
An Evaluation of Cloud-based Platforms
for Web-Application Development

Jens Albrecht and Kai Wadlinger
Fakultät Informatik, Technische Hochschule Nürnberg, Germany

Keywords: Cloud Computing, Platform-as-a-Service, PaaS, App Engine, Bluemix, Azure, Heroku.

Abstract: A wide variety of service models and options is being offered by cloud solution providers, ranging from
simple infrastructure to complex business applications. While the use of cloud-based infrastructure and soft-
ware services has become common in many enterprises, the Platform-as-a-Service model has yet to take off.
Platform providers have invested heavily in their offerings in the last years. The result is a big toolbox con-
sisting of cloud-based components for everything that is needed to implement, deploy and run custom soft-
ware applications. The developer's expectation is that these components just have to be configured and
plugged together to get scalable multi-tiered applications. In our research, we practically evaluated major
cloud development platforms on the basis of the requirements of a typical web-based business application.

1 INTRODUCTION

The ever growing importance of information technol-
ogy in today's fast moving economy comes at the risk
of hardly manageable complexity and cost. Thus, in the
past decade there has been a huge shift towards com-
modity hardware, virtualization/containerization and
agile development processes. One way to reduce com-
plexity, gain flexibility and maintain cost is the use of
cloud-based services. Major cloud-offerings started
just about 10 years ago, e.g. AWS S3 and EC2 in 2006,
Googles App Engine in 2008, or Microsoft Azure in
2010 (Ragupathi, 2011). According to a 2016 survey
by IDG, today about 70% of organizations run at least
one application in the cloud (IDG, 2016).

Cloud services can generally be structured into at
least three layers (Mell and Grance, 2010; IBM,
2014): Infrastructure-as-a-Service (IaaS) comprises
servers, network and storage resources, Platform-as-
a-Service (PaaS) provides components to develop,
deploy and run custom applications, and Software-as-
a-Service (SaaS) allows the use of standard applica-
tions supplied by the service provider. While IaaS and
SaaS have been broadly used by enterprises in the last
years, the adoption of PaaS is still lagging behind.
However, the segment is growing now with over 40%
per year (Gartner, 2016a).

Several trends are leading towards rapidly grow-
ing PaaS utilization in the near future. Most im-
portantly, many software vendors are switching to

implement cloud-first SaaS solutions (IDC, 2016),
and PaaS provides the development and operations
infrastructure for that. An example is Microsoft with
a focus on Office 365. Additionally, PaaS will be a
major component in IoT projects (Gartner, 2016b).
IoT systems by nature are event-driven and need a
scalable, highly available backend for message pro-
cessing. All this can be provided by the PaaS model.
Another factor is the open-source movement. Scala-
ble and mature open-source databases and processing
frameworks are a necessary prerequisite to keep op-
erating costs low. Open source tools therefore are an
essential part even of most commercial cloud plat-
forms. And last but not least, PaaS offerings have
grown and matured significantly in the last two or
three years.

PaaS can be distinguished into Integration Plat-
form-as-a-Service (iPaaS) and Application Platform
as a Service (aPaaS) 0(Paul et al., 2016). iPaaS offer-
ings provide functionalities to connect and integrate
cloud and on-premise data sources, applications and
services and can be interpreted as cloud-based enter-
prise application integration (EAI) platforms. aPaaS
consist of services and tools for application develop-
ment and deployment in the cloud.

In this paper we take a closer look at major aPaaS
offerings and how they can be used to build custom
web and mobile applications. Thus, our focus is on
the developer's perspective, and in contrast to theoret-
ical overviews like (Paul et al., 2016) and (Varma and

302
Albrecht, J. and Wadlinger, K.
An Evaluation of Cloud-based Platforms for Web-Application Development .
DOI: 10.5220/0006427503020309
In Proceedings of the 12th International Conference on Software Technologies (ICSOFT 2017), pages 302-309
ISBN: 978-989-758-262-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Choi, 2016) we include a practical evaluation. The
sample application we used for our analysis is a
cloud-based task list which can be shared by different
users. It includes many components which are com-
mon to most business applications like user authenti-
cation, database backend, email notification, and a
chat function. The backend of the application was
prototypically implemented on four platforms:
Google App Engine, IBM Bluemix, Microsoft Azure
and Salesforce Heroku. All platforms have been eval-
uated on a set of common criteria like programmer-
friendliness, usability, and cost. As a result, this arti-
cle gives not only an overview on the current state-of-
the art, but can also be helpful to support enterprises
in their decision making on cloud-based or on prem-
ise platforms.

The paper is structured as follows: After an over-
view on the examined PaaS offerings in the next sec-
tion, we describe the requirements of the sample ap-
plication in section three. Section four contains the
evaluation of the four platforms. It is followed by a
short summary.

2 PAAS OFFERINGS

The PaaS layer uses IaaS infrastructure and provides
middleware components, like database, messaging
and security services for the backend of SaaS appli-
cations. Thus, it is mainly focusing on a simplifica-
tion of software development and operations and di-
rectly supporting the DevOps model.

For our analysis, we focused on leading PaaS sup-
pliers. Our selection was based on Gartner's 2016
Magic Quadrant (Paul et al., 2016), identifying
Salesforce Heroku and Microsoft Azure as market
leaders. We also included Google AppEngine (chal-
lenger) and IBM Bluemix (visionary) as established
providers supplying all components necessary to im-
plement web-applications. We will briefly introduce
these four providers. More details on these and other
market players can be found in (Paul et al., 2016),
(Varma and Choi 2016), and (Li, Zhang and Li,
2017).

2.1 Google App Engine (GAE)

The App Engine is part of Google's cloud platform,
which was launched in 2008. Google tries to simplify
the development of web applications by focusing on
easy development and scalability (Srivastava et al.,
2012; Shabani, Kovaci and Dika, 2014). The applica-
tions are hosted on the same servers and with using

the same technology as Google Apps like Google
Docs, Calendar, and Gmail.

GAE supports Java, Node.js, Python, Ruby, Go
and PHP. As databases Google provides Cloud SQL,
Google's cloud based version of MySQL, and Cloud
Datastore, a scalable NoSQL database with a pro-
gramming and a SQL-like API.

2.2 IBM Bluemix

The youngest platform in this survey is from IBM and
was launched in 2014 (Kobylinski et al., 2014). Blue-
mix is based on the Cloud Foundry framework, an
open source multi-language PaaS maintained by Piv-
otal, a subsidiary of VMWare and EMC (Bernstein,
2014). The platform supplies many starter packs for
web, mobile and IoT development.

Bluemix inherits the language support from Cloud
Foundry for Java, Node.js, Python, Ruby, Go, PHP,
Swift, and .Net. Bluemix supports many different da-
tabases including Cloudant as completely managed
NoSQL database and DB2 on Cloud for relational
storage. Besides that, dozens of third party services
for data store, messaging, analytics and much more
are offered.

2.3 Microsoft Azure

Microsoft Azure subsumes a number of cloud ser-
vices ranging from infrastructure via development
tools to business software. Microsoft Azure App Ser-
vice denotes its cloud-based application development
platform. Microsoft provides most of its development
tools in specific cloud versions, ranging from Visual
Studio to SQL Azure. The Microsoft cloud offering
also comprises tools for resource management, sched-
uling, log analytics and more.

Azure App Service supports ASP.NET, Node.js,
Java, PHP and Python as languages. Azure SQL is the
primary choice for relational data, DocumentDB is
Microsoft's version of a scalable document store and
supports SQL- and JavaScript-like expressions for
queries.

2.4 Salesforce Heroku

Salesforce Heroku is a pure PaaS solution which does
not supply IaaS, but instead runs physically on Ama-
zon AWS. Heroku started independently in 2007 as
one of the first cloud platforms and was acquired by
Salesforce in 2010. Besides Heroku, a general plat-
form for custom web-development, Salesforce clients
can also use Force.com to develop applications based

An Evaluation of Cloud-based Platforms for Web-Application Development

303

on building blocks with a strong connection to the
Salesforce environment.

Initially starting with Ruby as its only program-
ming language, it now supports Java, Node.js, Scala,
Clojure, Python, PHP, and Go. Customer Applica-
tions run in virtual containers, called Dynos, which
are also the units for scaling. The main database for
Heroku is PostgreSQL for relational data. Redis and
MongoDB (externally hosted by mLab) can be used
as NoSQL databases (Salesforce, 2017).

3 DEVELOPMENT
REQUIREMENTS FOR
PAAS APPS

The basis for our evaluation of the suitability and ma-
turity of these PaaS offerings is a demo-application
for a cloud-based task list, which provides users the
capability to manage tasks. Figure 1 shows sample
use cases. Tasks are organized into projects, which
can be shared among users. In this case a chat func-
tion should enable real-time communication between
the members of a project. Moreover, each day an
email should be sent to every user with his open tasks.

These use cases require components and function-
alities which are typical to many web applications
(see figure 2):

• authentication with credentials from an exist-
ing provider like Google, Facebook, etc.

• user management
• a database to persist and retrieve heterogeneous

objects
• a scheduler for task disposition
• an email delivery service
• real-time communication for the chat function

A PaaS provider should supply components and ser-
vices which can be easily accessed by and integrated
to custom applications. Functions like authentication,
scheduling etc. should only need to be configured, but
not developed. Thus, development effort should de

Figure 1: Sample use cases for the task-list.

crease, and setup as well as maintenance of these ser-
vices should not be necessary. For developers it is im-
portant that applications can be developed and tested
on a local developer machine. Deployment to the
cloud should be an easy process.

Very important is the dynamic allocation of re-
sources (resource pooling). All shared services should
scale automatically in case of high system load. Man-
ual scaling should be possible for dedicated re-
sources.

4 EVALUATION

In order to evaluate and to compare the different PaaS
offerings, we implemented the backend of our appli-
cation on all four selected platforms in Java. In each
case application was recoded in order to use the ap-
plication server, database and other services supplied
by the platform provider. The frontend is based on Ja-
vaScript combined with AngularJs and Bootstrap.
The communication was handled via REST (JAX-RS
and jQuery). The application was successfully de-
ployed on each platform after implementation. The
evaluation criteria have been grouped into the follow-
ing six categories (see also table 1):

• General: Programming languages, documenta-
tion and support

• Runtime: Pricing, scaling and availability
• Development: Plug-ins and deployment
• Authentication: Sources, cost, functionality
• Database: Pricing, scaling, data and query

model
• Job Scheduling: Functionality and ease of use

The first three categories characterize the platform as
a whole. Authentication, database and job scheduling
describe specific functionalities required for the ap-
plication. The evaluation is based on our own tests
and information from the platform documentations
(Google, 2017; IBM, 2017; Microsoft, 2017;
Salesforce, 2017).

Figure 2: Typical components of web-applications.

ICSOFT 2017 - 12th International Conference on Software Technologies

304

4.1 General Criteria

Programming Languages and Build Packs

Java, Node.js, Python and PHP are supported by each
provider, and .Net (Core) by all but Google.

Bluemix and Heroku offer the possibility to de-
velop and use own or a third party buildpacks to ex-
pand the number of supported programming lan-
guages. On Bluemix, a wide variety of Cloud
Foundry community buildpacks can be used. Go,
PHP, Python, Ruby and Tomcat are examples and di-
rectly included in Bluemix. More can be found on
GitHub. On Heroku, each officially supported build-
pack is open-source and available on GitHub. Addi-
tionally, the Heroku marketplace offers more than
3000 third party buildpacks, which are not officially
supported.

Google offers a "flexible" and a "standard" envi-
ronment for application hosting (Google, 2017). The
flexible environment supports custom languages and
software packages in Docker containers.

Microsoft Azure does not offer buildpacks or sim-
ilar functionalities.

E-Mail-Support

All providers offer email support as an option which
can be purchased. Salesforce Heroku also provides
free technical support. IBM states that employees
monitor and answer questions on Stack Overflow.

Language of UI and Documentation

The platform UI and the documentation is generally
available in English. Besides that, Microsoft and IBM
offer localized or partly localized versions of their
UIs. Documentation is available mostly in English.
Microsoft provides also some local language docu-
mentation and tutorials.

4.2 Runtime

The term "runtime" in the context of PaaS generally
denotes the infrastructure that the web application is
running on, i.e. the virtual machine (hardware) and
the application server (software) hosting the web ap-
plication. Additional services like the database are not
a part of it.

Pricing

All providers offer a pay-per-use model based on the
usage of virtual servers. Servers generally have a cer-
tain performance class with respect to RAM and/or

CPU power. The price is depending on the usage time
measured in hours (App Engine, Bluemix), minutes
(Azure) or seconds (Heroku). In addition, monthly
flat-rates are offered with discount.

Automated and Manual Scaling

Generally, there are two options for scaling: to change
the number of running instances (horizontal scaling),
or to change the instance type, i.e. upgrade or down-
grade the hardware (vertical scaling). Moreover, scal-
ing can either be done manually or automatic (auto-
scaling) based on system load or SLA parameters.

Automated scaling always affects the number of
running server instances and is based on certain load
parameters, which depend on the platform.

Google offers instance types with different CPU
speeds (up to 4.8 GHz) and RAM configurations (up
to 1GB) for automated horizontal scaling in the
"standard" environment. Scaling can be based on the
response time and the amount of concurrent connec-
tions.

Auto-scaling on Bluemix is possible via an add-
on. The scaling parameters are the response time,
amount of queries/second, JVM Heap size and RAM
usage and custom parameters. Sizing and scaling on
Bluemix is based on RAM size, which can be ex-
tended up to 512 GB. The number cores is adjusted
internally. However, that information is not visible on
the platform.

Azure offers servers with up to 8 cores and 14GB
RAM. Auto-scaling can be based on schedule or
workload (CPU, RAM, http queue length, I/O and
custom counters).

Heroku provides instances with up to 14GB RAM
and scales automatically based on the response time.
No information about the number of CPU cores or
speed is given. As with IBM CPU scaling is done in-
ternally. The costs are prorated to the second. Scaling
and pricing at Heroku is based on lightweight con-
tainers called "dynos".

The definition of CPUs/cores is generally virtual,
physical performance specifications are not supplied
(except clock speed at Google). Thus, an accurate
comparison in terms of price vs. performance is not
possible without actual measurements.

Availability SLAs

Google, IBM and Microsoft guarantee 99.95% avail-
ability of the platform resp. application. Neglecting
the SLA leads to discounts with several stages. See
table 1 for examples. Heroku has not published a gen-
eral SLA.

An Evaluation of Cloud-based Platforms for Web-Application Development

305

Selectable Region

In many countries, especially within the European
Union, exist legal obligations that an application and
especially the data must be hosted within the political
region. Thus, the region for the servers should be se-
lectable, preferably a certain country.

Google implements a regional model where rough
geographic regions can be selected, but data can be
stored and moved by Google between all data centers
in that region.

IBM offers four regions: Germany, Australia,
United Kingdom and United States (South). Only the
latter provides all services. In Germany, there are just
about 16 services out of 110 usable. The single-sign-
on service for our web application is only available in
the United States (South).

Microsoft Azure is generally available in 34 re-
gions divided into three top regions America, Europe
and Asia Pacific. Specific locations can be chosen
within the region, e.g. in Europe Frankfurt, Magde-
burg, Ireland, London, Netherlands and Cardiff. Not
all services are available in all locations.

Heroku allows to choose between two models. If
the application is deployed to a common (shared)
runtime, only Europe and the U.S. are available re-
gions. If it is deployed to a "private space", i.e. an iso-
lated network, there are five regions selectable (Ore-
gon, Virginia, Sydney, Frankfurt, Tokyo).

4.3 Development

For development, IDE-support is very important to
get quickly started. Thus, every platform provides an
Eclipse plug-in for easy deployment to and testing in
the cloud.

Google's App Engine additionally supports jump-
starting the development with a maven archetype.
Maven is a tool for amongst other things managing
the dependencies and the build of a software project.
The archetype includes the App Engine SDK, the Ma-
ven plugin and the application server. Starting the app
locally can be done with a single Maven command.
Another command deploys the project to the cloud.
Moreover, Google provides the unique feature, that
the Cloud Datastore can be emulated locally. This al-
lows completely local development and is especially
useful for unit testing.

Starting with Bluemix isn’t as easy as with App
Engine. The application server WebSphere must be
installed and configured manually. Azure lets the user
choose between Jersey and Tomcat application server
for Java. Both have to be installed and configured as
at Bluemix. There is no special Maven archetype and

plugin. An Eclipse plug-in is available for deploy-
ment and monitoring of the app.

Heroku doesn’t provide a special Maven arche-
type and plugin. The app can be locally deployed with
the tool Heroku Toolbelt, but without emulated data-
base.

4.4 Authentication

Google App Engine and Salesforce Heroku provide
an OAuth (Hardt, 2012) solution to authenticate us-
ers. Accessing the credentials is similar on both plat-
forms. A prefabricated button starts the authentication
process. After successful authentication, a specified
JavaScript method is invoked, where the user infor-
mation and a verifiable token are accessible. The in-
formation is sent to the backend via a REST interface.

Google Sign-In is easy to use, but works only with
Google accounts. Heroku supports also Auth0 as an
add-on (called OAuth0), which allows to choose be-
tween more than 30 identity providers that can be ac-
tivated at the same time, for example Amazon Web
Services, Dropbox and Evernote. Furthermore, Auth0
provides its own database for storing users and a mul-
tifactor authentication.

IBM Bluemix and Microsoft Azure support Sin-
gle-Sign-On with one identity provider activated at a
time. The complete list of available providers is
shown in table 1. There is no login button available.
Instead, each unauthenticated access to the web appli-
cation will be forwarded to the log in page. On Azure,
user credentials can be accessed by the HTTP-Header
on a HTTP request. Each source has its own named
header. On Bluemix the access is done by WebSphere
credentials, which can’t be accessed easily: Our im-
plementation needed about 300 lines of code.

Comparing OAuth (Google, Heroku) and Single
Sign-On (Microsoft, IBM) on our web app, OAuth is
more suitable and provides better functionality, be-
cause it can be integrated into the web application and
used for UI control. Single-Sign-On is more static and
suitable for services within companies. Access to
user credentials in Bluemix awkward, which is a real
disadvantage.

4.5 Database

All providers offer database services for relational
and NoSQL databases. We focused our evaluation on
NoSQL databases, because they offer greater scala-
bility and flexibility for cloud applications (Burtica
e.a., 2012). Besides hosting (shared or dedicated) and
pricing, we evaluated the supplied functionality in

ICSOFT 2017 - 12th International Conference on Software Technologies

306

terms of accessibility, data structures and query inter-
face. The data model for our application is based on
the entity types User, Project, Task and Message. If
possible, projects and tasks should be stored as nested
objects (e.g. JSON documents) to prevent the neces-
sity of joins.

IBM Cloudant, Microsoft DocumentDB and
MongoDB fulfill this requirement natively, because
all are JSON-based document stores. The data model
of Google's Cloud Datastore is based on the concept
of (plain) entities. Each entity can have a certain kind
(type) and a variable list of properties with one or
more values, but nesting is not supported. Therefore,
each task belonging to a project is stored as a separate
object, and each project holds a list of task ids.

Persisting and retrieving objects can easily be
done with each database. The systems differ in the
handling of complex queries, because the query lan-
guages are quite different. DocumentDB and Datas-
tore (GQL) support besides Java APIs SQL-like
query languages, which are easy understandable and
writeable. In contrast, queries for Cloudant and Mon-
goDB must be specified as JSON documents, which
aren’t as readable as SQL.

The functionality in all these NoSQL databases is
limited, as joins are generally not supported. Docu-
mentDB allows disjunctive and conjunctive predi-
cates, negation and simple aggregations. Datastore
does not support aggregate queries and OR-predi-
cates, but IN-lists. Cloudant, which is based on
CouchDB, supports aggregations via so called view
aggregation and complex queries via a map operation.
MongoDB has a rather powerful query interface sup-
porting arbitrary complex predicates and aggregation.

Cloudant has a nice additional feature: It supports
multiversion concurrency control. Object must be
stored with the newest revision number. For this rea-
son, the revision number has to be sent to the client
after updating an object. Conflicts can be resolved
with a Git-like merge-function.

Google's Datastore has the unique feature, that it
can be locally emulated with one command. But it is
also the only database missing a web UI for data dis-
covery and querying.

Cloudant and mLab MongoDB must be installed
and configured manually. DocumentDB can only be
used with remote access.

To access a database in the cloud, credentials are
needed. On Google, they are bound to the account.
Consequently, they don’t need to be manually config-
ured. On Bluemix and Heroku the credentials can be
accessed during runtime in Java. Only Azure requires
manual configuration.

Looking at the hardware, shared clusters are pro-
vided on all platforms. Dedicated clusters are addi-
tionally offered on Bluemix and Heroku. On Heroku
there are only ten different hardware configurations
available, each of which having a fixed size and price.
Sizes range from 1GB (shared) via 8GB (shared) to
700GB (dedicated). All other systems provide a pay-
per-use model. Pricing on Azure is based on database
size used per hour and data throughput (request
units/second). Bluemix uses storage and data
throughput for accounting. The latter is defined by
lookups/second, writes/second and queries/second.
Google charges based on size and the number of
reads, writes and deletes.

4.6 Job Scheduling

Many applications need the possibility to run specific
tasks periodically or at a certain point in time. There-
fore, we included the functionality to inform a user
about is open tasks on a daily basis in our application.
All platforms include scheduling mechanisms to in-
voke some kind of time-based actions.

Google's App Engine provides a simple, cost-free
and easy to use scheduler. It has no Web UI and is
configured by an xml document. The periodicity can
be specified on a very granular level. The scheduler
works as a REST client and invokes an http GET re-
quest on a specified resource.

Microsoft Azure and IBM Bluemix offer more so-
phisticated schedulers with a Web UI. The periodicity
can be specified accurately and the range of possible
actions is high, including for example Database oper-
ations, REST calls or interaction with other services
on the platform. On IBM Bluemix only the first 50
Jobs of a month are free. Microsoft Azure provides
3600 jobs per month without cost.

Heroku's Scheduler can run script files stored on
the platform daily, hourly or every 10 minutes. Thus,
the REST call has to be written in one of the sup-
ported languages of the runtime.

4.7 Communication

E-mail delivery is handled on all platforms via Send-
Grid, a cloud-based transactional e-mail delivery ser-
vice (sendgrid.com). With its simple Web API, Send-
Grid is easy very to use. SMTP can be used alterna-
tively.

The offerings of the providers differ in the number
of cost-free e-mails per month. Google and Heroku
provide 12000, Bluemix none and Azure 25000 E-
Mails per month without costs.

An Evaluation of Cloud-based Platforms for Web-Application Development

307

Real-time communication in contrast to e-mail
might seem expendable in many applications. How-
ever, we need real-time communication for the chat
functionality of our application. Google is the only
platform supporting this functionality. Its channel
API offers an easy way to implement real-time com-
munication in a web application.

5 SUMMARY

The evaluation clearly shows that scalable web appli-
cations can be developed and deployed on all evalu-
ated cloud platforms. The differences only become
visible in the details.
The idea behind PaaS is to have a runtime provided,
which is runnable out of the box. This is actually done
by all platforms. But for the combination of local and
offline development isn’t. Only Google AppEngine
provides a full local emulation out of the box with a
database. The Maven support is excellent. On Azure
and Bluemix the local runtime environment must be
manually installed and configured. There might be
differences on the local environment configuration in
contrast to the platform that can lead to bugs on the
online application. For experts, this is not an obstacle.
Furthermore, if a NoSQL Database is used, it’s nec-
essary to have the same product for local developing.
That can’t be done on Azure. Heroku provides a local
runtime out of the box without a database. Deploying
an application is easy on all platforms.
To sum up, the number of available services is high
on each platform, even though the portfolios are dif-
ferent. But it's still a long way off to a one-click local
developing sandbox with all services available…

REFERENCES

Bernstein, D., 2014: Cloud Foundry Aims to Become the
OpenStack of PaaS. IEEE Cloud Computing 1(2)

Burtica, R., e.a. 2012. Practical application and evaluation
of no-SQL databases in Cloud Computing. 2012 IEEE
International Systems Conference (SysCon 2012). Van-
couver, BC.

Gartner, 2016a: Gartner Says Market Leaders Failed to
Capitalize on PaaS Growth in 2015. Gartner Press Re-
lease. Available at http://www.gartner.com/newsroom
/id/3283217

Gartner, 2016b: Gartner Says IoT Adoption Is Driving the
Use of Platform as a Service. Gartner Press Release.
Available at http://www.gartner.com/newsroom/id/
3241817

Google, 2017: Google App Engine Documention. Availa-
ble at https://cloud.google.com/appengine/docs

Hardt, D., 2012: RFC 6749: The OAuth 2.0 Authorization
Framework. IETF, October 1st, 2012

IBM, 2014. Cloud Computing Reference Architecture
(CCRA) 4.0 - Overview.

IBM, 2017. IBM Bluemix Documentation. Available at:
https://console.ng.bluemix.net/docs

IDC, 2016. Worldwide Semiannual Public Cloud Services
Spending Guide. IDC Market Guide.

IDG, 2016. Cloud Computing Survey (Executive Summary).
Research Report. Available at http://www.idgenter-
prise.com/re-source/research/
2016-cloud-computing-executive-summary

Kobylinski, K., Bennett, J., Seto, N., Lo, G., Tucci, F.: En-
terprise Application Development in the Cloud with
IBM Bluemix, 2014. Proceedings of 24th Annual Inter-
national Conference on Computer Science and Soft-
ware Engineering (pp. 276–279). Markham, Ontario,
Canada, 2014.

Li, Z., Zhang, Y., Li, Y., 2017: Towards a full-stack devops
environment (platform-as-a-service) for cloud-hosted
applications. Tsinghua Science and Technology, 22(1),
pp. 1–9

Microsoft, 2017. Microsoft Azure Documentation. Availa-
ble at: https://docs.microsoft.com/azure/

Mell, P. M., Grance, T., 2010. The NIST definition of cloud
computing. NIST Special Publication 800-145.

Paul, V., Yefim, N., Kimihiko, I., Thomas, A., Duni, R.,
Driver, M., 2016: Magic Quadrant for Enterprise Ap-
plication Platform as a Service. Worldwide. Gartner,
2016.

Raghupathi, K.: 5 Key Events in the history of Cloud Com-
puting. DZone/Cloud Zone Blog, 2011. Available at
https://dzone.com/articles/5-key-events-history-cloud

Salesforce, 2017: Heroku Documentation. Available at:
https://developer.salesforce.com/platform/heroku

Shabani, I., Kovaçi A., and Dika, A., 2014. Possibilities Of-
fered by Google App Engine for Developing Distrib-
uted Applications Using Datastore. Sixth International
Conference on Computational Intelligence, Communi-
cation Systems and Networks. Tetova, Macedonia.

Srivastava, S., Trehan, V., Yadav, P., Manga, N., Gupta, S.,
2012: Google App Engine. International Journal of En-
gineering and Innovative Technology (IJEIT), (3), pp.
163–165

Varma, M.K., Choi, E., 2016: Comparative Study of Vari-
ous Platform As A Service Frameworks. International
Journal on Cloud Computing: Services and Architec-
ture (IJCCSA), 6(1), 2016.

ICSOFT 2017 - 12th International Conference on Software Technologies

308

Table 1: Comparison of evaluated Cloud PaaS Offerings.

 Criteria Google App Engine IBM Bluemix Microsoft Azure Salesforce Heroku

G
en

er
al

Programming languages Java, Node.js, Python,
Ruby, Go, PHP

Java, Node.js, Python,
Ruby, Go, PHP, Swift,
ASP.Net Core,

Java, Node.js,
Python, PHP, .Net

Java, Node.js, Python,
Ruby, Go, PHP, Play,
Scala, Clojure, ASP.NET
Core

Buildpacks No Yes No Yes
Free techn. E-Mail support No No No Yes
Language UI English English, partly local English, local English
Language documentation English English English, partly local English

R
un

tim
e

Pricing Instance-Hours*Instance-
Costs+Outgoing Network
Traffic

Instance-Hours*RAM Instance-Minutes*In-
stance-Costs

Instance-Seconds*In-
stance-Costs

Automatic horizontal scal-
ing

response time, coincident
connections

response time, queries/s,
JVM heap, RAM usage

CPU, RAM, http queue,
data in, data out

response time

Min Hardware
(CPU, RAM)

0.6 GHz, 128MB -, 64MB 1 Core, 1GB -, 0,5GB

Max. Hardware
(CPU, RAM)

4.8 GHz, 1GB -, 512GB 8 Cores, 14GB -, 14GB

SLA 10% discount, if < 99.95%
25% discount, if < 99%
50% discount, if < 50%

10% discount, if < 99.95%
25% discount, if < 99,5%

10% discount, if < 99.95%
25% discount, if < 99%

-

Selectable Region / Eu-
rope / Specific Country

Yes / Yes / No Yes / Yes / No Yes / Yes / Yes Yes / Yes / Yes

D
ev

el
op

m
en

t Maven Plugin Yes Yes No No
Maven Archetype Yes Yes No No
Eclipse Plugin Yes Yes Yes Yes
Local run one Click/Com-
mand

Yes No No Yes

A
ut

he
nt

ic
at

io
n

Service Name Google-Sign-In Single-Sign-On Integrated OAuth0
Type OAuth Single-Sign-On Single-Sign-On Both
Sources Google Google, Facebook,

Github, SAML Enterprise,
Cloud Directory

Twitter, Google, Face-
book, Microsoft, Azure
Active Directory

Google, Facebook, Mi-
crosoft, Soundcloud +31
other (OAuth)

Several Source at same
time

Yes No No Yes

Cost-free Yes No No Yes
Credentials Access Client JavaScript Backend HTTP-Header Client JavaScript
Usable in local mode Yes No No Yes
Pros & Cons + Easy to use

+ No Code on Client
- User-Data access com-
plicated

+ No code on client, easy
credentials access
- Different source => dif-
ferent header name

+ Large source selection,
User management, Regis-
ter process
- Elaborate Client imple-
mentation

D
at

ab
as

e

Service Name Datastore + Objectify Cloudant NoSQL DB DocumentDB mLab MongoDB + Mor-
phia

Hosting shared cluster shared + dedicated cluster shared cluster shared + dedicated cluster
Pricing database size + reads +

writes + deletes
database size + API calls
(shared) or hardware
(dedic.)

Size + data throughput size

Nested Objects No Yes Yes Yes
Query Interface easy to use, but limited

functionality (post-pro-
cessing in application)

complex query syntax SQL-like and simple to
use,
great functionality

query syntax not as easy
as SQL, great functional-
ity

Web-UI existing no yes yes yes
Usable in local mode yes (automatically) yes (after installation) no (only remote access) yes (after installation)
Credentials retrievable not necessary (implicit) yes no yes

Jo
b

Sc
he

du
le

r

Service Name Cron Jobs Workload Scheduler Scheduler Scheduler
Configurable by XML Web-UI Web-IU Web-IU
Periodicity accurate very accurate very accurate not accurate
Cost-Free Yes 55 jobs/month 3600 jobs/month only

hourly
Yes

REST call implemented Yes Yes Yes No
Pros & Cons + easy to use - only 50 jobs/month cost-

free
- Job definition with Rake

C
om

m
un

ic
at

io
n Number of cost-free

emails per month in Send-
Grid

12.000 0 25.000 12.000

Real-time-communication
API

Yes No No No

An Evaluation of Cloud-based Platforms for Web-Application Development

309

