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Abstract: With the increasingly amount of private information stored in mobile devices, the need for more secure ways to
detect, control and avoid malicious behaviors has become higher. The too coarse-grained permission system
implemented in the Android platform does not cover problems regarding the flow of the data acquired by
the apps. In order to enhance detection, awareness and avoidance of such unwanted information flows, we
propose a hybrid information flow analysis that mixes the benefits of static and dynamic analysis, using slicing
and instrumentation. Our results indicate a precise detection and only a small overhead while running the
application. The validation of our method has been done by creating a tool called FLOWSLICER and using the
category AndroidSpecific from the DROIDBENCH repository of applications with known information leaks.

1 INTRODUCTION

Mobile devices, such as smartphones and tablets are
important devices we all use in our daily life. The ca-
pability of providing tools and storing a big amount of
data that we daily need made them become a truly in-
dispensable device. Much of this success is only pos-
sible because of the ability to conveniently download
applications directly from some repositories. The An-
droid platform has several hundred thousands of ap-
plications divided in different markets (Arp et al.,
2014), including an official one, the Google Play, and
is worldwide known as one of the most popular plat-
forms used in mobile devices. However, along with
all benefits, there is still margin for malicious devel-
opers who try to use the coverage, power of storing
and processing of such platforms to pose a threat to
the user’s privacy, security and also safety.

Modern operating systems, such as Android, use
a permission system in which each application has a
different set of permissions based on its requirements.
It uses as a premise the fact that every application
will only ask for the set of permissions that they need
(Felt et al., 2011b). However, one of the problems of
this approach is the lack of awareness from the user
side (Felt et al., 2011a). The permissions are nor-
mally too coarse-grained, which means that a permis-
sion such as android.permission.INTERNET may
be used either for retrieving server content or send-

ing private data to a server (Jeon et al., 2012). An-
other problem in this approach is the fact that it only
takes care of the access control of the requested data,
i.e., granting or denying the access to a specific re-
source. Once the access is given, no further control
is used to make sure the information is used properly
(Hedin and Sabelfeld, 2011). However, in order to ac-
knowledge what happens to the information one just
gave access to, an information-flow control approach
needs to be used. Information-flow control tracks the
propagation of the information through the program
and aims to make sure that the program handles the
information securely (Hedin and Sabelfeld, 2011).

To address this issue, most of the existing so-
lutions are using either static or dynamic analysis.
Static analysis works by scanning the application’s
code to examine all possible execution paths and vari-
able values without executing the application, making
the process of analysis fast, repeatable and not de-
pendent on the application execution (Kulenovic and
Donko, 2014). In other hand, it counts with the down-
side of reporting false positives and also false nega-
tives (Walden and Doyle, 2012). False positives occur
because static analysis can only determine that an ex-
pression, e.g., a branch condition, depends on another
one, but usually not how exactly it depends on the
other. Thus, static analysis may consider execution
paths as feasible which actually can never occur in re-
ality. On the other hand, false negatives may happen
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because of inaccuracies in the analysis’ abstraction.
Dynamic analysis is performed while the application
is actually executed, thus it is not susceptible to false
positives. However, dynamic analysis only checks a
concrete program execution, thus, it can never provide
a proof that an application does not leak sensitive in-
formation. In addition, this approach may have a large
negative impact on the application’s performance.

In order to keep user’s data private, we propose
FLOWSLICER, a hybrid approach to detect sensitive
information leaks in Android applications by mixing
the benefits of static and dynamic analysis.

In this paper, we examine the effects of our ap-
proach by testing well-known malicious applications
present in the ANDROIDSPECIFIC category from the
DROIDBENCH repository in order to analyze both the
precision of FLOWSLICER and its runtime overhead.
The contributions of this work are: a hybrid method
to detect information leaks on Android devices.

The rest of this paper is organized as follows: The
state-of-art and some related work that inspired our
method are presented in Section 2. FLOWSLICER is
presented in Section 3. The evaluation of the method
is presented in Section 4. Section 5 brings the conclu-
sion of the work.

2 RELATED WORK

2.1 Static Analysis Approaches

DROIDSAFE (Gordon et al., 2015) presents a system
for analyzing explicit flows of sensitive information in
Android applications by performing an information-
flow analysis based on a model obtained from the An-
droid Open Source Project (AOSP) implementation.
The information-flow analysis is performed by using
an object sensitive points-to-analysis, to cover code
that heavily uses object-oriented language features
(such as inheritance and polymorphic code reuse),
and flow insensitivity, considering all possible run-
time event orderings that asynchronous callbacks can
trigger. FLOWDROID (Arzt et al., 2014) was for a
long time the state-of-the-art in the field of static anal-
ysis for Android applications. It implements a pre-
cise model of Android’s lifecycle which allows the
analysis to properly handle callbacks invoked by the
Android framework, while context-, flow-, field- and
object-sensitivity reduces the number of false alarms.
For evaluation, FLOWDROID uses SecuriBench Mi-
cro (Livshits, 2005), which is a benchmark set de-
signed for web applications, DROIDBENCH and a set
of well-known Android test applications. It achieves
93% recall and 86% precision. (Fan and Xuan, 2016)

propose a model of a dependence-based taint analy-
sis for web applications. It uses the concept of source
and sink methods in order to detect if there is a flow
of information coming from the former to the latter.

Although the current static analysis frameworks
provide valuable categorization for different Android
applications, there are still several limitations in the
analysis, since the static analysis can only perform
an approximation of the real behavior of the appli-
cation under focus. It assumes that some of the flow
paths may be used while the application is running.
However, it is not asured to happen, since some of the
paths may depend on runtime variables.

2.2 Dynamic Analysis Approaches

TAINTDROID (Enck et al., 2010) is an information-
flow tracking system for monitoring privacy in real-
time on Android smartphones. It incurs 14% perfor-
mance overhead on a CPU-bound microbenchmark
with low overhead when running thirdparty applica-
tions. It works by categorizing privacy-sensitive data
sources and labels when applications obtain informa-
tion from these sources. It also performs system-wide
tracking of variables, files and interprocess messages
that propagate these data. DROIDBOX (Lantz, 2011)
modified the Android’s core libraries in order to em-
ploy an integrated system, containing TAINTDROID.

Although performing a more accurate analysis,
the presented approaches still have some problems
such as the incurrence of overhead that may impact
the performance of the analyzed application and also
the need of modifying the system, which may forbid
normal users to use this approach, since it needs more
knowledge around the Android modification field in
order to install the system.

3 METHODOLOGY

FLOWSLICER is an approach that mixes a conserva-
tive static analysis with a dynamic analysis using a
tagging architecture. The static analysis is able to
identify the important information flow and, then, fil-
ter important parts of the flow to be analyzed with
a dynamic analysis, that makes use of a tagging ar-
chitecture to keep track of all sensitive objects that
appears on the filtered flow. The hybrid approach pre-
sented here results in a high detection precision, small
overhead and no false positives.
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3.1 Input

FLOWSLICER takes as input a list of source and sink
methods and the APK file to be analyzed. The list of
source and sink methods is provided by SUSI (Arzt
et al., 2013), a tool that classifies the methods present
in the Android API as source, sink or neither, with a
recall and precision of more than 92%, as evaluated
using ten-fold cross validation. The APK file is an-
alyzed by extending the Soot Framework (Vallée-Rai
et al., 1999), which provides important resources for
a precise analysis.

3.2 Entry Points

Since Android applications, unlike other Java pro-
grams, do not have an unique main method (Arzt
et al., 2014), different components must be analyzed
in order to create a main method and run the analy-
sis. FLOWSLICER uses the AndroidManifest.xml file
of each application under analysis to, initially, detect
which components are used and, afterwards, to create
the main method taking the extracted information into
account.

The components present in the Android platform
are: Activity, Service, ContentProvider and Broadcas-
tReceiver. Application is also provided by the An-
droidManifest.xml file and works as a base class to
handle the data of the whole application. In order to
obtain the correct flow of data within the application,
the lifecycle of each component and also the Appli-
cation class need to be taken into account, as well
as the order they may be called. FLOWSLICER calls
the methods that handle the lifecycle of these classes
based in the following order: the Application class is
called first, since it is the base of the whole applica-
tion and is called before the other components. It is
followed by the lifecycle present in the Service and
BroadcastReceiver classes, as they may be called in-
dependently, with the application in the foreground or
not. The next calls are to the ContentProvider com-
ponent and finally to the Activity lifecycle methods.

3.3 Call Graph

FLOWSLICER uses the entry point just created to
build the application’s call graph in order to analyze
the relationships between methods and routines and
also to find out the reachable methods. Since we must
not miss any possible information flow, the call graph
must be built in a conservative way, i.e., at a call site
we must consider every method that might be called.
However, due to polymorphism and other program-
ming languages features present in Java-based sys-

tems, the exact class of the receiver object of a virtual
call site may not be known during the analysis’ time.
In order not to be overly conservative, FLOWSLICER
uses Class Hierarchy Analysis (CHA), which exploits
the fact that only subtypes of a receiver’s declared
type are possible types at runtime and, thus, creates
edges for each of these in the final call graph. A prob-
lem that may arise from such a conservative call graph
generation is related to false positives. However, we
are able to discard all the found false positives after
performing the dynamic analysis.

3.4 Program Slicing

According to (Weiser, 1981), a program slice consists
only of the parts of the program that really affect the
result obtained at a specific point of interesent, re-
ferred to as a slicing criterion. FLOWSLICER makes
use of this technique in order to extract the possible
flows that lead to an information leak.

The most used way of creating slices of a program
is by creating a system dependency graph (SDG)
(Horwitz et al., 1988). A SDG is a connected col-
lection of every program dependency graph (PDG)
(Larsen and Harrold, 1996; Malloy et al., 1994; Ot-
tenstein and Ottenstein, 1984) related to the reachable
methods of the program. The PDGs represent the de-
pendencies between each statement of a method.

To create the edges of a PDG it is necessary to de-
termine both the control and data dependencies within
that method. A statement B has a control dependency
on a preceding statement A if the output of A deter-
mines whether B will be executed. On the other hand,
a statement B has a data dependency on a preceding
statement A if the statement B uses the result of the
statement A.

For the example of figure 1, we have that the line
4 depends on line 3 (data dependency) because line 4
uses the value of st defined in line 3, line 5 depends
on line 4 (data dependency) because the condition’s
value is determined by the value of t computed in line
4, and line 6 depends both on line 4 (data dependency)
and line 5 (control dependency) because it is using the
value of t from line 4 and its execution is controlled
by the if-statement in line 5. The PDG resulting from
this is shown in figure 2.

The SDG is created by connecting methods the
same way as they were connected in the call graph.
In the example of figure 2, the nodes representing
an invocation of a method should now have an edge
with the respective method’s PDG. The same way, the
nodes that represent a return should have an edge to
the statement that receives the result of the computa-
tion of the called method. In order to represent in-
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1 protected void onCreate(Bundle savedState)
2 {
3 String st = getSecret();
4 String t = st.substring(0, 2);
5 if (t.startsWith("1"))
6 leak(t);
7 }

Figure 1: A simple method that may leak sensitive informa-
tion.

Figure 2: Program dependency graph for the onCre-
ate(Bundle) method shown as example.

stance or class variables, FLOWSLICER also create
new nodes to represent them. These nodes have the
same dependencies as the normal statements. How-
ever, they are directly connected to the SDG and not
generated inside of the PDG.

As stated before, a possible information leak takes
place once the flow of an information obtained by a
call to a source method hits a sink method. The same
concept is used within the slice. Since the slice con-
tains only statements that may affect the execution of
a sink method, it is possible to assume that if a source
method is part of the slice, we have a possible flow.
FLOWSLICER uses the SDG to determine whether
a statement depends on the other and, then, creates
slices according to the slicing criterion. The use of
slicing also allows the dynamic analysis to look only
into the important statements, reducing caused over-
head and proving the false positives not to be true.

3.5 Instrumentation

In order to help the dynamic analysis with the re-
sults obtained from the static analysis execution,
FLOWSLICER makes use of instrumentation to point

out the important statements that need to be tracked
in order to determine the final sensitiveness of the ob-
jects that are used by a sink method. FLOWSLICER
uses the slices obtained after using the program slic-
ing technique to instrument the code in the correct
points.

FLOWSLICER starts adding a statement either be-
fore or after a call to the important statements. The
statements are added after a source method, since it
results in an object that must be flagged as sensitive,
after the statements of the flow that are in between the
source and the sink calls, since they need to be ana-
lyzed regarding the sensitiveness of their result, and
before the calls to the sink method, since they are go-
ing to use the possibly sensitive objects.

3.6 Tagging

Tagging is the process of defining a label, that repre-
sents a behavior or a characteristic, to objects that we
want to keep track of. FLOWSLICER labels objects
regarding the sensitiveness during the dynamic analy-
sis. The instrumented calls added to the application
in the previous process helps the dynamic analysis
to add these labels to objects according to the need.
Once an object is used in the flow, the tags are added
to it and, when a sink call uses one of the sensitive ob-
jects, we are sure a leak of information has happened.
In order to enhance awareness, an alert containing in-
formations about the leak is sent to the user so that he
can decide whether he should keep using the applica-
tion or not.

4 EVALUATION
The evaluation of the method has been executed us-
ing a Core i7-4970 with 16GB RAM running Win-
dows 10 and a Nexus 5X running Android 7.1.1. The
decision to run the dynamic analysis on a real device
instead of the emulator is motivated by problems we
found while running it on the emulator, such as API
calls that return null instead of a sensitive data. We
believe this decision made the process more realistic
and more trustworthy by avoiding discrepancies that
may happen regarding the Android emulator execu-
tion.

The evaluation is performed with respect to two
goals: First, we assess the accuracy of our approach
by analysing a set of benchmark applications with
known leaks. Second, we evaluate its runtime over-
head, by executing both the original and the instru-
mented application under the exactly same condi-
tions, i.e., using the same number and sequence of
input events.
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4.1 Testing Process

We start the process by running FLOWSLICER with
the original application as input, obtaining an instru-
mented application as result. Thus, we run the origi-
nal application on the device to obtain base results and
as soon as it finishes, we run the instrumented version
in the same conditions as previously. After that, we
obtain the number of leaks found and also the per-
formance results required to compare the overhead of
our approach.

4.2 Preparing the Execution

As both original and instrumented applications will
be tested equaly, we need to make sure the environ-
ment is clean to allow both to execute without any
external interference. Before every execution, we
uninstall any previously installed application with the
same package name, preventing that any previously
saved parameter or configuration interferes with the
current execution. Afterwards, our test ensures that
all permissions declared in AndroidManifest.xml
are granted by the time the application is running.
In both cases, the same seeds for inputing events on
the device with the UI/Application Exerciser Mon-
key (Google, 2017) are used. We also run the
dumpsys command repeatedly every 2 seconds to
analyse memory and CPU overhead while the appli-
cation is executing.

4.3 Obtaining the Results

The number of leaks found in each application is de-
termined by running the instrumented application on
a real device and using the UI/Application Exerciser
Monkey (Google, 2017) to generate random events.
To determine the overhead, the amount of memory
and CPU consumed by the instrumented application
is compared to the same values found while running
the original application with the same random events
as the ones generated for the instrumented one.

4.4 Testing Results

The table lists the results obtained by running the
analysis for the category ANDROIDSPECIFIC from
DROIDBENCH and analyze the following variables:
number of real leaks (obtained from the DROID-
BENCH repository), number of possible leaks found
during the static analysis, number of leaks found by
executing the instrumented version of the application.
The last parameter considered for the result is the
overhead caused by our instrumentation and dynamic
analysis.

Table 1: Evaluation of FLOWSLICER for all applications
contained in AndroidSpecific category of DROIDBENCH.

Application Real Static Dynamic
ApplicationModeling 1 1 1

DirectLeak 1 1 1
InactiveActivity 0 0 0

LogNoLeak 0 0 0
Library 1 1 1

Obfuscation 1 1 1
Parcel 1 1 1

PrivateDataLeak1 1 2 1
PrivateDataLeak2 1 1 1
PrivateDataLeak3 2 2 2
PublicAPIField1 1 1 1
PublicAPIField2 1 1 1

4.5 Analysis of Results

As seen in table 1, FLOWSLICER is able to detect
100% of the leaks with only one false positive during
the static analysis. The false positive happens because
whenever a block of statements depend on some vari-
able, all of those statements are control dependents on
this variable, even though they do not use it for any-
thing. However, it was proven not to be a leak in our
dynamic analysis, that also detected all the leaks.

In order to prove that our technique not only has
a high rate of detection, but also does not cause an
overhead that precludes the use of the instrumented
applications, we analyzed the overhead for both CPU
and memory. The memory overhead caused by the
instrumentation reaches an average of just 4% com-
pared to the normal applications. It happens because
we make use of memory to store the tags of the ob-
jects we need during the analysis. Given the fact that
memory is typically not a scarce resource in today’s
mobile devices, this overhead is quite acceptable. The
overhead caused on the CPU use is on average about
1%, which allows the user to use the instrumented ap-
plications without any different feeling or perception.

5 CONCLUSION

We proposed FLOWSLICER, a hybrid approach to de-
tect, avoid and alert the user about information leak
on Android devices. FLOWSLICER was able to iden-
tify all privacy leaks contained in the ANDROIDSPE-
CIFIC category from DROIDBENCH benchmark with
a small rate of false positives during the static analy-
sis and very low overhead to the Android device while
testing the application dynamically.

Despite of the results presented in this paper, there
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is still room for improvement. The call graph con-
struction, although conservative, creates many differ-
ent edges that end up increasing the number of false
positives and raises the size of our system depen-
dency graph drastically. The user awareness has al-
ways been the focus of this method. However, the
way FLOWSLICER shows the alerts and the results of
analysis is not very user-friendly. In a future work, we
also want to give the user more power, allowing him
to decide what is considered a sensitive information
by filtering the list of sources and sinks.
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