
Validating ETL Patterns Feasability using Alloy

Bruno Oliveira1 and Orlando Belo2
1CIICESI, School of Management and Technology, Porto Polytechnic, Felgueiras, Portugal

2ALGORITMI R&D Centre, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal

Keywords: Data Warehousing Systems, ETL Patterns, ETL Component-reuse, Software Engineering, Formal
Specification and Validation, BPMN, Alloy.

Abstract: The ETL processes can be seen as typical data-oriented workflows composed of dozens of granular tasks that
are responsible for the integration of data coming from different data sources. They are one of the most
important components of a data warehousing system, strongly influenced by the complexity of business
requirements, their changing, and evolution. To facilitate the planning and ETL implementation, a set of
patterns specially designed to map standard ETL procedures is presented. They provide a simpler and
conceptual perspective that can enrich to enable the generation of execution primitives. Generic models can
be built, simplifying process views and providing methods for carrying out the acquired expertise to new
applications using well-proven practices. This work demonstrates the fundaments of an ETL pattern-based
approach for ETL development, its configuration and validation trough a set of Alloy specifications used to
express its structural constraints and behaviour.

1 INTRODUCTION

Even now, the development of data warehouses
populating processes – ETL – remains a challenge in
the area, engaging very diversified personnel with
specific expertise and specific computational
resources. Due to its complexity and heterogeneous
nature, ETL systems development process addresses
very challenging problems ranging from simple
access to information sources to complex strategies
for conciliating data and ensure their quality.

Usually, ETL architects and engineers start by
initial drafts and models, getting a system overview
with the main requirements that need to be validated
before its implementation. Additionally, they need to
know the data they are bringing from data sources as
well establish the techniques applied in data
extraction, transformation, and load phases. Abstract
models are very useful even for initial versions since
they have the ability to describe the system we want
to implement, regardless of the methodology or
technology used in its implementation. They
revealing project needs in a very clear and precise
way, representing “first picture” of the system, very
useful for project discussion and planning (Losavio et
al., 2001).

Abstract models can include the representation of

software components that are frequently used for
software modelling to describe common and well-
known techniques that are used to describe specific
system parts. The component reuse helps to produce
software with better quality, faster and with lower
costs since coarse grain components based on well-
known design techniques are used. We believe that
the pattern-oriented approach can be applied as well
to ETL development, enabling its reuse in many
different scenarios to solve recurring problems.

In this paper, we designed and developed a set of
Alloy language specifications (Jackson, 2012) for
expressing ETL patterns’ structural constraints and
behaviour. The Alloy is a declarative specification
language that supports problem structural modelling
and validation, helping to avoid process
inconsistencies or architectural contradictions.

We selected one of the most relevant ETL
patterns: The Data Conciliation and Integration
(DCI), which has a set of operational requirements
that are presented using the Alloy language. After this
first introductory part, we present next to a briefly
related work (section 2), and the ETL meta model
designed for ETL patterns formalization with the DCI
pattern specification as an example (section 3). The
exception and log handling mechanisms that support
each pattern operationally are also explored (Section

200
Oliveira, B. and Belo, O.
Validating ETL Patterns Feasability using Alloy.
DOI: 10.5220/0006428002000207
In Proceedings of the 6th International Conference on Data Science, Technology and Applications (DATA 2017), pages 200-207
ISBN: 978-989-758-255-4
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

4), as well with a specific example applied to the DCI
pattern (Section 5). Finally, in Section 6, we evaluate
the work done so far, pointing out some research
guidelines for future work.

2 RELATED WORK

After producing an initial plan using more abstract
models, the selection of an ETL tool to support the
system implementation appears quite naturally.
Complex software pieces are usually supported by
development processes covering all development
stages: from requirements identification to the
implementation and maintenance phases. The design
task (conceptual and logical) supports the
development team, identifying how the system
should meet customer requirements and to determine
how the system should be effective and efficient. The
use of a design methodology to support ETL
implementation using a specific tool was proposed by
Vassiliadis and Simitsis (Vassiliadis et al., 2003,
2000). Several authors explored the ETL design
phases using different approaches, languages and
notations. The use of UML (Unified Modelling
Language) (Trujillo and Luján-Mora, 2003) and
BPMN (Business Process Model and Notation) (El

Akkaoui and Zimanyi, 2009) are just two examples.
The works presented by Munoz (Muñoz et al., 2009)
and Akkaoui (El Akkaoui et al., 2011) revealed as
very important contributions to our work, revelling
important aspects to cover models translation to
executable code, providing a way to describe the
structure and semantic to produce final systems
guided from more abstract models.

With this work, we propose a method to
encapsulate patterns behaviour inside components
that can be reused and mapped to more detailed
primitives using a generator-based reuse approach
(Biggerstaff, 1998). Based on pre-configured
parameters, the generator produces a specific pattern
instance that can represent the complete system or
part of it, leaving physical details to further
development phases. The use of software patterns to
build ETL processes was first explored by Köppen
(Köppen et al., 2011) that proposed a pattern-oriented
approach to support ETL development, providing a
general description for a set of patterns such as
aggregator, history and duplicate elimination. The
patterns are presented only at conceptual level,
lacking to describe how they can be mapped to
execution primitives. The approach presented in this
paper works with high level components instead of
using very granular tasks such as joins, union,

Figure 1: Basic Alloy specification to support ETL patterns.

abstract sig Field{}
sig KeyField extends Field
sig PKField, SKField, FKField extends KeyField{}
sig ControlField, VariationField, DescriptiveField extends Field{}(...)
sig DataObject{fields: some Field,keys: some SKField}
fact dataObjectKeyFields {all o: DataObject | o.keys in o.fields(...)}
sig Mapping {inData: one DataObject,outData: one DataObject,association: Field
-> Field}
fact consistentMapping {

all m: Mapping | m.association in m.inData.fields -> m.outData.fields
 (...)}

abstract sig PatternCore{sourceToTarget: some Mapping}
abstract sig Throwable{sourceToThrowable: some Mapping}
abstract sig Log{sourceToLog: some Mapping}
abstract sig Pattern{
 coreComponent:one PatternCore,

throwableComponent: set Throwable,
logComponent: set Log}

fact consistentPattern {(...)}
abstract sig Extract, Transform, Load extends PatternCore{}(...)
enum Rule{DELETE, PRESERVE}
sig IntegrationRules{associationFields : some Mapping,rule: one Rule,

condition: one ConditionalOperator}
sig DCI extends Transform{rules: some IntegrationRules,compensationPattern:
lone Transform}
fact DCISameOutput{(...)}

{ }

Validating ETL Patterns Feasability using Alloy

201

projections or selections. As well happens in other
software areas, the use of abstraction techniques can
be used to provide a simpler view over ETL
conceptual models, and at the same time provide a
flexible approach to enrich conceptual models in
further stages. All this considering and using the
efforts done in earlier stages. Thus, we believe that a
formal model that describes model constraints and
behaviour is needed to support the physical
generation of ETL processes. We have been working
in the last years in a pattern-oriented approach for
ETL development (Belo et al., 2014; Oliveira et al.,
2014). We already identified a set of ETL patterns
that can be used to support all ETL development
phases. Recently, we introduce the use of Alloy
Language to formalize ETL patterns behaviour
(Oliveira et al., 2016), showing the specification of
one common ETL procedure: The Slowly Changing
Dimension (SCD) pattern. In this work, we extend the
work presented through the extension of pattern main
components for exception and log handling, and with
the DCI pattern specification.

3 ETL META MODEL FOR
PATTERNS DEFINITON

The Model-driven techniques are being developed for
several software areas and are used not only to
support models development but also to cover code
generation as well as model synchronization between
physical models and abstract models. Whether being
conceptual or logical, ETL models cover specific data
requirements that reveal a symbiotic relationship
between business requirements and process

implementation. This means that each ETL is
different even under the same domain, which
compromises its reusability outside problem scope.
To minimize such problems, an ETL framework
covering a set of most common ETL procedures used
is proposed.

The ETL pattern concept is represented by a
“core” that encapsulates all pattern rules to support
operational requirements and the logic behind it, the
internal input and output interfaces to communicate
both with ETL workflow and with the data layer to
produce specific instances and the communication
layer with other patterns. Additional ETL metadata is
also preserved in the data layer, supporting the error
and log strategies to handle errors and pattern events.
Specific instances of “Throwable” and “Log” pattern
components communicate with each associated
pattern, encapsulating all logic behind error and log
handling. The “Throwable” pattern component uses
the input configuration to handle error or exception
scenarios through the application of specific recovery
strategies previously configured using pattern
metadata. The unexpected scenarios that cause
system critical failure can be configured to use
specific procedures to maintain data consistency. For
example, if some error compromises the ETL
execution, the process can be aborted using a rollback
procedure, maintaining data in a consistent state. The
“Log” pattern stores ETL main events timeline to
identify data lineage, bottlenecks, and errors. Thus,
the ETL process can be analysed to identify error
trends and to apply specific strategies to minimize
them and eventually reduce ETL resources needed for
subsequent loads.

In Figure 1, a set of formal specifications in Alloy
is presented to express patterns structural constraints

Figure 2: Pattern instance generated by the Alloy Engine Analyser.

DATA 2017 - 6th International Conference on Data Science, Technology and Applications

202

and behaviour. The concepts hierarchy is described
using Alloy signatures that introduce sets of elements
of a certain type in the model. Abstract signatures are
used to describe abstract concepts that should be
refined by more specific elements, which is the case
of top-level signatures, for example: “Field”
representing patterns configuration properties and
“DataObject” representing the type of data
repositories related to the “Pattern” concept. The
“Field” signature can be specialized in control fields
(“ControlField”) to descriptive properties that store
useful metadata related to each handled schema. For
example: the date fields (“DateField”), describing
temporal data; or the the log fields (“LogField”),
describing specific metadata related to store the
action performed during ETL execution.

The “PatternCore” signature represents the most
general concept used, while the “Extraction”,
“Transform” and “Load” signatures represent the
three types of patterns that are intrinsically associated
with each typical phase of an ETL process. The
“Extraction” class instances are used to extract data
from data sources using a specific data object (e.g. a
table or file), representing typical extraction data
processes and algorithms applied to specific data
structures. The “Transformation” class represents
patterns that are used in ETL transformation phase
(Rahm and Do, 2000) to align source data schema
requirements to the target DW schema requirements.
This pattern category represents a large variety of
procedures that are often applied in DWS, such as the
application of data variation policies (SCD),
generation of surrogate keys or schema
transformations. Patterns of this class can also be
specialized in concrete procedures considering its
decomposition properties. For example, the “Data
Quality Enhancement” (DQE) pattern can be
specialized to the “Normalization” pattern that
represents the set of tasks needed whenever it is
necessary to standardize or correct data according to
a given set of mapping rules. Thus, all the most
frequent ETL patterns can be represented along with
all its operational stages. Finally, the “Load” class
represents patterns used to load data to the target DW
repository, encapsulating efficient algorithms for data
loading or index creation and maintenance. The
“Intensive Data Loading” (IDL) signature represents
the “Load” signature specialization, embodying the
necessary operational requirements to load data to a
target DW schema considering the schema
restrictions followed.

The “Mapping” signature represents the
association between fields, establishing the
relationship between attributes from two different

sources through the binary field association between
fields (a->b). Additional constraints impose
(“consistentMapping” fact), for example, that a
mapping is only valid if it associated fields from the
input (“inData”) and the output (“outData”) data
sources. The “Pattern” signature is composed of a set
of three different mappings (“Mapping” signature):
− “sourceToTarget”: describing the set of

relationships between source and target fields for
pattern application;

− “sourceToThrowable”: describing the set of
relationships between the source fields and
exception/error support fields;

− “sourceToLog”: describing the set of field
relationships between the source schema and
target log structures.

Each “PatternCore” specialization should preserve
additional constraints over the arity of the fields to
serve particular requirements. Signatures may contain
fields of arbitrary arity that will embody the
associations between the different artifacts. For
example, the “DataObject” signature represent data
repositories that contain a set of field declarations
shared by its extensions: each “DataObject” element
is related to a non-empty set of “Field” elements
(imposed by the keyword “some”). A set of
“SKField” elements ae also used to express the
surrogate key fields.

The DCI pattern is a “Pattern” specialization that
involves the integration of data about the same
subject from several data source. Thus, several
conflicts can occur that should be properly handled to
provide consistent data view to reporting tools. Thus,
it is necessary to integrate some related data (data
from the same entity) coming from different data
sources. The data integration should be accomplished
using binding logic procedures that should be
implemented to specify how related fields could be
linked together. The Figure 1 presents an Alloy
specification with the main concepts and
relationships to support the DCI rules. The “DCI
“signature represents the DCI pattern structure to
support the logical mappings between each data
source and target data objects for a given
configuration. Several “sourceToTarget” mappings
can be provided, however, the output data object
should be only one, which is forced by the
“DCISameOutput” fact. This means that for each
object that we need to integrate data, a specific DCI
instance should be used. For that, specific integration
rules (“IntegrationRules” signature) should be
provided to identify the action that should be applied
to each field association. Thus, when multiple sources

Validating ETL Patterns Feasability using Alloy

203

are used, conflicts can be avoided using specific rules
(“Rule” enumeration) to decide which fields from a
specific data object are used to populate the target
DW object. The “consistentDCI” fact enforces
several constraints to guarantee the DCI consistency.
For example, the fields associations used for rules
configuration should be defined in “sourceToTarget”
mappings. A predicate is then defined to embody the
notion of consistent DCI: in this case, checking
whether the mappings of DCI are themselves
consistent according to the rules defined above. This
property can then be automatically processed by the
Alloy Analyser, either to simulate instances that
conform to the specification or to check for the
correctness of concrete instances. The Figure 2
presents a random, consistent, instance, composed by
two “sourceToTarget” mappings and one
“sourceToLog” and “sourceToThrowable” mapping.

4 THE THROWABLE AND LOG
PATTERNS

The ETL implementation and management deal with
several problems that can compromise all process
activities. Data coming from operational systems can
suffer from inconsistencies related to bad data input
or even from changes performed to cover new
business needs. Using specific “throwable”
components for each pattern instance allows for the
definition of specific strategies to plan and deal with
recurring problems, anticipating them and provide
suitable recovery strategies. However, stopping all

process every time an unexpected situation occurs can
be impractical. For that reason, a more flexible
approach should be followed to prevent process
failure, providing a way to separate inconsistent
records from ETL normal flow or, if possible, correct
them at execution time.

The Figure 3 represents the main concepts related
to the “throwable” pattern using Alloy primitives.
The “Exception” signature represent data errors that
do not compromise ETL execution and for that
reason, can be handled or avoided using specific
routines. Incoherent records are moved to quarantine
(“Quarantine” signature) data objects, whose
structure is determined according to each pattern
configuration. The quarantine meta data structure is
generally composed by a “Key” attribute identifying
each quarantine row and a set of control attributes
(“controlAtt”) that are used to tag each row with
additional metadata that can be provided by the
exception handler mechanisms. The temporal data
(“Temporal” signature), the source object
(“objectDescription”) where the exceptions are
found, the triggered exception (“Throwable”), the
action that triggered the exception (“event”), the
evaluation state (“State”, by default ‘invalid’) and the
exception severity (“severityScore”) are some
examples of possible control fields used to store
errors metadata. Additionally, descriptive attributes
are used to represent non-structured data to enrich the
quarantine objects with information that can be used
for human interpretation, while the record
identification (“recordId”) is used to identify source
records stored in quarantine object.

Figure 3: Alloy specification describing “throwable” and “Log” patterns.

(...)
enum SeverityCode{LOW, MEDIUM, HIGH}
sig ThrowableField, StageField extends Field{}
sig ThrowableMetaData {

temporalData:some DateField, objectDescription:one Field, (...)}
sig QuarantineData extends DataObject{metaData:one ThrowableMetaData & fields}
abstract sig Throwable extends Pattern{sourceToThrowable:some Mapping, log:one
LogPattern}
sig Exception extends Throwable{quarantineObject:one
QuarantineData,correctionProcedure:one DQE}
sig Error extends Throwable{metadata:one ThrowableMetaData}(...)
-- Log specification
abstract sig LogField extends Field{}
abstract sig EventLogField extends LogField{}
sig CompensationField, ErrorLogField, CheckPointField extends EventLogField{}
sig SequenceField, PerformanceField extends LogEventField{}
enum LogLevel{EXCEPTION, FATAL, INFO}
sig LogObject extends DataObject{temporalData:some DateField & fields,(...)}
abstract sig Log extends Pattern{sourceToLog: some Mapping}(...)

DATA 2017 - 6th International Conference on Data Science, Technology and Applications

204

The “Error” class represents serious data errors
that cannot be handled automatically, compromising
all ETL flow. When errors are detected, rollback
mechanisms can be configured to reverse all
operations done so far and return data to a consistent
state. Otherwise, the process can be cancelled,
leaving data at the current state. Additionally, to the
ability to track error or unexpected situations, the
ETL process must detect data inconsistent states to
avoid its progression to DW system. The transaction
logs files are a common strategy used by many
software systems to collect data about the
events/transactions that occurred during system daily
operations. All the performed actions can be stored to
provide a system picture in a specific time-window.
For that, critical tasks should be monitored to ensure
quality/performance measures, identifying
bottlenecks and errors that can influence the DW
operationally. For example, log mechanisms can be
used to control the performance or quality measures
for specific tasks and check process consistency
based on the execution history. Strong variations in
the results can point to source systems anomalies that
should be investigated.

The log structure can also be used to support
recovery mechanisms that are used to protect ETL
procedures against critical failures, providing a way
to rollback ETL data to a consistent state. The “Log”

pattern is composed by specific mappings
(“sourceToLog”) that relate the field association
between the source object and target log Object
(“LogObject”). The log objects use specific fields to
check quality parameters such as the temporal
(“temporalData”) and performance data
(“taskDescription” using specific
“performanceFields”) about process tasks. The
number of records processed and the time needed to
perform particular tasks are just some example of
possible performance fields that can be used. The log
level (“LogLevel” enumeration) describes the type of
log used. For example, information log can represent
its entries as information logs (‘INFO’), which are
useful to describe informational messages that
highlight progress tasks, or fatal logs (‘FATAL’) that
describe critical error events that lead the process to
abort. The log description (“logDescription”)
describes the event that originates the log entry,
which can be an exception, error or a state indicating
task finishing. Finally, the key referencing the source
object and the sequence of log entries (primary key)
can be described using “sequence” fields.

5 A DCI PATTERN EXAMPLE

The Figure 4 presents a BPMN algorithm with the

Figure 4: BPMN example algorithm for DCI instantiation.

Validating ETL Patterns Feasability using Alloy

205

main tasks to support the DW data load process,
involving a “Product” dimension. Considering that
several data sources are used to populate the
“Product” dimension without the guaranty of well-
conformed data, a specific DCI instance was
configured to deal with such scenario. The BPMN
process describes two cyclic structures to handle each
input source (“Load source” sub process) and the
records they bring, respectively. For each record
(“load record” sub process), the mappings that
preserve the binding rules (derived from
“sourceToTarget” Mapping) must be used to
identified to enable the integration logic. Thus, for
each processed record, a specific lookup process over
the mapping table is performed to find the
correspondent plan name (“Find correspondence” sub
process). When records are stored (“Store record” sub
process), specific events can be triggered to identify
three possible exception scenarios (“Throwable”
pool):
− “Missing SK” referring to the new records

without correspondent SK;
− “Incompatible types” for data type

incompatibilities between the product id attribute
from source and target repositories;

− “Contradictory records” for product names with
contradictory values.

While for the contradictory values, records are stored
in quarantine objects using “Store quarantine” sub
process, for the “Missing SK” and “Incompatible
types” exceptions, specific Surrogate Key Generator
(“Generate SKG” sub process) pattern instance and
DQE instances (“Generate DQE” sub process) are
generated to deal with each scenario. The logic
between each pattern handling is represented using
collapsed BPMN pools (“SKG” and “DQE”,
respectively). Then, “Throwable” instances, specific
resources can be instantiated and invoked to correct
wrong values before proceeding to its storage. When
the conflict is successfully managed, records are
reintroduced to regular ETL flow. If the conflict
persists, the quarantine table is updated with all
conflicting records (a BPMN conditional gateway is
used to select the right path) and a specific log entry
is registered.

The “Log” pool presents two configured
scenarios, representing the “Exception log” and the
“Audit log” sub processes. The logic behind each one
is straightforward, consisting of the identification of
several control attributes to identify complementary
data about the actions performed in the remaining
BPMN lanes and its storage according to its purpose:
the “Exception Log” stores “Throwable” events while

the “Audit Log” stores checkpoint events triggered
when the populating processes reaches a specific
milestone. In this case, the “throwable” configuration
was configured with a log component (“log” field),
allowing the communication between the
components. That way, when “throwable” events are
triggered, the exception and error logs can be properly
updated.

The DCI pattern instance presented was generated
based on the specification principles presented in
Figure 1 and Figure 3. Based on the Alloy
specification, a specific generator engine can be used
to support the generation of specific instances through
the use of the Alloy Analyzer, validating the
constraints previously defined (similar approaches
for different domains were already presented (Khalek
et al., 2011) or following a test automation approach
(Sullivan et al., 2014). However, to support code
generation, an easy and understandable language
should be provided to simplify the configuration of
each component. In previous works (Oliveira et al.,
2015; Oliveira and Belo, 2015), specific grammar
components were described to configure patterns
metadata. An automated approach is planned to use
the Alloy can be used to check model consistency
through a process that translates grammar primitives
to Alloy primitives to check design errors. Based on
this configuration, code generators to a specific
language or specific file structure that can be
interpreted by a specific commercial tool can be used
to create the full ETL package.

6 CONCLUSIONS AND FUTURE
WORK

Because of the existence of more data and more
complex business processes, the data processing
demands have increasing the ETL development
complexity has been studied with the goal to simplify
its development and reduce the potential risks to its
implementation. The efforts did so far help in the
identification of recurrent problems and respective
strategies to solve them. Still, ETL systems are
considered very time-consuming, error-prone and
complex systems since each DW deals with their own
data with specific requirements. With the use of
Patterns, these strategies can be encapsulated and
parameterized, providing a powerful groundwork for
process validation and allowing for the identification
of the most important parts of a system to be built.

The Pattern-oriented approach presented relies on
the use of software components that represent a

DATA 2017 - 6th International Conference on Data Science, Technology and Applications

206

template of how a specific problem can be solved. To
formalize the pattern structure as well its operational
constraints, a specific Alloy model is proposed to
guarantee some level of confidence for the generation
of physical instances through the use of a simulation
engine that searches for instances representing false
assertions according to a specific set of conditions.
Thus, since models can be checked before its
execution, a new integrity level is sustained, ensuring
that pattern structure is consistent with their
specification. The DCI pattern, was presented along
with its skeleton, keeping a specific template and
instance as separated layers. For pattern instantiation,
the physical objects should be described at structural
terms. Thus, a specific generator is being developed
(Oliveira et al., 2015) to generate the respective code
based on the primitives previously established

The presented specification only covers the
patterns static representation, however, as future
work, we intend to enrich this specification with
behavioural specification, covering the main
operations and states related to each pattern
application. We intend to enrich this specification
with behavioural specification and assertion checking
based on the main pattern components and states,
including the “Throwable” and ”Log” components
configuration.

REFERENCES

Belo, O., Cuzzocrea, A., Oliveira, B., 2014. Modeling and
Supporting ETL Processes via a Pattern-Oriented,
Task-Reusable Framework. In: IEEE 26th
International Conference on Tools with Artificial
Intelligence.

Biggerstaff, T.J., 1998. A perspective of generative reuse.
Ann. Softw. Eng. 5, 169–226.

El Akkaoui, Z., Zimanyi, E., 2009. Defining ETL
worfklows using BPMN and BPEL. In: Proceeding of
the ACM Twelfth International Workshop on Data
Warehousing and OLAP DOLAP 09. pp. 41–48.

El Akkaoui, Z., Zimànyi, E., Mazón, J.-N., Trujillo, J.,
2011. A Model-driven Framework for ETL Process
Development. In: Proceedings of the ACM 14th
International Workshop on Data Warehousing and
OLAP, DOLAP ’11. ACM, New York, NY, USA, pp.
45–52.

Jackson, D., 2012. Software Abstractions: Logic,
Language, and Analysis. MIT Press.

Khalek, S.A., Yang, G., Zhang, L., Marinov, D., Khurshid,
S., 2011. TestEra: A tool for testing Java programs
using alloy specifications. 2011 26th IEEE/ACM Int.
Conf. Autom. Softw. Eng. ASE 2011, Proc. 608–611.

Köppen, V., Brüggemann, B., Berendt, B., 2011. Designing
Data Integration: The ETL Pattern Approach. Eur. J.
Informatics Prof. XII, 49–55.

Losavio, F., Chirinos, L., Pérez, M.A., 2001. Quality
Models to Design Software Architectures. In:
Technology of Object-Oriented Languages and
Systems. TOOLS 38. IEEE Computer Society, Zurich,
pp. 123–135.

Muñoz, L., Mazón, J.-N., Trujillo, J., 2009. Automatic
Generation of ETL Processes from Conceptual Models.
In: Proceedings of the ACM Twelfth International
Workshop on Data Warehousing and OLAP, DOLAP
’09. ACM, New York, pp. 33–40.

Oliveira, B., Belo, O., 2015. A Domain-Specific Language
for ETL Patterns Specification in Data Warehousing
Systems. In: Springer (Ed.), 17th Portuguese
Conference on Artificial Intelligence (EPIA‘2015).
Coimbra, pp. 597–602.

Oliveira, B., Belo, O., Cuzzocrea, A., 2014. A pattern-
oriented approach for supporting ETL conceptual
modelling and its YAWL-based implementation. 3rd
Int. Conf. Data Manag. Technol. Appl. DATA 2014
408–415.

Oliveira, B., Belo, O., Macedo, N., 2016. Towards a Formal
Validation of ETL Patterns Behaviour. In: Bellatreche,
L., Pastor, Ó., Almendros Jiménez, J.M., Aït-Ameur, Y.
(Eds.), Model and Data Engineering: 6th International
Conference, MEDI 2016, Almer{í}a, Spain, September
21-23, 2016, Proceedings. Springer International
Publishing, Cham, pp. 156–165.

Oliveira, B., Santos, V., Gomes, C., Marques, R., Belo, O.,
2015. Conceptual-physical bridging - From BPMN
models to physical implementations on kettle. In:
CEUR Workshop Proceedings. pp. 55–59.

Rahm, E., Do, H., 2000. Data cleaning: Problems and
current approaches. IEEE Data Eng. Bull. 23, 3–13.

Sullivan, A., Zaeem, R.N., Khurshid, S., Marinov, D., 2014.
Towards a Test Automation Framework for Alloy. In:
Proceedings of the 2014 International SPIN
Symposium on Model Checking of Software, SPIN
2014. ACM, New York, NY, USA, pp. 113–116.

Trujillo, J., Luján-Mora, S., 2003. A UML based approach
for modeling ETL processes in data warehouses. In:
International Conference on Conceptual Modeling. pp.
307–320.

Vassiliadis, P., Simitsis, A., Georgantas, P., Terrovitis, M.,
2003. A framework for the design of ETL scenarios. In:
Proceedings of the 15th International Conference on
Advanced Information Systems Engineering,
CAiSE’03. Springer-Verlag, Berlin, Heidelberg, pp.
520–535.

Vassiliadis, P., Vagena, Z., Skiadopoulos, S., Karayannidis,
N., Sellis, T., 2000. ARKTOS: A tool for data cleaning
and transformation in data warehouse environments.
IEEE Data Eng. Bull 23, 42–47.

Validating ETL Patterns Feasability using Alloy

207

