering relationships, we use Table 1, which contains the entities Race, Obesity and Diabetes. The header cell “Race” groups the data cells “Black”, “Hispanic”, “White”, and “Other” on the first column. From this column, we obtain four instances for the entity race: Race ⇒ Black, Race ⇒ Hispanic, Race ⇒ White, Race ⇒ Other. These four entity instances are used to find semantic relationships in the document’s text. One of such relationships found in the text is (Obesity and weight gain, are associated, with an increased risk of diabetes). As explained before, we aim at using a standard representation for all of our relationships. In this case the relationship “are associated” is defined by SIO with the label “is related to” and indexed by the SIO identifier SIO_000001. Additionally, this definition contains the description “A is related to B iff there is some relationship between A and B”, and other properties.

To build the document’s synthesis, we save the relationship as a quintuple including identifier of the relationship, first argument, relationship label, second argument, and a relationship’s definition identifier. For this example, the format is as follows:

```
id:1, argument A: “obesity and weight”, label: “is related to”, argument B: “with an increased risk of diabetes”, sio_id:SIO_000001.
```

Note that the identifier of a relationship within a publication (e.g., id:1) is different from a relationship’s definition identifier (e.g., sio_id:SIO_000001). Another example is the semantic relationship (the prevalence of obesity and diabetes, has increased, despite previous calls for action). In this case SIO does not have a definition for the relationship “has increased”. Still, we store the relationship for further consultation and to enrich the entity ‘Obesity’.

Organization of Metadata, Entities and Relationships. The first record in our synthesis contains contextual information, as the metadata shown in Figure 3. Additionally, it contains entities’ annotations, descriptions, and identifiers: The record with information of extracted relationships contains a unique identifier and a context. Its context includes the location of definitions of relationships from SIO and the details of the extracted relationships from tables and text (i.e., relationship identifier, arguments, relationship definition’s identifier). For illustrative purposes, we show a fragment of the records indicating annotations for entities and relationships in Figure 5.

5 EVALUATION

We evaluated our approach quantitatively and qualitatively. To do so, we designed three sets of experiments that evaluated our framework in terms of its (1) accuracy to annotate and recognize entities, (2) ability to disambiguate entities, and (3) ability to identify relevant semantic relationships between entities.

To assess our method, we use a dataset that we call Pubmed. It comprises fifty publications downloaded from the Web site ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_bulk/. This collection contains 449 text pages with 133 tables. The dataset includes various table formats and document layouts (one and two-column).

5http://semanticscience.org/resource/SIO_000001
5.1 Evaluation of Entity Extraction and Annotation

Our first experiment evaluates our method’s ability to recognize and annotate entities. First, we manually extracted all the entities per table in our dataset as the gold standard. The measures recall and precision are used to obtain the average F1-measure for entity recognition. Recall is the ratio between the correct number of entities detected and the total number of entities in a table. Precision is the ratio between the correct number of entities detected and the total number of entities detected. We use the same measurements for entities annotated and disambiguated.

To measure entity recognition, our gold standard contains 2,314 entities, which 1,834 of them were recognized. We obtained a recall of 79.2% and a precision of 94.3%, yielding a F1-measure of 86.1% for recognition (see Table 2).

From the entities annotated, our method found 1,262 (72.5%) of entities in DBpedia. From those, 785 (45.1%) obtained a direct annotation using DBpedia, and the rest (27.4%) needed disambiguation. Then, our method used the LSI process described in Section 3.2 to annotate a total of 955 entities. That is 54.9% of entities correctly recognized. From the total 1,834 entities recognized, 1,740 were correctly annotated, yielding a recall of 94.8%, precision of 97%, and F1-measure of 95.9% (see Table 2).

5.2 Evaluation of Entity Disambiguation

For the second experiment, we evaluated the entity disambiguation methods. In particular, we quantify the effect of including information regarding the context of the publication in the disambiguation process. From the 1,740 annotated entities, 955 needed disambiguation. From these, 838 correctly disambiguated entities were discovered without context. The precision was 89% and recall 87%, yielding an F1-measure of 88%. For the entities disambiguated using as context the three more relevant keywords, there were 900. The precision was 95% and the recall 94%, yielding an F1-measure of 94.5%. Table 3 presents the results of comparing disambiguation without and with context.

Table 3: Experiment 2 to disambiguate entities.

<table>
<thead>
<tr>
<th>Method</th>
<th>Recall</th>
<th>Prec.</th>
<th>F1</th>
<th>NR urls</th>
</tr>
</thead>
<tbody>
<tr>
<td>No context</td>
<td>0.87</td>
<td>0.89</td>
<td>0.88</td>
<td>12.3%</td>
</tr>
<tr>
<td>Context</td>
<td>0.94</td>
<td>0.95</td>
<td>0.94</td>
<td>5.8%</td>
</tr>
</tbody>
</table>

In addition, URLs were manually verified to determine whether they were reliable or non-reliable (See Table 3 column NR urls). The reliable URLs include known organizations and domains. Non-reliable URLs required further investigation. Although this URL review does not ensure an exact description of an entity, it does ensure that a site or document found is related to the entity, and consequently to the publication. The non-reliable URLs found using no context were 117, that is 12.3% of the total disambiguated entities, while the number of non-reliable URLs when including context were 55, that is 5.8%. Therefore, the context reduced more than half of non-reliable links.

Although the results with context are only slightly better than non-context, the quality of the URLs increased considerably using the context. For example, for the entity Gain found in the working example from Section 4, the method with no context found the URL http://gainworldwide.org/, which is a site for global aid network. Using a context, our method found the URL https://www.sciencedaily.com/releases/2010/02/10022182137.htm, which is a site about weight gain during pregnancy and increasing risk of gestational diabetes. Although the first link belongs to an organization, it does not relate to the entity Gain.
for this publication, while the second URL, explains the risks of weight gain during pregnancy, which is related to this specific publication.

Using context, we consistently found more reliable links, belonging to organizations, schools, government, clinics, dictionaries, and scientific and digital libraries, among others. In contrast, when context was not included, we found commercial URLs promoting services or products, unavailable sites, and even some ill-intentioned links. To ensure reliability, we could keep a second URL annotation for unavailable URLs.

5.3 Evaluation of Semantic Relationships

The third experiment evaluated both quantitatively and qualitatively the semantic relationships found by our method. We report the total number of high ranking (≥ 0.70) relationships derived either from tables or text, and the average number of relationships per article. In addition, a human judge evaluated qualitatively the relationships extracted from text and tables. The judge detected complete versus incomplete relationships. A complete relationship indicates that the components of a relationship show coherence, regardless of their accuracy. See results in Table 4.

Table 4: Experiment 3: finding semantic relationships.

<table>
<thead>
<tr>
<th>Method</th>
<th>Rel. found</th>
<th>Rel. complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tables</td>
<td>11,268</td>
<td>10,102</td>
</tr>
<tr>
<td>Text only</td>
<td>865</td>
<td>703</td>
</tr>
</tbody>
</table>

For this experiment, we found 11,268 relationships from tables and 865 from text. The average number of relationships extracted per publication when using table information is 225, while the average number of relationships extracted using only text is 17 per publication.

A human judge analyzed the quality and completeness of relationships manually. From the total of relationships extracted from text, 703 (81%) relationships were complete and the rest was labeled incomplete. From the set of relationships derived from tables, 10,102 (89%) relationships were complete. To further increase the number of relationships that we can extract from a given article we could increase the confidence threshold. However, there is the risk of extracting common or irrelevant relationships.

Analyzing the results qualitatively, relationships extracted from tables produced more complete information. This confirms our initial intuition regarding the relevance of structural information embedded in tables. Even though our framework uses mostly concepts from tables to extract relationships and generate a synthesis, it can still be useful when a publication lacks tables because it finds metadata and semantic relationships from text. These relationships can be found using a publication’s keywords. Regarding relationships extracted from text only, our method improved the completeness of relationships extracted by Reverb.

6 Conclusion and Future Work

Because of their wide use and structured organization, we propose using tables in digital publications to recover summarized information and structural relationships among conceptual entities in these documents. Additionally, we use text in publications to find valuable information, such as context and description of concepts as semantic relationships.

We developed an integrated framework to extract semantic relationships from electronic documents. Our method takes advantage primarily of information in tables, such as their content and structure, to find relevant entities and relationships. Our framework can seamlessly interpret documents in PDF and XML format, which leverages multiple standards, tools, Natural Language Processing, and unsupervised learning to generate an end-to-end synthesized analysis of a document. This synthesis contains rich information organized in a standard, searchable, and interoperable format that facilitates batch mining of large document collections. In addition to interoperability and easiness of use, our output emphasizes provenance, and it ensures that the user will be able to trace back exactly the source of every extracted relationship.

Our results demonstrate the importance of including context to annotate and to identify semantic relationships of high quality. The results also support our intuition regarding the usefulness of tables and show that by using tables, it is possible to increase the number of highly ranked semantic relationships by one order of magnitude.

In our future work, we plan to create a collection of syntheses allowing users to consult them individually and globally; and to further evaluate data integration and interoperability. Our framework shall generate a network of the semantic relationships containing context or entities of interest. Hence, it can extend additional support to find important relationships among documents from any domain.
REFERENCES

