
An Intentional Perspective on Partial Agile Adoption

Soreangsey Kiv1, Samedi Heng1, Manuel Kolp1 and Yves Wautelet2
1LouRIM-CEMIS, Université Catholique de Louvain, Belgium

2Faculty of Economics and Business, KULeuven, Belgium

Keywords: Agile Methods, Partial Adoption, Goal Modeling, Conceptual Model, Requirements Engineering.

Abstract: Nowadays, the agile paradigm is one of the most important approaches used for software development besides
structured and traditional life cycles. To facilitate its adoption and minimize the risks, different meta-models
have been proposed trying to unify it. Yet, very few of them have focused on one fundamental question: How
to partially adopt agile methods? Intuitively, choosing which practices to adopt from agile methods should
be made based on their most prioritized goals in the software development process. To answer this issue,
this paper proposes a model for partial agile methods adoption based on intentional (i.e., goal) perspectives.
Hence, adoption can be considered as defining the goals in the model, corresponding to the intentions of the
software development team. Next, by mapping with our goal-based model, suitable practices for adoption
could be easily found. Moreover, the relationship between roles and their dependencies to achieve a specific
goal can also be visualized. This will help the software development team to easily identify the vulnerabilities
associated with each goal and, in turn, help to minimize risks.

1 INTRODUCTION

In user-intensive software development, to effectively
deal with quality expectations, change or risk man-
agement, and to ensure that all the requirements
are satisfied, activities such as requirements gather-
ing, design, development and testing should be it-
erative and incremental. In the last decade, among
other approaches such as the introduction of eXtreme
Proramming (XP) (Beck, 2000), Feature-Driven De-
velopment (FDD) (Palmer and Felsing, 2001), Dy-
namic Systems Development Method (DSDM) (Sta-
pleton, 1997), Crystal family (Cockburn, 1998),
Scrum (Schwaber and Beedle, 2002), etc., this led
to the definition of the Agile Manifesto (Fowler and
Highsmith, 2001; Abrahamsson et al., 2003) to offer
alternatives to traditional approaches.

Among many research subjects in the agile com-
munity, partial agile adoption has gained a lot of in-
terests. It has always been actively studied and known
as agile tailoring, customization or practice selection,
etc. (Campanelli and Parreiras, 2015). Based on the
survey on partial agile adoption in the same publica-
tion indicated that 56 out of 783 papers published be-
tween 2002 and 2014 actually describe agile method
tailoring approaches. The common objective is to of-
fer the possibility to adopt agile methods gradually or
partly, rather than fully. According to the Campan-

elli and Parreiras, by adopting agile partially, orga-
nizations can avoid the need of spending efforts and
resources on irrelevant practices.

Intuitively, when software teams want to partially
adopt agile methods – either one or the combination
of multiple methodologies – they should have in mind
the reasons they want to do it and which are the goals
they want to achieve after the adoption. (Tripp and
Armstrong, 2014) conduct an exploratory study to
find out that different motives exist for agile adoption,
all with different project management configurations
focusing on agile practices for software development.
(Campanelli and Parreiras, 2015) highlight that 42%
of the papers working on agile tailoring use goal as
one of their criterion for practice selection. For in-
stance, among others, the Strategic Analysis for Agile
Practices framework (Esfahani et al., 2011) proposes
to link the selection of agile practices to the organiza-
tion’s business goals.

Unfortunately, these business goals along with
other criteria are often described textually for partial
agile adoption. To ensure wide diffusion in academia,
we believe that explicit formalisms should have been
proposed by using meta-models (Henderson-Sellers
and Gonzalez-Perez, 2005; Mikulėnas et al., 2011;
Esfahani et al., 2010) to describe the methods. This
has motivated us to propose a partial agile adop-
tion from a goal perspective by means of a concep-

116
Kiv, S., Heng, S., Kolp, M. and Wautelet, Y.
An Intentional Perspective on Partial Agile Adoption.
DOI: 10.5220/0006429301160127
In Proceedings of the 12th International Conference on Software Technologies (ICSOFT 2017), pages 116-127
ISBN: 978-989-758-262-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



tual model to offer a more explicit representation and
guideline. Our motivation contrasts with previous
goal-based agile tailoring approaches in the sense that
we employ the original goal behind agile methods cre-
ation (i.e., the Agile Manifesto) rather than business
goal. This perspective coincides also with the work of
(Madi et al., 2011) which emphasizes that agile prac-
tices should follow the agile values which is funda-
mental to define the culture of the software company.

To summarize, we aim here at building a generic
goal-based conceptual model to facilitate partial agile
method adoption. Each agile concept will be seen as a
goal to achieve, to which dependencies between roles
and resources are associated. A complementary ob-
jective is to explain how a software team can use our
model at the two levels of adoption process: tactical
and operational.

• At the tactical level, the software team has to
choose the practices to integrate into its existing
development process.

• At the operational level, agile practices will be im-
plemented.

This paper is organized as follows. Section 2 dis-
cusses various agile methods and meta-models pro-
posed in literature. Their pros and cons are high-
lighted. Section 3 presents our framework for adopt-
ing agile methods partially. We first expose our ag-
ile conceptual model adopting tactical and operational
levels. Then, we discuss on the use of the intentional
i* framework to instantiate our conceptual model.
Last, we provide a methodology for using our frame-
work in selecting agile practices. Section 4 provides a
validation for our approach. Finally, we conclude the
paper in Section 5 including a discussion on future
directions.

2 RELATED WORK

Over the last decade, many agile methods have been
proposed based on the Agile Manifesto to meet spe-
cific requirements and situations. For instance, Scrum
is proposed with an objective to put more focus on
project management organization while XP is de-
signed to be more responsive to customer requirement
changes (Mikulėnas et al., 2011). The research from
(Jacobson et al., 2006) shows that agile methods tend
to be compatible with small development teams and
focus more on people rather than processes or arti-
facts. Other well-known predecessors of agile frame-
works can be found in the literature, even inspired
from other disciplines than software and information
systems engineering: Agile Unified Process (AUP)

(Ambler, 2005), OpenUP (Kroll and MacIsaac, 2006)
and Agile Modeling (Ambler, 2002), Kanban (Ah-
mad et al., 2013; Liker, 2004), Lean Software Devel-
opment (Poppendieck and Poppendieck, 2003), Lean
Office and Organization (Chiarini, 2013), etc.

These agile methods are generally described tex-
tually as a series of values, principles and practices
(Beck, 2000; Schwaber and Beedle, 2002; Fowler
and Highsmith, 2001). To formalize their description,
help their adoption, minimize the risks of deploying
them and generalize them, meta-models (Henderson-
Sellers and Gonzalez-Perez, 2005; Mikulėnas et al.,
2011; Esfahani et al., 2010) have been created. Meta-
models can then help the adoption of such meth-
ods better, faster and at the same time minimizing
the risks. They aim at making relations, attributes,
control flows, rules of a particular process more ap-
pealing based on a particular perspective, e.g., prod-
ucts and capability assessment (Henderson-Sellers
and Gonzalez-Perez, 2005), partial agile adoption
(Mikulėnas et al., 2011), and goal-oriented (Esfahani
et al., 2010).

(Schwaber, 2004) has designed a meta-model to
support the construction of agile methods. By rely-
ing on the measurement concept from the Situational
Method Engineering framework (Henderson-Sellers
et al., 2014), it provides guidance to agile method-
ologists during the construction and throughout the
development process itself. Rather than working on a
single agile method, (Mikulėnas et al., 2011), on their
side, focus on a meta-model enabling a fusion of dif-
ferent agile methods – named as partial agile methods
adoption. The core idea is to decompose each agile
method into components which, in theory, could al-
ways be categorized into a common pre-defined struc-
ture. This offers great flexibility in adopting agile
methods since one can manually select and combine
different alternative components coming from differ-
ent methods at will.

Interestingly, (Lin et al., 2014) and (Esfahani
et al., 2010) have shed more light on goal-oriented
meta-models. (Lin et al., 2014) propose a novel goal-
oriented method on the top of the AUP (Ambler,
2005), called GOAUP that could be also applied to
OpenUP and other adaptation of the Unified Process
to agile. Goal-Net theory (Shen et al., 2004) is used
to model the hierarchical goals in the AUP using a
Goal-Net diagram. Each iteration can be considered
to have one main goal. (Esfahani et al., 2010) propose
a more sophisticated goal-oriented meta-model that
put focus on social interaction, in which human re-
lations are clearly defined. For example, the relation-
ship/dependency between roles in required processes
and the skills are associated with each goal in turn

An Intentional Perspective on Partial Agile Adoption

117



described with certain vulnerabilities to minimize the
risks of the adoption process. Although many other
meta-models have been proposed (Lin et al., 2014;
Shen et al., 2004; Mikulėnas et al., 2011; Esfahani
et al., 2010; Bézivin, 2004; Schuppenies and Stein-
hauer, 2002; Damiani et al., 2007; Henderson-Sellers
and Gonzalez-Perez, 2005), none of them focuses
specifically on partial agile adoption in an intentional
goal-oriented perspective. The closest research re-
lated to our work is (Esfahani et al., 2010), in which
goal-oriented has been used to model micro-processes
(i.e., practices). However, the authors focus rather on
how to visualize agile methods, mainly Scrum, in so-
cial modeling while our work aims at using a goal-
oriented framework specifically dedicated to partial
agile methods adoption.

3 PROPOSED FRAMEWORK

Our objective is to introduce a generic conceptual
model based on goal and social aspects to describe
agile software development. To do this, we formulate
our proposed framework in two main parts.

First, we create a generic conceptual model, appli-
cable to any agile method. We will need to define a
common structure that can, theoretically, represent all
the agile elements from a goal perspective. Each ag-
ile concept will be seen as a goal to achieve, to which
dependencies between roles and resources are associ-
ated.

Second, we propose making use of the inten-
tional i* framework (Yu et al., 2011) (that means dis-
tributed intentionality) as schema instances derived
from the conceptual model to visualize all the depen-
dencies/relationships. The choice is inspired by the
fact that i* framework has stimulated a considerable
interest in a socially-motivated approach to systems
modeling and design, and has led to a number of ex-
tensions and adaptations (Eric, 2009). We will ex-
plain how this goal-based conceptual model and its
i* representation can offer advantages at both tacti-
cal and operational levels for a partial agile methods
adoption process.

We describe, hereafter, more formally our concep-
tual model and the mapping of each component into
i* elements. We then apply it on two agile methods,
Scrum and XP to verify that all the agile concepts can
be mapped to our conceptual model and to show that
it is helpful for practitioner in selecting practices and
identifying vulnerability.

3.1 Agile Conceptual Model

Our conceptual model is created to help the software
team to select a set of practices for adoption based
on goals. The Agile Manifesto introduces four val-
ues, twelves principles and the abstraction of prac-
tice (Fowler and Highsmith, 2001) to agile methods
should respect. Agile values are the large-scale crite-
ria we use to judge what we see, what we think and
what we do (Madeyski, 2010). They are fundamental
where a set of practices can be followed on their basis
(Madi et al., 2011). According to agile practitioners,
knowing the most important agile values is the key to
follow the best set of practices. Practices are concrete
activities and practical techniques used to develop and
manage software projects in accordance with the ag-
ile principles (Sidky et al., 2007). There is a big gap
between values and practices, since values are too ab-
stract to directly guide the development. Therefore,
principles come into agile and act as a bridge to nar-
row this (Madeyski, 2010). We introduce the concept
of agile feature based on (Laanti et al., 2013) as the
composition of principles. As the concept of princi-
ple, it is introduced to further narrow the gap between
principle and practice. Finally, a practice is performed
by a certain role (actor) with/without using/producing
the artifact. Our conceptual model is built on top
of these abstractions: value, principle, agile feature,
practice, role and artifact. Figure 1 is the conceptual
model of agile methods in the goal perspective.

The definition of the main components in our con-
ceptual model are:

• Value is the large-scale criteria used to judge what
we see, what we think and what we do (Madeyski,
2010). It is seen as the top-level goal in agile
methods adoption.

• Principle helps to establish a mind-set for solid
software engineering practices (Pressman, 2005).
It comes into agile methods and acts as a bridge
to narrow the gap between values and practices
(Madeyski, 2010).

• Agile feature is the distinctive characteristic of
each principle, as defined by (Laanti et al., 2013).
These features can help to narrow the gap between
principles and practices, and consequently the rel-
evant practices can be better identified by the de-
velopment team.

• Practice is the concrete activity and practical tech-
nique that is used to develop and manage software
projects in a manner consistent with the agile prin-
ciples (Sidky et al., 2007).

• Role in agile methods refers to the allocation of
specific roles through which the software produc-

ICSOFT 2017 - 12th International Conference on Software Technologies

118



Principle

Agile_Feature

Practice Artifact

Value

Role

1..*

1..*

1..*

1..*

1..*

1..*

1..* 0..*1..* 1..*

produces/requiresis responsible for

achieved by

emphasizes on

contributes to

Figure 1: Agile conceptual model.

tion in a development team is carried out (Sidky
et al., 2007).

• Artifact is the resource produced during software
development. It can be tangible like user stories
(Cohn, 2004; Wautelet et al., 2014) or intangible
like working software functionality.

All the relationships between different compo-
nents are of the type “many-to-many”.

3.2 Mapping the Agile Conceptual
Model to i*

Goal/Intention and social dependencies between each
component over a specific goal can be visualized us-
ing goal-oriented frameworks. In this research, we
use the i* framework (Yu et al., 2011). It has two
main models: the Strategic Dependency model (SD)
and Strategic Rationale model (SR). The SD model
describes external dependency relationships between
goals, actors using hard-goal, soft-goal, task and re-
source elements. These four kinds of dependency
are suitable to represent respectively the functional
goal, functional goal without a clear-cut of satisfia-
bility, functional goal with a specific activity or prac-
tice to achieve and resource or artifact needed dur-
ing the development. In addition to the SD, the SR

model provides a deeper representation to the in-
ternal, intentional dependency with the means-end,
task-decomposition and contribution links to describe
stakeholders’ interests and the (combination of) activ-
ities, sub-goals, artifacts that help to achieve the main
goal. A full description of i* can be found in (Yu
et al., 2011) but we summarize the important concepts
below for self-sufficiency:

• Hard-goal is an intentional desire of an actor, the
specific way of how the goal is to be satisfied is
not described.

• Soft-goal is similar to (hard) goals except that the
criteria for the goals satisfaction are not clear-cut,
it is judged to be sufficiently satisfied from the
point of view of the actor.

• Task is a particular way of attaining a goal.

• Resource is the finished product of some
deliberation-action process.

• Role is an abstract characterization of the behavior
of a social actor within some specialized context
or domain of endeavor. Its characteristics are eas-
ily transferable to other social actors.

• Contribution link (some+) is a positive contribu-
tion whose strength is unknown.

An Intentional Perspective on Partial Agile Adoption

119



Table 1: Mapping agile concepts to i*.

Agile concepts i* concepts
Principle Soft-goal
Agile Feature Soft-goal
Practice Task
Artifact Resource
Role Role
Contributes to Contribution link (some+)
Emphasizes on Contribution link (and or make)
Achieved by Contribution link
Is responsible for Task dependency
Produces/requires Resource dependency

• Contribution link (and) is kind of contribution
where the parent is satisfied if all of the offsprings
are satisfied.

• Contribution link (make) is a positive contribution
strong enough to satisfy a soft-goal.

• Task dependency is a relationship where the de-
pender depends on the dependee to carry out an
activity (task).

• Resource dependency is a relationship where the
depender depends on the dependee for the avail-
ability of an entity (physical or informational).

In order to visualize our model using the i* frame-
work, all the concepts and their relationships must be
mapped to i* elements. This mapping is performed
with an heuristic search using the idea of Cartesian
product. Indeed, for every concept in our model, we
compare its definition/objective to all the possible i*
elements that can be found. The best match should
have the most similar objective/definition. We first
map the classes and we finish by mapping their rela-
tionships. We managed to map all the concepts and
their relationships to i* elements and detail hereafter
the motivation of our mapping for each concept:

• Value, principle and agile feature are represented
as soft-goals. These concepts are described in ag-
ile methods as the objectives to be achieved with-
out any defined criterion. For instance, “Individu-
als and interactions over processes and tools” ex-
plains why software team members and their in-
teractions are important for the development but
there is no explicit explanation of how the team
should be, what kind of interactions they need in
order to attain the benefit of this value. Similar ex-
planations apply for the concepts of principle and
agile feature.

• Practice is described as a set of activities that the

software team must follow in order to realize its
benefit. It is represented as a task in i*.

• Artifact is the resource required or created when
performing a practice. For example “user stories”
are the resources needed for a “sprint planning”
and from this practice, a “sprint backlog” is cre-
ated. In i*, artifact is represented as resource.

• Role exists in many forms in different agile meth-
ods. Each role has different responsibility and can
be played by different or the same actor. It is rep-
resented as a role in the i* framework.

• Contributes to is the relationship between value
and principle which are soft-goals. It is repre-
sented as a contribution link with the “some+” tag,
as the strength of its contribution to satisfy is un-
known.

• Emphasizes on is the relationship between princi-
ple and agile feature. Each principle is decom-
posed into different parts used to emphasize it.
This kind of relationship is represented by a con-
tribution link with the tag “and” while principle
is the parent and can be fully satisfied only if all
of the children, agile features, are satisfied. Some
principles having only one feature, the “contribu-
tion link” with the tag “make” is used to represent
them. That one feature is the only thing to be sat-
isfied to fulfill the principle it emphasizes.

• Achieved by is the relationship between agile fea-
ture (soft-goal) and practice (task). This relation-
ship is a “contribution link” where the tag used
depends on the practice to carry out and the fea-
ture to achieve.

• Is responsible for is the relationship between an
agile role and the practice under its responsibility.
It is represented by task dependency.

• Produces/requires is the relationship between an

ICSOFT 2017 - 12th International Conference on Software Technologies

120



agile role and the artifact it requires or creates.
It is represented by an i* resource dependency,
which roles depend on each other for the resource
needed.

3.3 Agile Practices Selection Process

The partially adopt agile methods in our framework
consists of four steps and follows an iterative and in-
cremental process as represented by Figure 2.

• Defining Goals: within this stage, agile practition-
ers need to define the goals/objectives they want
to achieve after the agile methods adoption, either
single or multiple methods.

• Selecting Practices: based on the goals defined
previously, the software team follows our goal-
based conceptual model to find out the supporting
practices. At this point, the team should be able to
select which practices to adopt.

• Checking Vulnerabilities: in order to help
the team to identify the possible risks dur-
ing practices implementation, various relation-
ships/dependencies between agile practices, roles,
and resources needed will be visualized to the
organization. This enables the software team to
see the possible vulnerabilities, e.g., roles or re-
sources required can not be provided.

• Solving Vulnerabilities or Implementing Prac-
tices: finally, based on the results of dependency
check, if there is any identified risks associated
with practice, the software team needs to make
the decision on how to avoid them: either by solv-
ing the cause of vulnerability or by redefining the
goal (eventually, the process of selecting practices
is started again). If there is not any risk, the team
can start implementing the practices into their de-
velopment process.

4 VALIDATION

In order to fully validate the framework, there are two
necessary validations should be carried out, we would
call theoretical and practical validation. Theoretical
validation aims at verifying that all the agile concepts
can always be mapped to our conceptual model and
showing that it can help practitioner in selecting prac-
tices and identifying vulnerability. The practical val-
idation aims at validating whether or not the frame-
work is useful for the development team in the real
case of partial agile methods adoption. However, as
the preliminary study, we only focus on theoretical
validation in this paper. As we can not take practices

from all the agile methods to discuss in one paper, we
choose to work only with the two most popular agile
methods namely Scrum and XP.

The validation will be done in two steps. At the
first step, the “tactical level”, the relationships be-
tween value, principle, agile feature and practice will
be visualized. Practitioners can follow our methodol-
ogy to find out what are the practices that fulfill their
desired goals. Then, during selected practices im-
plementation, named “operational level”, the depen-
dencies between practices, roles and resources needed
will be visualized. This level is supposed to help prac-
titioners to identify the vulnerability.

We describe below these two levels applied to
Scrum and XP.

4.1 Application at Tactical Level

Our goal-based conceptual model can first be used at
“the tactical level” for attempting to partially adopt
agile methods.

One of the most common questions in partial agile
adoption is: which practices should we adopt first?
To answer this, the software team can visualize the
adoption process as having a set of goals to achieve
and follow the conceptual model until reaching the
lowest level in order to find out the practices they need
to achieve the goals.

Over the years, many values, principles and prac-
tices have been proposed in different agile methods.
However, to avoid an overwhelming amount of in-
formation, this research will discuss only on the root
four values, twelve principles and some practices pro-
posed in the two most popular agile methods: Scrum
and XP. It is important to remind that the main idea of
this paper is not to map all the existing elements, but
rather to show the interests of having them mapped in
a goal perspective.

We can discover which principles contribute to
which value, which practices can help to achieve
which principle, etc. by either a literature review or
a qualitative research approach. In our case, the first
method has been carried out while the second one will
be done later.

Although there is no explicit claim of relationship
between them, they can be understood from the tex-
tual meaning. For example, “Individuals and interac-
tions over processes and tools” can easily be under-
stood as the ability of the software team and the inter-
actions that contribute to this value. Logically, all the
principles that contribute to this value are those focus-
ing on the improvement of the software team and their
interactions. Similarly, we can group the twelve prin-
ciples into the four values defined in the Agile Mani-

An Intentional Perspective on Partial Agile Adoption

121



Defining
goals

Selecting practices
Checking

vulnerabilities

Solving vulnerabilities

Implementing
practices

Have new goals to
be achieved?

Any risk?

Adopting
Agile Methods

no

yes

no

yes

Figure 2: Agile practices selection process.

festo based on what they contribute to. Interestingly,
(Laanti et al., 2013) analyze each principle in their
research and introduces emphasis that we call “agile
features”.

Based on the knowledge extracted from (Martin,
2003; Laanti et al., 2013), we summarize the mapping
between value, principle and agile feature in Table 2.

As mentioned earlier, it is not possible in this re-
search to extract all the practices from all methods
adopted by the industry. The two most popular meth-
ods have then been studied. Besides, being the most
favored, Scrum and XP are known to be compati-
ble and have frequently been adopted together (Ver-
sionOne, 2016).
• Scrum, the most used among agile methods (Ver-

sionOne, 2016) is a framework within which peo-
ple can address flexible adaptive problems, while
productively and creatively delivering products of
the highest possible value (Schwaber and Suther-
land, 2011). It is not a process or a technique
for building products; rather, it is a method within
which we can employ various processes and tech-
niques. It consists of Scrum Teams and their as-
sociated roles, events, artifacts, and rules. Each
component within the framework serves a spe-
cific purpose and is essential to the success and
usage of Scrum. The rules of Scrum bind together
the events, roles, and artifacts, governing the re-
lationships and interaction between them. Scrum
has never been described with clear-cut practices.
However, the list of practices can be found at (Ag-
ileAlliance, 2017).

• XP, as described in (Beck, 2000), is a process for
the business of software development that make
the whole software team focus on common, reach-

able goals. Using XP values and principles, soft-
ware teams apply appropriate practices in their
own context. XP practices are chosen for their
encouragement of human creativity and their ac-
ceptance of human frailty. One of the goals of XP
is to bring accountability and transparency to soft-
ware development, to run software development
like any other business activity. Another goal is to
achieve more effective and efficient development
with far fewer defects than is currently expected.
Finally, XP aims to achieve these goals by cele-
brating and serving the human needs of everyone
touched by software developmentsponsors, man-
agers, testers, users, and programmers.

A list of XP and Scrum practices can be found on
(AgileAlliance, 2017). The mapping between agile
features and practices in this research has been cre-
ated based on the understanding of each practice and
its benefit described in (Martin, 2003; Schwaber and
Beedle, 2002). The result is summarized in the online
Appendix goo.gl/xg6aK4.

Figure 3 depicts the relationship between the dif-
ferent agile concepts: value, principle, agile feature
and practice, represented in four different levels while
the upper levels are contributed by the lower ones.
Due to the limited space, only the practices that help
to achieve the two principles contributing to a value
are shown. In the Figure 3, the value “Individual and
interaction over processes and tools” is contributed
by two principles: “Build project around motivated
individual. Give them the environment and support
they need and trust them to get the job done” and
“The most efficient and effective method of convey-
ing information to and within a development team is
face-to-face conversation”. Each principles is empha-

ICSOFT 2017 - 12th International Conference on Software Technologies

122



Table 2: Mapping between agile values, principles and features.
 

Value Principle Agile feature 

V1: Individuals and 
interactions over processes 
and tools 

P1: Build projects around motivated individuals. 
Give them the environment and support they 
need, and trust them to get the job done. 

F1: Motivated individuals 
F2: Good environment 
F3: Support 
F4: Trust 

P2: The most efficient and effective method of 
conveying information to and within a 
development team is face-to-face conversation. 

F5: Efficiency (for conveying 
information) 
F6: Communication 

P3: Agile processes promote sustainable 
development. The sponsors, developers, and users 
should be able to maintain a constant pace 
indefinitely. 

F7: Sustainability 
F8: People 

P4: The best architectures, requirements, and 
designs emerge from self-organizing teams 

F9: Self-organization 

P5: At regular intervals, the team reflects on how 
to become more effective, then tunes and adjusts 
its behavior accordingly. 

F10: Built-in improvement of 
efficiency and behavior 

V2: Working software over 
comprehensive 
documentation 

P6: Our highest priority is to satisfy the customer 
through early and continuous delivery of valuable 
software. 

F11: Customer satisfaction 
F12: Continuous delivery 
F13: Value 
F14: Early delivery 

P7: Deliver working software frequently, from a 
couple of weeks to a couple of months, with a 
preference to the shorter timescale. 

F15: Frequent deliveries 

P8: Working software is the primary measure of 
progress. 

F16: Measure progress via 
deliverables 

P9: Simplicity the art of maximizing the amount 
of work not done is essential 

F17: Simplicity 
F18: Optimize work 

V3: Customer collaboration 
over contract negotiation 

P10: Business people and developers must work 
together daily throughout the project 

F19: Collaboration 

V4: Responding to change 
over following a plan 

P11: Welcome changing requirements, even late 
in development. 

F20: Adaptability 
F21: Competitiveness 
F22: Customer benefit 

P12: Continuous attention to technical excellence 
and good design enhances agility 

F23: Focus on technical excellence 

 

 
 

sized by multiple agile features such as “Trust”, “Sup-
port”, “Good environment” and “Motivated individu-
als”. Each agile feature can be achieved by multiple
agile practices of the method Scrum and XP. For ex-

ample, we can achieve the feature “Trust” by using
the practices “Collective ownership” and “Sign up”.

An Intentional Perspective on Partial Agile Adoption

123



Task ResourceSoftgoal

Legend:

Contribution Link

Some +

Individuals and 

interactions over 

processes and tools

Build projects around motivated 

individuals. Give them the 

environment and support they need, 

and trust them to get the job done

The most efficient and effective 

method of conveying information 

to and within a development 

team is face-to-face conversation

S
om

e
 +

Motivated 

individuals
Trust Good 

environment

A
n
d

A
n
d

A
nd

A
n
d

A
n
d

A
n
d

Planning 

poker

Three 

questions

Pair 

programming

Sign up
Daily 

meeting

Collective 

ownership

Backlog 

grooming

Support
EfficiencyCommunication

Backlog

User stories

S
om

e 
+

S
o

m
e
 +

S
o

m
e
 +

Som
e +

S
o
m

e
 +S

om
e 

+

S
o

m
e
 +

S
o
m

e
 +S
o
m

e
 +

Some +

S
om

e 
+

S
o

m
e

 +

S
o
m

e
 +

Som
e 

+

S
o
m

e
 +

S
o
m

e
 +

S
o

m
e
 +

S
o
m

e
 +

S
o
m

e
 +

Figure 3: Relationship between value, principles, features and practices.

4.2 Application at Operational Level

The previous section describes how our conceptual
model is created and can be used for partial agile
adoption at the tactical level. We present here the
operational level describing the importance of social
interaction, particularly dependencies between roles,
during agile practices implementation.

In the conceptual model, a role is in charge of car-
rying out a practice. By visualizing this concept in i*,
one can easily understand how each role is involved
in a particular process to achieve a goal. Dependen-
cies between roles, goal and resources needed are then
explicitly represented. The description of all the de-
pendencies, critical roles and artifacts can help the or-
ganization and the software team to better analyze the
chances of success or the probability of failure and
thus be prepared to mitigate the risks. For instance,
if many critical goals heavily depend on a particular
role, the probability of failure increases when that role
is not reliable. Thus, software teams must carefully
assign it or adopt better practices to reduce or avoid
such risks. Our conceptual model built so far con-

tains only abstract definitions of practices. We show
below that it can be instantiated on difference agile
methods, as here in example, on Scrum and XP. Prac-
tices in each method are collected and mapped into
agile features and the mapping list can be found in the
Table 2. Figure 4 shows the dependencies between
roles to perform the practices illustrated in Figure 3
at the operational level. Such representation is use-
ful to show how different roles depend on each other
to perform a certain tasks which can lead to achieve
a specific goal at the tactical level. For instance, the
Scrum master depends on the product owner to per-
form the following tasks: “backlog grooming”, “cre-
ating user stories”, “building the backlog” and “plan-
ning poker”. These practices are necessary in order
to achieve the “efficiency” agile feature. If the prod-
uct owner fails to perform them, this goal will most
probably also fail. To avoid that, it is necessary to
make sure that the scrum master manages to interact
with the product owner despite tight schedules or to
choose other practices which do not depend on the
product owner.

ICSOFT 2017 - 12th International Conference on Software Technologies

124



Task Resource

Legend:

Planning 

poker

Three 

questions

Pair 

programming

Sign up

Daily 

meeting

Collective 

ownership

Backlog 

grooming

D

D

D

D

D D

D
D

D

D

D

D

D

D

D

D

Backlog

Product 

owner
Scrum 

master

Development 

team

User stories D

D

D

Dependency LinkRole

Figure 4: Scrum methodology at the operational level.

When practices in different methods are merged,
so will do the roles. The software team has to decide
which roles to keep and which can be eliminated. In
our example, there are only two practices from XP
in which the XP coach depends on the developer to
perform “pair programming” and “collective owner-
ship”. Since the XP coach is just a depender which
is not crucial, it can be replaced by the Scrum mas-
ter. As for the developer role, even if it is necessary
to perform the practices, it is already included in the
software team.

5 CONCLUSION

This paper introduced a new conceptual model to rep-
resent agile methods in a goal perspective and allows
partial method adoption. Our model offers two main
advantages. First, the goal perspective enables the
software team to quickly understand the objective of
each concept (i.e., value, principle,agile feature and
practice) and consequently enables the software team
to select only the relevant concepts for partial agile
adoption. Second, using the i* framework to visualize
the relationships between roles and their intentional
dependencies allows the team to identify the possi-
ble vulnerabilities resulting from adopting the chosen
practices. Hence, the software team can avoid risks of
project failure by reinforcing the role performance or
choosing the alternative practices which can achieve
the same goal.

While this conceptual model offers a lot of advan-
tages, we acknowledge that a formal methodology is
needed on top of it to practically validate it. Two pos-
sibilities can be chosen based on either a systematic

review and a survey. We chose to focus on the em-
pirical survey because we believe that it would offer
a more evidential information from a practical per-
spective. At the time of writing, the survey is being
conducted and we hope to publish the results in a next
iteration of this research work.

To make sure that the software team can success-
fully adopt agile methods, we would also like to add
another dimension for evaluating the specific process
of adoption. In this regards, we aim not only at of-
fering a roadmap for the software team to adopt agile
methods, but also a set of performance indicators dur-
ing the adoption process.

As our work aims at creating a generic conceptual
model for any agile methods, it would be interesting if
we can choose to adopt practices coming from differ-
ent methods. This will enable organizations to have
more variety of choices in term of practices. How-
ever, this should be done with caution. Ideally, to al-
low such possibility, one can introduce a weighting
scheme, between different alternatives, as a risk indi-
cator when adopting a particular practice. Finally, in
the long term, we aim at developing a tool for show-
casing our conceptual model.

REFERENCES

Abrahamsson, P., Warsta, J., Siponen, M. T., and
Ronkainen, J. (2003). New directions on agile meth-
ods: A comparative analysis. In Clarke, L. A., Dil-
lon, L., and Tichy, W. F., editors, Proceedings of the
25th International Conference on Software Engineer-
ing, May 3-10, 2003, Portland, Oregon, USA, pages
244–254. IEEE Computer Society.

An Intentional Perspective on Partial Agile Adoption

125



AgileAlliance (2017). Subway map to agile practices,
https://www.agilealliance.org/.

Ahmad, M. O., Markkula, J., and Oivo, M. (2013). Kan-
ban in software development: A systematic literature
review. In Software Engineering and Advanced Appli-
cations (SEAA), 2013 39th EUROMICRO Conference
on, pages 9–16. IEEE.

Ambler, S. (2002). Agile modeling: effective practices for
extreme programming and the unified process. John
Wiley & Sons.

Ambler, S. (2005). The Agile Unified Process
(AUP). Ambysoft, http://www. agilealliance.
hu/materials/books/SWA-AUP. pdf.

Beck, K. (2000). Extreme Programming Explained: Em-
brace Change. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

Bézivin, J. (2004). In search of a basic principle for model
driven engineering. Novatica Journal, Special Issue,
5(2):21–24.

Campanelli, A. S. and Parreiras, F. S. (2015). Agile methods
tailoring - A systematic literature review. Journal of
Systems and Software, 110:85–100.

Chiarini, A. (2013). Lean Organization: from the Tools
of the Toyota Production System to Lean Office.
Springer-Verlag.

Cockburn, A. (1998). Surviving Object-oriented Projects:
A Manager’s Guide. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA.

Cohn, M. (2004). User Stories Applied: For Agile Software
Development. Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA.

Damiani, E., Colombo, A., Frati, F., and Bellettini, C.
(2007). A metamodel for modeling and measuring
scrum development process. In Concas, G., Dami-
ani, E., Scotto, M., and Succi, G., editors, Agile
Processes in Software Engineering and Extreme Pro-
gramming, 8th International Conference, XP 2007,
Como, Italy, June 18-22, 2007, Proceedings, volume
4536 of Lecture Notes in Computer Science, pages
74–83. Springer.

Eric, S. Y. (2009). Social modeling and i. In Conceptual
Modeling: Foundations and Applications, pages 99–
121. Springer.

Esfahani, H. C., Cabot, J., and Yu, E. S. K. (2010). Adopt-
ing agile methods: Can goal-oriented social modeling
help? In Loucopoulos, P. and Cavarero, J., editors,
Proceedings of the Fourth IEEE International Confer-
ence on Research Challenges in Information Science,
RCIS 2010, Nice, France, May 19-21, 2010, pages
223–234. IEEE.

Esfahani, H. C., Yu, E. S. K., and Annosi, M. C. (2011).
Towards the strategic analysis of agile practices. In
Nurcan, S., editor, Proceedings of the CAiSE Fo-
rum 2011, London, UK, June 22-24, 2011, volume
734 of CEUR Workshop Proceedings, pages 155–162.
CEUR-WS.org.

Fowler, M. and Highsmith, J. (2001). The agile manifesto.
Software Development, 9(8):28–35.

Henderson-Sellers, B. and Gonzalez-Perez, C. (2005). A
comparison of four process metamodels and the cre-

ation of a new generic standard. Information and soft-
ware technology, 47(1):49–65.

Henderson-Sellers, B., Ralyté, J., Ågerfalk, P. J., and Rossi,
M. (2014). Situational Method Engineering. Springer.

Jacobson, I., Ng, P. W., and Spence, I. (2006). The essential
unified process-a fresh start for process. Dr Dobbs
Journal, 31(9):40–+.

Kolp, M., Giorgini, P., and Mylopoulos, J. (2002). Organi-
zational multi-agent architectures: a mobile robot ex-
ample. In Proceedings of the first international joint
conference on Autonomous agents and multiagent sys-
tems: part 1, pages 94–95. ACM.

Kolp, M. and Mylopoulos, J. (2001). Software architec-
tures as organizational structures. In Proc. ASERC
Workshop on The Role of Software Architectures in
the Construction, Evolution, and Reuse of Software
Systems, Edmonton, Canada.

Kroll, P. and MacIsaac, B. (2006). Agility and Dis-
cipline Made Easy: Practices from OpenUP and
RUP (Addison-Wesley Object Technology (Paper-
back)). Addison-Wesley Professional.

Laanti, M., Similä, J., and Abrahamsson, P. (2013). Def-
initions of agile software development and agility.
In McCaffery, F., O’Connor, R. V., and Messnarz,
R., editors, Systems, Software and Services Process
Improvement - 20th European Conference, EuroSPI
2013, Dundalk, Ireland, June 25-27, 2013. Proceed-
ings, volume 364 of Communications in Computer
and Information Science, pages 247–258. Springer.

Liker, J. K. (2004). Toyota. Esensi.
Lin, J., Yu, H., Shen, Z., and Miao, C. (2014). Using goal

net to model user stories in agile software develop-
ment. In 15th IEEE/ACIS International Conference
on Software Engineering, Artificial Intelligence, Net-
working and Parallel/Distributed Computing, SNPD
2014, Las Vegas, NV, USA, June 30 - July 2, 2014,
pages 1–6. IEEE Computer Society.

Madeyski, L. (2010). Test-Driven Development: An Empir-
ical Evaluation of Agile Practice. Springer Publishing
Company, Incorporated, 1st edition.

Madi, T., Dahalin, Z., and Baharom, F. (2011). Con-
tent analysis on agile values: A perception from soft-
ware practitioners. In Software Engineering (MySEC),
2011 5th Malaysian Conference in, pages 423–428.
IEEE.

Martin, R. C. (2003). Agile Software Development: Prin-
ciples, Patterns, and Practices. Prentice Hall PTR,
Upper Saddle River, NJ, USA.

Mikulėnas, G., Butleris, R., and Nemuraitė, L. (2011). An
approach for the metamodel of the framework for a
partial agile method adaptation. Information Technol-
ogy And Control, 40(1):71–82.

Mylopoulos, J., Kolp, M., and Giorgini, P. (2002). Agent-
oriented software development. In Hellenic Confer-
ence on Artificial Intelligence, pages 3–17. Springer
Berlin Heidelberg.

Palmer, S. R. and Felsing, M. (2001). A Practical Guide to
Feature-Driven Development. Pearson Education, 1st
edition.

ICSOFT 2017 - 12th International Conference on Software Technologies

126



Poppendieck, M. and Poppendieck, T. (2003). Lean
Software Development: An Agile Toolkit: An Agile
Toolkit. Addison-Wesley.

Pressman, R. S. (2005). Software engineering: a practi-
tioner’s approach. Palgrave Macmillan.

Schuppenies, R. and Steinhauer, S. (2002). Software pro-
cess engineering metamodel. OMG group, November.

Schwaber, K. (2004). Agile project management with
Scrum. Microsoft press.

Schwaber, K. and Beedle, M. (2002). Agile software devel-
opment with Scrum, volume 1. Prentice Hall.

Schwaber, K. and Sutherland, J. (2011). The scrum guide.
Scrum Alliance, 21.

Shen, Z., Miao, C., Tao, X., and Gay, R. (2004). Goal
oriented modeling for intelligent software agents. In
Intelligent Agent Technology, 2004.(IAT 2004). Pro-
ceedings. IEEE/WIC/ACM International Conference
on, pages 540–543. IEEE.

Sidky, A. S., Arthur, J. D., and Bohner, S. A. (2007). A
disciplined approach to adopting agile practices: the
agile adoption framework. ISSE, 3(3):203–216.

Stapleton, J. (1997). Dsdm: The Method in Prac-
tice. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

Tripp, J. F. and Armstrong, D. J. (2014). Exploring the rela-
tionship between organizational adoption motives and
the tailoring of agile methods. In 47th Hawaii Interna-
tional Conference on System Sciences (HICSS), pages
4799–4806. IEEE.

VersionOne (2016). 10th annual state of agile development
survey.

Wautelet, Y., Heng, S., Kolp, M., and Mirbel, I. (2014).
Unifying and extending user story models. In
Jarke, M., Mylopoulos, J., Quix, C., Rolland, C.,
Manolopoulos, Y., Mouratidis, H., and Horkoff, J.,
editors, Advanced Information Systems Engineering -
26th International Conference, CAiSE 2014, Thessa-
loniki, Greece, June 16-20, 2014. Proceedings, vol-
ume 8484 of Lecture Notes in Computer Science,
pages 211–225. Springer.

Yu, E., Giorgini, P., Maiden, N., and Mylopoulos, J. (2011).
Social modeling for requirements engineering. MIT
Press.

An Intentional Perspective on Partial Agile Adoption

127


