
Relaxation and Optimization of Impulsive Hybrid Systems
Inspired by Impact Mechanics

Elena Goncharova and Maxim Staritsyn
Matrosov Institute for System Dynamics and Control Theory of the Siberian Branch of the Russian Academy of Sciences,

134, Lermontov St., Irkutsk, Russia

Keywords: Hybrid Systems, Impulsive Control, Lagrangian Mechanics, Trajectory Relaxation, Approximation.

Abstract: The paper compresses some results on modeling and optimization in a class of hybrid systems with control
switches of dynamics. The study is motivated by widespread physical phenomena of impulsive nature, faced
in contact dynamics, such as unilateral contacts of rigid bodies and impactively blockable degrees of freedom.
The developed modeling approach is based on a representation of hybrid events as impulsive control actions
produced by distributions or Borel measures under constraints on states before and after the action. Basically,
such systems are described by measure differential equations with states of bounded variation, and the relations
between the trajectory and the control measure are given by a specific mixed condition of a complementarity
type. The main goal of the study is to describe the closure of the tube of solutions to the addressed system.
For this, we design an approximation of the hybrid property, and develop a specific singular time-spatial
transformation of the original system. A convexification of the transformed system then defines – after the
inverse transform – the closed set of generalized, limit solutions. The main result concerns the asymptotic
behavior of these generalized solutions, stating that the hybrid property is preserved after the relaxation.

1 INTRODUCTION

Control systems with affine impulses present one of
the most popular objects of research in the mod-
ern control theory (Arutyunov et al., 2011; Bres-
san and Rampazzo, 1993; Bressan and Rampazzo,
1994; Dykhta, 1990; Dykhta, 1997; Dykhta and Sam-
sonyuk, 2000; Dykhta and Samsonyuk, 2001; Gur-
man, 1991; Gurman, 1997a; Gurman, 1997b; Gur-
man, 2004; Krotov, 1960; Krotov, 1961b; Krotov,
1961a; Krotov, 1989; Miller, 2011; Pereira and Vin-
ter, 1986; Vinter and Pereira, 1988; Rishel, 1965;
Warga, 1965; Warga, 1972; Zavalishchin and Sesekin,
1997). From the mathematical viewpoint, such a sys-
tem is the result of a trajectory relaxation (below we
give a formal definition of this notion) of a control-
affine ordinary system of the form

ẋ .
=

dx(t)
dt

= f (t,x)+G(t,x)u (1)

driven by the input signal u = u(·) being a Lebesgue
(or, possibly, Borel) measurable and summable (L1)
function. Here, x(t) ∈ Rn and u(t) ∈ Rm are state and
control vectors, respectively; f : Rn→Rn, G : Rn→
Rn×m are given vector and matrix functions.

Aimed at studying the system evolution from an

initial state x(0) = x0 ∈ Rn over a certain finite time
period T .

= [0,T ], one can meaningfully suppose an a
priori bound M > 0 on the “total control action” avail-
able during T . In other words, one can impose the
condition

‖u‖L1
.
=

∫

T
|u|dt ≤M. (2)

Under standard regularity assumptions on the func-
tions f and G, this implies a uniform bound on the
total variations of Carathéodory solutions x = x[u](·)
under all controls satisfying (2). At the same time,
one can design a sequence of Carathéodory solutions
that tends to a discontinuous function, which is not
admitted by (1). This fact entails that the tube of so-
lutions to the system is not compact in the space C
of continuous functions. As a consequence, one fails
to guarantee the existence of a solution to an optimal
control problem stated for system (1), (2). Still, the
mentioned uniform estimate on the total variation of
trajectories enables us to design a compactification
of the trajectory tube (or reachable sets) in a certain
topology of the space BV of functions with bounded
variation. If the function G does not depend on x, the
extension is given by the measure differential equa-
tion
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dx = f (t,x)dt +G(t)µ(dt). (3)

Literally, this is done by multiplying equation (1) by
dt, and further replacing the term udt with a formal
differential dU of a, possibly, discontinuous function
U of bounded variation. The latter defines the so-
called differential, or a Lebesgue-Stieltjes measure
µ(dt) .

= dU(t), which is a first order distribution, pos-
sibly, of the Dirac (“δ-”) type.

If G does depend on x (for brevity, in what follows
we get rid of the explicit dependence of functions f
and G on the time variable), the operation G(x)dµ is
formally incorrect, as it is, in general, the product of
a discontinuous function — the composition G◦ x —
and a Dirac distribution concentrated at discontinuity
points of G◦x. In this case, a correct trajectory relax-
ation is provided by a space-time extension (Gurman,
1997a; Gurman, 1997b; Miller, 2011; Warga, 1965),
based on the principle of separation of motions. By
tradition, the relaxed dynamics is also written in the
form of the measure differential equation:

dx = f (x)dt +G(x)µ(dt), (4)

which now is just a formal, conceptual object.
Let us stress that equations (3), (4) describe deter-

ministic processes. The readers familiar with stochas-
tic differential equations can note a certain similarity.
However, stochastic processes are generically driven
not by measures, but by rough paths generated by
functions of unbounded variation (in fact, of bounded
p-variation with a certain p > 1 (Lyons et al., 2007)).

1.1 Mixed Constrained Measure
Differential Equations:
Complementarity Problem

In (Goncharova and Staritsyn, 2012) we first find the
following complementarity problem for the measure
differential equation (4):

x(t−) ∈ Z− and x(t) ∈ Z+ |µ|-a.e. (5)

Here, x(t−) denotes the left one-sided limit of a func-
tion x at a point t (throughout the paper we operate
with right continuous functions; this is just a tech-
nical assumption and does not lead to loss of reason-
able generality); “|µ|-a.e.” means “almost everywhere
with respect to the total variation of the measure µ”;
Z± ⊆ Rn are given closed (not necessarily bounded)
subsets of the state space. Condition (5) establishes
the hybrid property, i.e., it prescribes possible system
configurations before and after switches of state. In
convention of hybrid systems theory (Branicky et al.,
1998; Haddad et al., 2006; Teel et al., 2012; van der
Schaft and Schumacher, 2001), the sets Z± are called

the jump permitting and jump destination sets, respec-
tively. Without loss of generality we can suppose
that Z± are defined as Z± = {x ∈ Rn| W±(x) = 0},
where W± are certain nonnegative continuous func-
tions Rn→ R. Then one can rewrite (5) in the equiv-
alent form:

∫

T

[
W−(x)+W+(x)

]
|µ|c(dt) = 0, and (6)

W−
(
x(τ−)

)
+W+

(
x(τ)

)
= 0 ∀τ ∈ D|µ|. (7)

For absolutely continuous measures µ, the condition
(5) just expresses the orthogonality in L2 between the
control u and the composition (W++W−)◦ x .

Conditions of the sort (5) were originally intro-
duced based on methodological considerations — as
a “natural form” of mixed constraints in problems of
impulsive control — and were promptly recognized
as a useful mathematical framework for a represen-
tation of a class of hybrid systems and for modeling
certain effects in impact mechanics to be discussed in
the following Section. Since system (4), (5) performs
the hybrid feature produced by impulsive control, we
call this class of models impulsive hybrid systems.

1.2 Mechanical Inspiration. Motivating
Examples

Affine impulses naturally appear in the framework of
impact mechanics and contact dynamics as a mathe-
matical formalization of elastic collision with unilat-
eral constraints and dry friction (Acary et al., 2011;
Brogliato, 2016; Glocker, 2001b; Glocker, 2001a;
Kozlov and Treshchëv, 1991; Moreau, 1966; Moreau,
1979a; Moreau, 1979b; Yunt and Glocker, 2007;
Yunt, 2011).

As is well known, in the smooth case the rigid
body dynamics of generalized coordinates (q, q̇) can
be described by the classical Lagrange equation

d
dt

(
∂L
∂ϕ̇

)
− ∂L

∂ϕ
= F

with the Lagrangian L = K−P, the total kinetic en-
ergy K = K(q, q̇) and the total potential energy P =
P(q). Here the term F comprises all external forces
acting on the mechanical system, in particular, control
forces.

If the dynamics is non-smooth (say, admits colli-
sions), the equations of motion are better written in
the form

M(q) q̈−h(q, q̇) = f+B(q)u. (8)

Here, the forces are composed of the uncontrolled ex-
ternal force f and the control force u, the (symmetric,
positive definite) generalized mass matrix M = M(q)
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is defined as M = ∂2
q̇q̇K, the function h = h(q, q̇)

collects finite smooth forces (spring, damper, cen-
tripetal, gyroscopical, coriolis etc.) and is determined
by h = ∂2

q̇qK−∂qL, and B = B(q) is a linear mapping
that represents directions of control forces.

J.J. Moreau proposed to generalize the equations
of motion (8) up to the measure-driven system

M(q)d(q̇)−h(q, q̇)dt = π(dt)+B(q)µ(dt). (9)

Here, measures π and µ formalize the generalized un-
controlled and control external forces, respectively.

Note that, compared to the previous Section, here
the impulsive behavior is a priori postulated rather
than thought of as an idealized mathematical phe-
nomenon, originated by a sequence of smooth mod-
els.

As an illustration, we consider the following toy
example.
Example 1. “Klapstos” strike in billiard. The model
presents two “balls” (simplified to material points of
unit mass) moving without friction in the line. The
“klapstos” problem is to strike a ball x by applying a
force ρ≥ 0 (the billiard cue) such that x collides with
another ball y, and the balls exchange their momenta
at the instant of collision: the incoming ball stops at
the contact position, while the other ball, being in rest
up to this moment, acquires a translational velocity
and starts moving. The simplified dynamics takes the
form

d(ẋ) = (ρ−µ)(dt), d(ẏ) = k µ(dt),

where k ∈ (0,1) is the coefficient of restitution, and
µ ≥ 0 is the complementary contact force. Assumed
that

(x,y)(0) = (x0,y0), (ẋ, ẏ)(0) = (0,0),

and y0 > x0, the maneuver can be formalized as the
condition

x(t−) = y0, ẋ(t) = 0 µ-a.e.

In general, the force µ could also play the part of con-
trol; this case refers us to the framework of impulsive
control in the phase of unilateral contact (Bentsman
et al., 2012).

We can mark out two (to some extent, stan-
dard) approaches to modeling of contact dynamics:
the so-called regularized and non-smooth approaches.
They are well known, we refer to (Brogliato, 2016;
Glocker, 2001b; Moreau, 1966) and the bibliogra-
phy therein. Yet another approach (Bentsman et al.,
2007; Bentsman et al., 2007; Bentsman et al., 2008;
Bentsman et al., 2012; Miller and Bentsman, 2006)
is based on active singularities, and it is mostly close
in the methodological sense to the one we develop in

the present study. Note that these approaches do not
give a solution, if impulse forces of impacts act si-
multaneously with dry friction (Pfeiffer and Glocker,
1996). Such phenomena are known as Painlevé para-
doxes (Painlevé, 1895; Stewart, 2000). Successful at-
tempts to overcome this problem are made in (Miller
et al., 2016; Stewart, 1997).

The classical approaches operate with forces or
torques as driving signals. However, in practical
applications these physical quantities are technically
hardly measurable signals. Sometimes, one is com-
pelled to design control signals based on the obser-
vation of their influence on the system or relying on
some average characteristics of control forces. In
(Bressan and Rampazzo, 1993; Bressan and Wang,
2009; Bressan and Rampazzo, 2010; Bressan et al.,
2013) it is proposed to control Lagrangian systems
directly by a part of state coordinates. This lets one
avoid a straightforward computation of driving forces,
since their effects are already accounted by friction-
less holonomic constraints provided by the control co-
ordinates. Our approach — based on a complementar-
ity problem for the measure differential equation —
enjoys the same advantages: condition (5) contains
the complete information about the system behavior
prior to and after applying control forces. This infor-
mation lets us avoid calculation of effortfully observ-
able signals.

A pretty eloquent example of real-life models,
where control forces produce such a prescribed in-
fluence on the system, is given by Lagrangian systems
with impactively blockable degrees of freedom. The
following example is aimed to illustrate the idea.
Example 2. A double pendulum with a blockable joint.
The model describes planar motion of a double pen-
dulum with links of unit length and mass, actuated
by gravity. Two degrees of freedom of the system are
due to angular positions ϕ= (ϕ1,ϕ2) of the links. The
total kinetic energy is

K = ϕ̇2
1 +1/2 ϕ̇2

2 +ϕ1ϕ2 cos∆ϕ,

and the total potential energy is

P =−g(2cosϕ1 + cosϕ2),

where ∆ϕ= ϕ1−ϕ2, and g is the acceleration of grav-
ity.

Denote by ω = (ω1,ω2)
.
= (ϕ̇1, ϕ̇2) the vector of

angular velocities; the states are now (ϕ,ω). Suppose
that one can control the pendulum by instantaneously
blocking/releasing the joint between the two links.
Such blocking is provided by an impulsive force, per-
formed by a scalar signed Borel measure µ. In the in-
ertial reference system, the equations of motion then
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should be written as

ϕ̇ = ω,(
1 1/2cos∆ϕ

cos∆ϕ 1

)(
dω1
dω2

)
+

(
1/2sin∆ϕ ω2

2
−sin∆ϕ ω2

1

)
dt + g

(
sinϕ1
sinϕ2

)
dt=

(
0

µ(dt)

)
,

while the blocking condition takes the form (5) with
Z−=R4, and Z+ = {x= (x1, . . . ,x4)∈R4 : x3 = x4},
i.e., in our terms,

ω1(t) = ω2(t) |µ|-a.e.

The latter condition postulates the configuration
Z+ = {(ϕ1,ϕ2,ω1,ω2) ∈ R4 : ω1 = ω2} after any
jump of the trajectory component ω2.

1.3 Notations and Basic Mathematical
Background

By N we denote the set of positive integers, and Rn is
the n-dimensional arithmetic space with the Manhat-
tan norm | · | .= ‖ · ‖1, R = R1 is the set of real num-
bers, and Rn

+ is the cone of vectors with nonnegative
components.

Given a finite interval T .
= [0,T ] ⊂ R+, let C =

C(T ,Rn) denote the Banach space of n-dimensional
continuous functions on T with the topology of uni-
form convergence ⇒, and AC = W 1,1 ⊂ C denote
the set of absolutely continuous vector functions;
L1 = L1(T ,Rn) is the Lebesgue quotient space of
summable functions.

The dual C∗ of C is known to be the space of
vector-valued signed Borel measures, i.e., countably
additive set functions µ : B → Rn defined on the
Borel sigma-algebra B = BT of subsets of the inter-
val T . Among all measures we single out the usual
Lebesgue measure on R, denoted by λ. A classical
fact from Analysis claims that any Borel measure ad-
mits a unique Lebesgue-Stieltjes extension, and the
set of extended measures is isomorphic to the space
BV = BV+(T ,Rn) of right continuous vector func-
tions with bounded variation on [0,T ). The extended
measures are called the Lebesgue-Stieltjes measures.
In what follows, the term “measure” is understood in
the extended sense.

Given a measure µ, we denote by |µ| its total vari-
ation, by suppµ its support, i.e., the minimal closed
subset of T such that µ(suppµ) = µ(T ); by Dµ the set
{τ ∈ T | |µ|({τ}) > 0} of its atoms, and by Fµ ∈ BV
its distribution function defined as Fµ(t) = µ([0, t]),
Fµ(0−) = 0. Any measure µ can be thought of as the

distributional derivative or “differential” of its distri-
bution function, i.e., µ(dt) = dFµ(t). Given µ,ν ∈C∗,
µ � ν indicates that µ(A) ≤ ν(A) for any A ∈ B; dµ

dν
stands for the Radon-Nikodym derivative of µ with re-
spect to ν. If dµ

dν = 0, the measures µ and ν are said to
be mutually singular. A Lebesgue-Stieltjes measure
admits a unique Lebesgue decomposition into the sum
of the absolutely continuous µac, singular (with re-
spect to λ) continuous µsc, and singular discrete com-
ponents µd : µ = µc + µd

.
= µac + µsc + µd . If µ is ab-

solutely continuous, then dµ
dλ = Ḟµ. All the notions,

raised in the context of measures, can be adopted to
functions of bounded variation.

1.4 Weak* Topology of BV . Relaxation
of System’s Trajectory Tube

The weak* topology performs one of the two regu-
lar ways to introduce a “coarse” topological structure
in the dual X∗ of a linear space X . Sometimes, es-
pecially in Probability Theory, the weak* topology is
called simply the weak topology. In Analysis these
two notions are distinguished: The weak topology
on X∗ corresponds to the following notion of conver-
gence of a sequence {φn}n∈N ⊂ X∗ to a point φ ∈ X∗:
ψ(φn)→ ψ(φ) for all ψ ∈ X∗∗. On the other hand, X
can be embedded into its double dual X∗∗ by the map-
ping x 7→ Tx, where Tx(φ)

.
= φ(x). Thus T : X → X∗∗

is an injective linear mapping (not necessarily surjec-
tive). The weak* topology on X∗ is the weak topol-
ogy induced by the image of T , T (X) ⊂ X∗∗. A se-
quence {φn}n∈N ⊂ X∗ converges to a point φ ∈ X∗ in
the weak* topology iff φn(x)→ φ(x) for all x ∈ X .
Note that the weak* topology of X∗ is weaker than
the weak topology of this space, and furthermore, it is
the weakest topology such that the maps Tx : X∗→ R
are continuous.

In this paper we deal with BV -functions. By the
Helley’s selection principle, a sequence of functions
{xn}n∈N ⊂ BV is pre-compact in BV in the topology
of pointwise convergence iff {xn}n∈N is uniformly
bounded and has uniformly bounded variation. Note
that the compactness in the topology of pointwise
convergence implies the compactness in the weak*
topology.

The weak* topology of BV (i.e., of C∗) can be
specified as follows: A sequence {xn}n∈N ⊂ BV con-
verges to a function x ∈ BV in the weak* topology of
BV (we will write xn ⇁ x) iff xn(t)→ x(t) for all con-
tinuity points t of x, and at the boundary points t = 0,
and t = T .

By a trajectory relaxation of a control dynamical
system we mean a closure of the tube of its solutions
(in the accepted sense) in a certain weak topology.

Relaxation and Optimization of Impulsive Hybrid Systems - Inspired by Impact Mechanics

477



Our study will operate with a specific impulsive solu-
tion concept of a measure differential equation. And
the problem of its trajectory relaxation will be stated
in the weak* topology of BV .

1.5 Notion of Impulsive Control Input,
and Solution Concept for
Measure-Driven Dynamical Systems

We accept the basic assumptions (H): the functions f
and G are uniformly Lipschitz continuous.

Similarly to (Arutyunov et al., 2011; Karamzin
et al., 2015), by an impulsive control we mean a col-
lection

ϑ .
= (µ,ν,{uτ}τ∈Dν) .

Here,

• µ ∈ C∗(T ,Rn) and ν ∈ C∗(T ,R) are measures
with

|µ| � ν, |µ|c = νc, and ν(T )≤M. (10)

• {uτ}τ∈Dν is a family of Borel measurable func-
tions

uτ : Tτ
.
= [0,Tτ]→ Rm,

Tτ
.
= ν({τ}), parameterized by atoms of the mea-

sure ν and meeting the constraints

|uτ(θ)|= 1 λ-a.e. on Tτ, (11)
∫

Tτ
uτ(θ)dθ = µ({τ}) (12)

for all τ ∈ Dν.
The “attached” controls uτ are jump-driving pa-

rameters (see the comment below). Since control
measures µ are signed, the limit of a sequence |µn|
of total variations of weakly* converging measures
µn ⇁ µ may not coincide with |µ|. The nonnegative
measure ν appears here to overcome this problem. We
set |ϑ| .= ν and formally regard |ϑ| as the total varia-
tion of impulsive control.

Let Θ denote the set of admissible controls, i.e.,
all collections ϑ satisfying (10)–(12).

Given ϑ = (µ,ν,{uτ}) ∈ Θ, and x0 ∈ Rn, by a so-
lution to (4) under the control input ϑ with the ini-
tial condition x(0−) = x0 we mean a function x ∈
BV+(T ,Rn) meeting the following integral relation
for each t ∈ T :

x(t) = x0 +
∫ t

0
f (x)dθ+

∫ t

0
G(x)µc(dθ)

+ ∑
τ∈Dν

[
x(τ)− x(τ−)

]
. (13)

The integration with respect to the measure µc is un-
derstood in the Lebesgue-Stieltjes sense; jump exit

points x(τ) of a function x at the instants τ ∈ Dν of
impulses are defined as x(τ) = κτ(Tτ), where κτ is a
Carathéodory solution of the limit control system

d
dς

κ(ς) = G(κ(ς))uτ(ς), κ(0) = x(τ−) (14)

on the time interval Tτ
.
= [0,Tτ].

Assumptions (H) guarantee the existence and
uniqueness of a solution x[ϑ] to (13), (14) for any in-
put ϑ ∈Θ (see, e.g., (Miller, 2011)).

The employed concept of impulsive solution is
dictated by the fact (generic, if we deal with vector-
valued measures) that the result of impulsive action –
i.e., the value of the jump of a state – depends on the
way of approximation of Dirac distributions by ordi-
nary controls. In other words, the mapping “control
measure 7→ trajectory” is, typically, multivalued, and
the selection of this map is implemented by the choice
of an attached control uτ. The input-output map is
single-valued when the matrix function G enjoys the
so-called Frobenius correctness property (Rampazzo,
1999), which corresponds to the commutativity of the
vector fields defined by the columns Gi of the matrix
G. In this case, the terms ν and {uτ} in the definition
of impulsive control can be omitted, and the solution
concept can be simplified (Miller, 2011).

1.6 Final Model Statement

In view of the given notion of impulsive control, we
have to rewrite conditions (5) in the correct form:

x(t−) ∈ Z− and x(t) ∈ Z+ |ϑ|-a.e. (15)

A pair σ .
= (x,ϑ) with ϑ∈Θ and x = x[ϑ] is called

an impulsive control process. Note that ordinary con-
trol processes (x,u) of system (1), (2) are embedded
into the measure-driven system (4) (or (13), (14)) by
setting µ = u dλ.

By Σ we denote the set of all impulsive control
processes satisfying the complementarity conditions
(5) and the following endpoint constraints:

x(0−) = x0, x(T ) ∈Ω, (16)

where x0 ∈ Rn is a fixed initial position, and Ω ⊆ Rn

is a given closed set representing a desired terminal
configuration of the modeled object. We are to as-
sume that Σ 6= /0.

Our final goal is to design a proper relaxation of
the set Σ in connection with related optimization prob-
lems.
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2 TRAJECTORY RELAXATION
OF IMPULSIVE HYBRID
SYSTEMS

The study is arranged as follows:

• First, we give a correct definition of ε-
approximation (perturbation) of solutions to sys-
tem (13)–(16).

• As a basic tool for further analysis, we develop a
specific singular transformation of the impulsive
hybrid system, and establish the equivalence re-
sult between the original and transformed models.

• By passing to the weak* limit in BV , the set of
perturbed solutions will be extended, and this ex-
tension will be found to be greater than Σ. Tech-
nically, this will be done by a convexification of
the transformed system with a consequent inverse
(discontinuous) reparameterization of time.

• Finally, we investigate the asymptotic behavior of
the hybrid property (15), and discover its limit
form.

2.1 Approximation of Impulsive Hybrid
Systems

We start with the following important
Definition 1. Given ε > 0, an impulsive control pro-
cess σ = (x = x[ϑ],ϑ = (µ,ν,{uτ})), ϑ ∈ Θ, is said
to be an ε-approximate solution of the complemen-
tary system (13)–(15), if there exists another process
σ̃ .
= (x̃ .

= x[ϑ̃], ϑ̃ .
= (µ̃, ν̃,{ũτ})) such that the follow-

ing relations hold:

1. (x̃, F̃ν) belongs to an ε-neighborhood of (x,Fν) in
the weak* topology of BV , i.e.,

∥∥(x,Fν)(t)− (x̃, F̃ν)(t)
∥∥≤ ε for

t ∈
(
(0,T )\Dν

)
∪{0}∪{T}. (17)

2. Processes meet the following “ordering” condi-
tion:

∫

T
Q(Fν, F̃ν)dνc +

∫

T
Q(Fν, F̃ν)dν̃c

+ ∑
τ∈Dν

Q(Fν(τ), F̃ν(τ))ν({τ})

+ ∑
τ∈Dν̃

Q(Fν(τ), F̃ν(τ)) ν̃({τ})≤ ε. (18)

Here, Q = Q(η+,η−) is an arbitrary fixed con-
tinuous nonnegative function R2

+ → R vanishing
only on the set {(η+,η−) ∈ R2

+ : η− ≤ η+}.

3. The perturbed version of the complementarity
condition (15) is satisfied:

∫

T
W−(x̃)dν+

∫

T
W+(x)dν̃≤ ε. (19)

We remark on conditions (18), (19): inequality (18) is
a relaxed version of the pointwise state constraint

F̃ν ≤ Fν. (20)

In the asymptotic respect, (20) serves to distinguish
jumps Z−→Z+ compared to Z+→Z+. If Z−=Z+,
this demand is ambiguous, and (18) can be dropped.

Relation (19) establishes ε-complementarity of a
process with respect to its small weak* perturbation
(rather than with respect to itself). As we will see
below, this is an important invention.

Let us stress that the part of ε-solutions can be
played by ordinary control processes defined by (1),
(2) (see the forthcoming Example 3). In this respect,
Definition 1 solves the problem of a correct approxi-
mation of the impulsive hybrid behavior by a regular,
ordinary system.
Example 3. On the time interval [0,1], consider the
following model:

dx = dµ, x(0−) = 0,

µ� 0, µ([0,1])≤ 1,
x(t) = 1 µ-a.e.

(any control action should steer the state to the set
Z+ = {1}).

Note that, for any ordinary control dµ = udt with
‖u‖L1 = 1, the complementarity condition does not
hold, even approximately:

∫

[0,1]
(1− x)u dt = x(1)− x2(1)

2
= 1/2.

On the other hand, consider the following two fami-
lies of ordinary control processes:

σε(t)
.
= (x,u)ε =

{
( 1

ε t, 1
ε ), t ∈ [0,ε),

(1,0), t ∈ [ε,1],

σ̃ε(t)
.
= (x̃, ũ)ε =





(0,0), t ∈ [0,ε),
( 1

ε t−1, 1
ε ), t ∈ [ε,2ε),

(1,0), t ∈ [2ε,1].
The pair (σε, σ̃ε) satisfies the assumptions of Defini-
tion 1, in particular, (19) collapses into

∫

[0,1]
(1− xε) ũε dt = 0.

Let X denote the set of functions x ∈ BV+(T ,Rn)
such that there exists a sequence {σε}ε>0 of impul-
sive control processes σε = (x,ϑ)ε with the following
properties:
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• for any ε > 0, σε satisfies constraints (16) with
accuracy to within ε, i.e., |xε(0)− x0| ≤ ε and
xε(T ) ∈ Uε(Ω), where Uε stands for the ε-
neighborhood of a set;

• σε is an approximate ε-solution of (4), (15) in the
sense of Definition 1, and

• xε ⇁ x as ε→ 0.

The next step is to design a constructive representa-
tion of X.

3 TRAJECTORY EXTENSION:
SEPARATION OF MOTIONS
AND DISCONTINUOUS
SPACE-TIME TRANSFORM

In this Section, we develop an equivalent transforma-
tion of the impulsive hybrid system to an ordinary
control system with bounded inputs and absolutely
continuous states. The main technical trick is a spe-
cific Lipschitzian parameterization of the time vari-
able t named the discontinuous time change (Bres-
san and Rampazzo, 1994; Miller, 2011; Warga, 1965;
Warga, 1972).

The idea originates in the general approach of
“separation of motions”. When operating with sys-
tem (13)–(15) we implicitly separate the following
essences:

• Separation in time – “slow” motions versus “fast”
dynamics. Informally speaking, the continuous
component of a solution to the measure differen-
tial equation (4) (performing slow motions) and
solutions to the limit system (14) “live” in differ-
ent time scales.

• Separation in space – the left and right one-sided
limits of an impulsive solution play the parts of
different (independent) states. Here one can re-
turn to Definition 1 and observe that it operates
with a couple of control processes. It is not hard
to see that – asymptotically – x̃ corresponds to
the left one-sided limit of a generalized solution,
while x describes the right one.

The following time-space transformation puts all
the separated objects in a common scale: the instants
of impulses will be extended into intervals and the di-
mension of the state space will increase.

On a time interval S .
= [0,S], S > T , we consider

the following auxiliary ordinary control system:

d
ds

ξ = α,
d
ds

y± = α f (y±)+G(y±)β±, (21)

d
ds η± = |β±|, (22)

d
ds

ζ = α
(
∆±η+ |∆±y|

)

+
(
|β+|+ |β−|

)
Q(η+,η−)

+ |β+|W−(y−)+ |β−|W+(y+), (23)

y±(0) = x0, (ξ,η+,η−,ζ)(0) = 0 ∈ R4, (24)

ξ(S) = T, ∆±(y,η)(S) = 0 ∈ Rn+1, ζ(S) = 0, (25)
y+(S) ∈Ω, η+(S)≤M, (26)

(α,β+,β−) ∈ U. (27)

Here, s is a new “extended” time; the control set U .
=

U(S) is formed by Borel measurable control functions
u .
= (α,β+,β−), where α,β± : S → R are such that

α(s)≥ 0 and α(s)+ |β+(s)|+ |β−(s)|= 1 λ-a.e. over
the interval S .

States of the reduced system are presented by
x .
= (ξ,y .

= (y+,y−),η
.
= (η+,η−),ζ)∈R2n+4, where

y±(s) ∈ Rn, and ξ(s),η±(s),ζ(s) ∈ R+.
The operation ∆± applied to a vector c of the struc-

ture (c+,c−), c± ∈Rr, returns the vector c+−c−, and
∆∓ =−∆±.

By x[u] we denote a Carathéodory solution of sys-
tem (21)–(24) on the interval S , under control u ∈ U.

Given an impulsive control ϑ ∈ Θ, we denote µ̂ .
=

λ+2|ϑ| and introduce a strictly increasing function

ϒ : T → [0, µ̂(T )]

as follows:
ϒ(t) = Fµ̂(t), t ∈ T .

Since ϒ is strictly monotone, there exists its inverse
[0, µ̂(T )]→ T , which we denote by υ.

The following theorem, proved in (Goncharova
and Staritsyn, 2015), claims that systems (13)–(16)
and (21)–(27) are equivalent to each other.
Theorem 1 1) Let ϑ ∈ Θ be such that the solution
x = x[ϑ] of (13), (14) meets conditions (15) and (16).
Then, there exist a real S ≥ T and a control u ∈ U(S)
such that the solution x= x[u] of control system (21)–
(24) satisfies the terminal constraints (25), (26), and

y− ◦ϒ = y+ ◦ϒ = x, υ = ξ. (28)

2) Assume that S ≥ T and u ∈ U(S) are chosen
such that the related solution x .

= (ξ,y,η,ζ)[u] of sys-
tem (21)–(24) satisfies constraints (25), (26). Define
the function x ∈ BV+(T ,Rn) by the composition

x = y+ ◦Ξ on T , (29)
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where Ξ : T → S is given by

Ξ(t) = inf{s ∈ S : ξ(s)> t}, t ∈ [0,T ),
Ξ(T ) = S. (30)

Then, x satisfies (13), (14) together with constraints
(15), (16).

Note that the function Ξ defined in (30) is strictly
monotone increasing, and right continuous. Further-
more, it is a pseudo-inverse of ξ, that is, the compo-
sition ξ◦Ξ coincides with the identity mapping Id on
T , while Ξ◦ξ = Id for continuity points t = ξ(s) of Ξ
(Miller, 2011).

The proof of Theorem 1 is based on the following
formulas for the direct and inverse transforms.

Direct transformation. Given ϑ = (µ,ν,{uτ}) ∈
Θ, put S .

= ϒ(T ), and introduce the control functions

α(s) .
=

{
(m1 ◦υ)(s), υ(s) ∈ suppνac

0, otherwise;
(31)

β±(s)
.
=





(uτ ◦θτ±)(s), ∃τ ∈ Dν,
s.t. s ∈ Sτ±,

(m2 ◦υ)(s)α(s), υ(s) ∈ supp νac,

(m3 ◦υ)(s), υ(s) ∈ supp νsc,

0, otherwise.

(32)

Here, m1
.
=

dλ
dµ̂

, m2
.
=

dµac

dλ
, m3

.
=

dµsc

dµ̂
(the deriva-

tives are regarded in the Radon-Nikodym sense);
Sτ+

.
= ϒ(τ−) + ν({τ}), Sτ−

.
= [ϒ(τ−),ϒ(τ)] \ Sτ+;

θτ+(s)
.
= s − ϒ(τ−), s ∈ ϒ(τ−) + [0,ν({τ})], and

θτ−(s)
.
= s−θτ+(s), s ∈ (ϒ(τ−)+ν({τ}),ϒ(τ)].

Inverse transformation. Given u = (α,β+β−) ∈
U(S), define a desired impulsive control ϑ =
(µ,ν,{uτ}) ∈Θ as follows:

(µ,ν) .
= d(Fµ,Fν), (33)

Fν(0−)−0, Fν
.
= η+ ◦Ξ, (34)

Fµ(0−) = 0, Fµ(t) =
∫ Ξ(t)

0
β+(s)ds, t ∈ T , (35)

uτ = β+ ◦ sτ, (36)

where sτ(θ)
.
= inf{S∈ [Ξ(τ−),Ξ(τ)] : θτ(s)> θ}, and

θτ(s) = η+(s)−η+(Ξ(τ−)), s ∈ [Ξ(τ−),Ξ(τ)].
Now we proceed to the convexification of the re-

duced system. Let F denote the right-hand side of
system (21)–(24). Consider the relaxed dynamics

dx(s)
ds
∈ co

{
F
(
x,u
)
| u ∈ U

}
(37)

with the initial state x(0) defined by (24). Here, coA
denotes the closed convex hull of a set A.
Theorem 2. The set X coincides with the trajectory
tube of (37), (24)–(26), up to a discontinuous time
change. Namely:

1) For any x ∈ X, there exist S ≥ T and a solu-
tion x = (ξ,y+,y−,η+,η−,ζ) of the terminally con-
strained differential inclusion (37), (24)–(26), such
that relations (28) hold.

2) Let x = (ξ,y+,y−,η+,η−,ζ) be a solution to
the Cauchy problem for differential inclusion (37) on
a time interval S = [0,S], S ≥ T , such that conditions
(25), (26) hold. Define x by (29). Then, x ∈ X.

This theorem is a straightforward generalization
of a similar result proved in (Goncharova and Starit-
syn, 2017) for absolutely continuous approximations
(xε, x̃ε)ε>0. The generalization consists in admitting
all approximations, not only absolutely continuous.
As the proof is not essentially different, but quite
lengthy, it is omitted here because of the lack of space.

Note that Theorem 2 does not claim that a limit so-
lution satisfies the measure-driven system (13), (14).
On the other hand, we can prove that limit solu-
tions somehow preserve the complementarity rela-
tions (15).

4 LIMIT BEHAVIOR OF
IMPULSIVE HYBRID
PROCESSES

Our goal now is to show that any limit solution x ∈
X, even not satisfying the impulsive hybrid system,
enjoys the hybrid property (15).

We will need the following simple assertion.
Lemma 1. Let {φε}ε>0 ⊂C and {ψε}ε>0 ⊂ AC be two
sequences of functions S → R such that {|ψ̇ε|}ε>0 is
uniformly essentially bounded by a certain constant
independent of ε, (φε,ψε)⇒ (φ,ψ) as ε→ 0, and ψ ∈
AC. Then,

∫

S
ψ̇ε φε dt→

∫

S
ψ̇φdt as ε→ 0.

Proof: Consider the difference
∫

S

(
ψ̇φ− ψ̇ε φε

)
dt =

∫

S

(
ψ̇− ψ̇ε

)
φdt +

∫

S
ψ̇ε
(
φ−φε

)
dt = I1ε + I2ε .

Thanks to the uniform boundedness of derivatives
{ψ̇ε}, the strong convergence ψε ⇒ ψ implies the
weak convergence of the sequence ψ̇ε to ψ̇. As ε→ 0,
this entails the convergence I1ε → 0.

In its turn, the convergence I2ε → 0 follows from
the uniform convergence φε⇒ φ, and, again, the uni-
form estimation on ψ̇ε.
Theorem 3. Let x ∈ X. Consider an approximat-
ing sequence of impulsive processes σε = (xε,ϑε),
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ϑε
.
= (µ,ν,{uτ})ε, xε

.
= x[ϑε], proposed by the defi-

nition of the set X. Then, the sequence νε converges
in the weak* topology of C∗ to a nonnegative mea-
sure ν such that ν(T ) ≤ M, and x satisfies (15) with
the measure ν.
Proof: Consider the monotone increasing map ϒε:

ϒε(t)
.
= t +Fνε(t)+ F̃νε(t), t ∈ T ,

and let υε denote its inverse. Set Sε
.
= ϒε(T ). On the

time intervals Sε
.
= [0,Sε], we can define a control uε

by formulas similar to (31), (32):

αε
.
=

{
mε

1 ◦υε, υε ∈ supp(νεac+ν̃εac)

0, otherwise;

β+ε
.
=





uτ
|uτ|+|ũτ| ◦θετ , ∃τ ∈ Dνε ,

s.t. s ∈ Sετ ,
mε

2+ ◦υε αε, υε ∈ supp νεac ,

mε
3+ ◦υε, υε ∈ supp νεsc ,

0, otherwise,

β−ε
.
=





ũτ
|uτ|+|ũτ| ◦θετ , ∃τ ∈ Dν̃ε ,

s.t. s ∈ Sετ ,
mε

2− ◦υε αε, υε ∈ supp ν̃εac ,

mε
3− ◦υε, υε(s) ∈ supp ν̃εsc ,

0, otherwise,

where mε
1

.
=

dλ
d(λ+νε + ν̃ε)

, mε
2+

.
=

dµεac

dλ
, mε

3+
.
=

dµεsc

d(λ+νε + ν̃ε)
, mε

2−
.
=

dµ̃εac

dλ
, mε

3−
.
=

dµ̃εsc

d(λ+νε + ν̃ε)
,

θετ(s)
.
= s+ϒε(τ−), s ∈ Sετ ; Sετ

.
= [ϒε(τ−),ϒε(τ)].

As is easily checked, the defined control sat-
isfies αε(s) ≥ 0 and αε + |β+ε(s)|+ |β−ε(s)| = 1,
and the respective solution xε

.
=(ξ,y+,y−,η+,η−,ζ)ε

to the transformed system (21)–(24) meets termi-
nal conditions (25), (26) with accuracy to within
ε. Furthermore, by a change of variable under
the sign of the Lebesgue-Stieltjes integral it holds
(y+,y−,η+,η−)ε ◦ϒε = (xε, x̃ε,Fνε ,Fν̃ε).

Consider the extension of solutions xε to the com-
mon interval S .

= [0,S .
= sup{Sε : ε > 0}] by constant

values: xε(s) = xε(Sε) on (Sε,S]. For the extended
functions, we keep the same notation xε.

By assumptions (H) and usual arguments based
on the Gronwall’s inequality, the sequence {xε}ε>0
is equicontinuous and uniformly bounded. Then,
by the Arzelá-Ascoli selection principle, there is
a uniformly converging subsequence. Let x .

=
(ξ,y+,y−,η+,η−,ζ) be the limit point.

Introduce the inverse time changes Ξε : Ξε(t)
.
=

inf{s ∈ S : ξε(s) > t}, Ξε(T ) = S, and Ξ : Ξ(t) .
=

inf{s ∈ S : ξ(s)> t}, Ξ(T ) = S (note that Ξε = ϒε for
all ε > 0). Thanks to the equalities Ξε = ϒε, we get
y+ε ◦Ξε = xε. At the same time, by arguments similar
to (Miller, 2011, Theorem 2.13), one easily derives
that y+ε ◦Ξε ⇁ y+ ◦Ξ. On the other hand, xε ⇁ x by
the assumption of the theorem. Thus,

y+ ◦Ξ = x. (38)

Analogously, setting η+ ◦Ξ = Fν, we obtain νε ⇁ ν.
Recall that xε meets all the terminal conditions with
accuracy to within ε. The estimate η+ε(S) ≤ M + ε
implies that η+(S)≤M. Thus, ν(T )≤M, as desired.

Consider the estimation ζε(S) ≤ ε. Thanks to the
non-negativity of the velocities d

ds ζε and the initial
condition ζε(0) = 0, the considered estimation can
be decomposed into the following system of integral
equalities:

J1ε
.
=

∫

S
ξ̇ε
(
∆±ηε + |∆±yε|

)
ds≤ ε, (39)

J2ε
.
=

∫

S

(
η̇+ε + η̇−ε

)
Q(ηε)ds≤ ε, (40)

J3ε
.
=

∫

S

(
η̇+ε W−(y−ε)+ η̇−ε W+(y+ε)

)
ds≤ ε.(41)

Note that x is a solution to differential inclusion (37),
(24) on S (Aubin and Cellina, 1984), and, therefore, it
is absolutely continuous. The compositions W± ◦ y±
and Q◦ (η+,η−) are continuous. Then, by Lemma 1

J1ε→ J1
.
=

∫

S
ξ̇
(
∆±η+ |∆±y|

)
ds,

J2ε→ J2
.
=

∫

S

(
η̇++ η̇−

)
Q(η)ds,

J3ε→ J3
.
=

∫

S

(
η̇+W−(y−)+ η̇−W+(y+)

)
ds

as ε→ 0, which, together with (39)–(41), establishes
J1 = J2 = J3 = 0.

Let us analyze these relations:
(i) The equality J1 = 0 implies ∆±(y,η) = 0 λ-a.e.

over supp ξ̇. Thanks to the continuity of (y,η), this
equality, in fact, holds for all s ∈ S \⋃τ[Ξ(τ−),Ξ(τ)].
Furthermore,

0 = J1 =
∫ Ξ(T )

0

(
∆±η+ |∆±y|

)
dξ(s) =

∫

T

(
∆±η+ |∆±y|

)
◦Ξdt,

which yields ∆±(y,η)◦Ξ= 0 λ-a.e. over T . By conti-
nuity of the latter composition over T \DdΞ and (25),
we then obtain: (y,η)+ ◦Ξ = (y,η)− ◦Ξ for all t ∈ T .

(ii) Note that, thanks to the definition of the func-
tion Q, the relation J2 = 0 together with dynamics (22)
and the endpoint conditions η+(0) = η−(0) = 0 and
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η+(S) = η−(S) imply the pointwise relation η− ≤ η+

on S . This is clear, since the functions η± have no
growth points beyond the domain, where η−(s) ≤
η+(s).

(iii) Now we can show that y+(Ξ(τ−)) ∈ Z−, and
y+(Ξ(τ)) ∈ Z+, which completes the proof of the
statement. To do this, let us focus on the remaining
equality: J3 = 0. The integral here is separated into
the series of integrals with nonnegative integrands.
The first term gives:

0 =
∫

S\⋃τ[Ξ(τ−),Ξ(τ)]

W±(y±)dη∓(s) =
∫

T

W±(y+◦Ξ)dνc(t),

which yields the continuous part of the desired com-
plementarity (5). Consider the remaining conditions

0=
∫ Ξ(τ)

Ξ(τ−)
|β+|W−(y−)ds =

∫ Ξ(τ)

Ξ(τ−)
|β−|W+(y+)ds, τ ∈ DdΞ.

We now claim that y−(Ξ(τ)) ∈ Z−, and y+(Ξ(τ)) ∈
Z+ for all discontinuity points of Ξ, and, due to obser-
vation (i), this would finally imply the hybrid property
(15). Assume, ad absurdum, that, say, y−(Ξ(τ)) /∈Z−
for some τ∈DdΞ. Then, by continuity, W X

Z−(y−(s))>
0 on an interval Ŝ = [Ξ(τ−), ŝ). This immediately im-
plies that β+ = 0 λ-a.e. on Ŝ , and therefore η̇+ = 0,
η̇− = (1−|β+|) = 1 λ-a.e. on Ŝ , i.e., η+ stays in rest,
while η− increases. Since η+(Ξ(τ−)) = η−(Ξ(τ−))
by (i), this fact contradicts estimation (ii). Inclusions
y+(Ξ(τ)) ∈ Z+ are validated by similar arguments.

Due to (38), observing that discontinuity points of
the function x .

= y+ ◦Ξ are concentrated within the
set of jump points of the function Ξ, we immediately
obtain the discrete part of inclusions (5), as desired.

In other words, the hybrid property is preserved
under the designed relaxation.

5 OPTIMAL CONTROL

Consider the following optimal impulsive control
problems:

(P) Minimize I(σ) = ϕ(x(T )) over σ ∈ Σ;

(P) Minimize ϕ(x(T )) over x ∈ X.

Here, ϕ is a given terminal cost being a lower semi-
continuous function Rn→ R.

The ordinary counterparts or these problems are

(RP) Minimize ϕ(y+(S)) subject to (21)–(27);

(RP) Minimize ϕ(y+(S)) subject to (37), (24)–(26).

As a theoretical application of the developed model
transformation, we establish the equivalence between
problems (P) and (RP) (respectively, between (P)
and (RP)), which would open the possibility to treat
the impulsive, non-regular models by ordinary analyt-
ical methods or existing software.
Theorem 4. 1) For problems (P) and (RP), the exis-
tence of a solution to one of them implies the exis-
tence of a solution to the other, and inf(P) = inf(RP).

2) Solutions to problems (P) and (RP) do exist,
furthermore, min(P) = min(RP).

Proof: We do the first assertion, as the second
one is its corollary. Consider a minimizing sequence
for {σk

.
= (xk,ϑk)} ⊂ Σ of problem (P). Assume, ad

absurdum, that inf(P) .
= limk→∞ ϕ(xk(T ))> inf(RP).

Then, there should exist Ŝ≥ T and û∈U(Ŝ) such that
the respective solution x̂ = (ξ̂, ŷ+, ŷ−, η̂+, η̂−, ζ̂, ι̂) of
system (21)–(24) satisfies rightpoint conditions (25),
(26), and inf(P) > ϕ(ŷ+(Ŝ)). Thanks to Theorem
1, we can define a control ϑ̂ ∈ Θ such that x̂ =
x[ϑ̂] solves (13), (14) and is related with xk by
the inverse transform (29). Then, the inequality
limk→∞ ϕ(xk(T ))> ϕ(x̂(T )) contradicts the definition
of the sequence xk. Thus, inf(P) ≤ inf(RP). By dis-
carding the dual hypothesis, we obtain the inverse in-
equality inf(RP)≤ inf(P). Next, by contradiction, we
prove that a minimizer for one problem is a minimizer
for the other one, up to direct or inverse transform.

6 CONCLUSIONS

The addressed model statement comprises a large va-
riety of reasonable hybrid systems arising in mechan-
ics. In our opinion, the developed approach can be
efficient in modeling and analysis of biomechanical
systems, where impulsive effects such as “almost in-
stantaneous” blocking/releasing degrees of freedom,
associated with joints of limbs of biological beings,
are, sometimes, not really meaningfully described in
terms of friction or unilateral contact.

A challenging option for further study is the exten-
sion of the obtained results to systems with quadratic
impulses, representing fast vibration of invisibly
small amplitude (Bressan and Rampazzo, 1994).
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dynamics and the Painlevé paradoxes. C. R. Acad. Sci.
Paris Sér. I Math., 325(6):689–693.

Stewart, D. E. (2000). Rigid-body dynamics with friction
and impact. SIAM Rev., 42(1):3–39.

Teel, A. R., Sanfelice, R. G., and Goebel, R. (2012). Hybrid
control systems. In Mathematics of complexity and dy-
namical systems. Vols. 1–3, pages 704–728. Springer,
New York.

van der Schaft, A. J. and Schumacher, J. M. (2001). Mod-
elling and analysis of hybrid dynamical systems. In
Advances in the control of nonlinear systems (Murcia,
2000), volume 264 of Lecture Notes in Control and
Inform. Sci., pages 195–224. Springer, London.

Vinter, R. B. and Pereira, F. L. (1988). A maximum princi-
ple for optimal processes with discontinuous trajecto-
ries. SIAM J. Control Optim., 26(1):205–229.

Warga, J. (1965). Variational problems with unbounded
controls. J. Soc. Indust. Appl. Math. Ser. A Control,
3:424–438.

Warga, J. (1972). Optimal control of differential and func-
tional equations. Academic Press, New York-London.

Yunt, K. (2011). An augmented Lagrangian based shoot-
ing method for the optimal trajectory generation of
switching Lagrangian systems. Dyn. Contin. Discrete
Impuls. Syst. Ser. B Appl. Algorithms, 18(5):615–645.

Yunt, K. and Glocker, C. (2007). Modeling and optimal
control of hybrid rigidbody mechanical systems. In
Hybrid systems: computation and control, volume
4416 of Lecture Notes in Comput. Sci., pages 614–
627. Springer, Berlin.

Zavalishchin, S. T. and Sesekin, A. N. (1997). Dynamic im-
pulse systems, volume 394 of Mathematics and its Ap-
plications. Kluwer Academic Publishers Group, Dor-
drecht. Theory and applications.

Relaxation and Optimization of Impulsive Hybrid Systems - Inspired by Impact Mechanics

485


