
RmPerm: A Tool for Android Permissions Removal∗

Simome Aonzo, Giovanni Lagorio and Alessio Merlo
DIBRIS, University of Genoa, Italy

Keywords: Android Security, Mobile Security, Privacy and Data Protection.

Abstract: Android apps are generally over-privileged, i.e., they request more permissions than they actually need to
execute properly. Prior to version 6 users can install an app only by acceptingall its requested permissions,
while newer Android versions allow users to dynamically grant/denygroupsof permissions. Since some
them impact on users’ privacy, we argue that users should be granted control at the granularity of the single
permission. We propose a novel approach, which does not require any change to the underlying OS, allowing
users to selectively remove permissions from apps before installing them, and with a finer granularity. We
developed RmPerm, an open-source tool, that implements our methodology, and we present the viability of
our approach via an empirical assessment on 81K apps, underlining that, in the worst case, up to 86% of the
apps can execute without crashing whennone of the requested privacy-related permissions are granted.

1 INTRODUCTION

Apps are the main attack vector for Android devices;
therefore, they should require the minimum set of per-
missions to work properly, while satisfying the least
privilege principle to reduce the attack surface. How-
ever, apps are generally over-privileged (Felt et al.,
2011a) since developers tend to require more permis-
sions than necessary to reduce the probability that
their app crashes. Furthermore, it is worth noticing
that some permissions are particularly important for
the privacy of the user, like, for instance, those that
allow apps to profile the user by accessing her con-
tacts, messages and call logs. These permissions are
calleddangerous by the Android documentation, and
we argue that users should be granted more control
over them.
Android versions prior to 6, that have still an adop-
tion of 71.5% (and, 2017b), grant a very coarse-
grained control over permissions, i.e., the user can-
not remove permissions from apps, and should
grant all permissions requested by any app in or-
der to install it. Newer versions (i.e., 6 and
later) support dynamic management of groups of
permissions, but they do not allow the user to
grant/deny single permissions. To overcome these
limitations, we put forward an approach allowing to

∗Partially supported by CINI Cybersecurity National Lab-
oratory within the project FilieraSicura funded by CISCO
Systems Inc. and Leonardo SpA

selectively remove permissions from apps that does
not require any modification to the underlying oper-
ating system and is compatible with all Android ver-
sions. A key strength of our approach is that, when
a user decides to remove certain permissions from an
app, we can guarantee, by design, that no Java nor
any native code could ever exploit such permissions,
no matter what. The worst case scenario is a crash
of the less-privileged app, but not a privacy leak. We
have implemented our methodology in a tool,RmPerm
(rmp, 2017), that we use to extensively assess the vi-
ability of the approach on a set of 81,000 apps.
RmPerm is anopen-source project implemented in
Java, and consists of a console application and a li-
brary. In this respect, we also implemented an app,
ApkMuzzle (apk, 2017), using RmPerm as external li-
brary. We argue that releasing a tool like RmPerm as
open-source is a liability, as any tool that repackages
apps can subtly add malicious code. By releasing Rm-
Perm as open source we grant anyone the possibility
to verify its behavior, by inspecting the source code.
The rest of the paper is organized as follows. Sec-
tion 2 describes our methodology for permission re-
moval, while Section 3 assesses its viability and per-
formance. Section 4 sets our proposal within the cur-
rent state-of-the-art. Finally, Section 5 concludes and
points out some future work.

Aonzo, S., Lagorio, G. and Merlo, A.
RmPerm: A Tool for Android Permissions Removal.
DOI: 10.5220/0006420203190326
In Proceedings of the 14th International Joint Conference on e-Business and Telecommunications (ICETE 2017) - Volume 4: SECRYPT, pages 319-326
ISBN: 978-989-758-259-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

319



2 PERMISSION REMOVAL

A quite direct way to remove a set of permissionsP=
{p1, . . . , pn} from an appA is simply to modify its
manifest, contained in the APK ofA, obtainingA′.
This action has two consequences:

1. the digital signatures, for the APK ofA, cannot
be reused forA′ since its manifest, and so the re-
sulting APK, differs from the original;

2. A′ may crash due to unexpected exceptions,
thrown by the invocation of some API method that
needs some permissionpi to run. Indeed, prior to
Android 6, an app asking for the set of permis-
sionsP gets installed only if the user grants the
whole setP, so apps could assume to be granted
all asked permissions.

Since the signatures has been produced using an
unknown secret key, we have no choice but to signA′

with another (secret) key. The only user visible effect
is that Android will considerA andA′ two different
apps; however, since they have the same name, only
one of them can be installed at any time. We do
not consider this a problem; in some sense theyare
different: A′ is probably safer thanA! To avoid thatA′

crashes because of an unexpected exception, due to a
missing permissionp, we carry out a customization
to all invocations of API methods that need the
permissionp. This, in turn, means that we need a
mapping between permissions and the API methods
that require such permissions. Surprisingly, this map-
ping is not provided by the official documentation.
However, we were able to obtain the mapping from
the Androguard Project (and, 2017a).

@CustomMethodClass
public class CustomMethods {
@MethodPermission(
permission="android.permission.INTERNET",
defClass="java.net.URL")
public static InputStream openStream(URL u)

{ return new FakeInputStream(); }

@AuxiliaryClass
public static class FakeInputStream

extends InputStream {
@Override
public int read() throws IOException
{ return 0; }

}
}

Figure 1: Example of method redirection.

UsingDexlib2 (dex, 2017) we have implemented
RmPerm, a tool toredirect selected API method in-

vocations to our own alternative implementations.2

Custom methods typically just return some fake data
to the app, to let it proceed. Consider, for in-
stance, the methodexecute, declared inorg.apache
.http.impl.client.DefaultHttpClient: it needs the
INTERNET permission and returns aorg.apache.http
.HttpResponse; in this case, we cannot just remove
the invocation or return anull reference, because that
would likely make the app crash. In such cases we
must mock a “reasonable” return value. In the gen-
eral case, when we want to redirect the invocation
for an instance methodm of classC, with the signa-
ture Tr m(T1, . . . ,Tn), we define a new static method
Tr m(C,T1, . . . ,Tn), defined in a classX that we add
to the APK. The first parameter, of typeC, plays
the role of thereceiver of the corresponding instance
method. This kind of setup is similar to C# extension
methods. Then, we rewrite all the invocations of the
form e0.m(e1, . . . ,en), wheree0 has static typeC, with
X .m(e0,e1, . . . ,en)

3.
To make writing custom replacement meth-

ods as easy as possible, our tool reads a DEX
file and searches for classes and methods that
are annotated with Java custom annotations,
that we have defined: @CustomMethodClass,
@MethodPermission and @AuxiliaryClass. The
annotation @CustomMethodClass simply marks
classes that contain replacement methods; this is
simply an optimization to avoid to process each
and every method of the input file. The annotation
@MethodPermission(p, defClass) indicates the
involved permissionp and the defining class (in the
Android API) defClass. Finally, @AuxiliaryClass
marks the classes that must be copied into the
repackaged app, because they are needed by the
custom methods. For instance, Fig. 1 shows class
CustomMethods, which contains a redirection for
methodopenStream defined in classjava.net.URL.

3 EXPERIMENTAL
ASSESSMENT

To assess the effectiveness and efficiency of the pro-
posed methodology, we have carried out an empiri-
cal assessment by executing RmPerm on a dataset of
81,000 APKs randomly downloaded from three dif-
ferent markets, namely Google Play (70,000 APKs),

2As an optimization, RmPerm can automatically remove
the invocations ofvoid methods, when such methods do
not have an explicit custom replacement.

3Here, to make the explanation simpler, we use a source-
like syntax but, of course, we work directly at DEX byte-
code level.

SECRYPT 2017 - 14th International Conference on Security and Cryptography

320



 0

 10

 20

 30

 40

 50

 60

WR
IT
E_
EX
TE
RN
AL
_S
TO
RA
GE

RE
AD
_P
HO
NE
_S
TA
TE

GE
T_
AC
CO
UN
TS

AC
CE
SS
_C
OA
RS
E_
LO
CA
TI
ON

RE
AD
_E
XT
ER
NA
L_
ST
OR
AG
E

AC
CE
SS
_F
IN
E_
LO
CA
TI
ON

CA
ME
RA

RE
AD
_C
ON
TA
CT
S

RE
CO
RD
_A
UD
IO

CA
LL
_P
HO
NE

WR
IT
E_
CO
NT
AC
TS

RE
CE
IV
E_
SM
S

SE
ND
_S
MS

RE
AD
_S
MS

RE
AD
_C
AL
EN
DA
R

WR
IT
E_
CA
LE
ND
AR

PR
OC
ES
S_
OU
TG
OI
NG
_C
AL
LS

RE
AD
_C
AL
L_
LO
G

WR
IT
E_
CA
LL
_L
OG

RE
CE
IV
E_
MM
S

RE
CE
IV
E_
WA
P_
PU
SH

US
E_
SI
P

BO
DY
_S
EN
SO
RS

AD
D_
VO
IC
EM
AI
L

A
p
p
 
%

Figure 2: Distribution of dangerous permissions in the dataset.

Aptoide (5,500 APKs) and Uptodown (5,500
APKs).

Since we could not conceivably choose, for each
app of the dataset, a different set of permissions to re-
move, we have decided to assess the worst-case sce-
nario, that is, to removeall dangerous permissions
from each appA, producing a new appA′; then, we
have checked whether the less-privileged appA′ could
be installed and execute properly. This process is de-
tailed below.

Dangerous permissions refer to the Android clas-
sification (req, 2017); there currently are 24 danger-
ous permissions. They are strictly related to the user’s
privacy as they allow app to access storage, camera,
GPS coordinates, user’s calendar and contacts, just to
cite a few.
We extracted all permissions requested by the apps in
our dataset by systematically parsing the app manifest
file, that contains all permissions required by an app.
Fig. 2 shows the distribution of dangerous permis-
sions in the dataset. Intuitively, the x-axis shows the
24 permissions ordered accordingly to their frequency
on the dataset. The y-axis indicates the percentage of
apps requesting the permission. Fig. 3 plots the top
24 permissions requested by apps in the same way.

Testing RmPerm. A single automated test, for each
appA, runs as follow:

1. RmPerm gets the APK of appA, and builds up a
new appA′ that does not require any dangerous
permission.

2. A′ is installed on an actual Android device.

3. If this step fails, the originalA is installed, in order
to verify whether the failure is due to the modifi-
cation carried out by RmPerm or it is independent
from the permission removal.

4. If the installation ofA′ has been successful, its
behavior is tested by generating a stream of 512
pseudo-random user events withMonkey (mon,
2017), seeded by a random numbern. Using dif-
ferent seed values leads to generate distinct se-
quences of user events. IfA′ fails, this can be due
either to the removal of permissions or to the pres-
ence of bugs in the original appA.

5. To ascertain this, we stimulateA with the same
stream of events, generated by seedingMonkey
with the same seedn.

Through previous steps, we can empirically as-
sess whether the removal of dangerous permissions
through RmPerm leads to failures. We carried out the

RmPerm: A Tool for Android Permissions Removal

321



 0

 20

 40

 60

 80

 100

IN
TE
RN
ET

AC
CE
SS
_N
ET
WO
RK
_S
TA
TE

*W
RI
TE
_E
XT
ER
NA
L_
ST
OR
AG
E

AC
CE
SS
_W
IF
I_
ST
AT
E

WA
KE
_L
OC
K

*R
EA
D_
PH
ON
E_
ST
AT
E

VI
BR
AT
E

c2
dm
.R
EC
EI
VE

*G
ET
_A
CC
OU
NT
S

*A
CC
ES
S_
CO
AR
SE
_L
OC
AT
IO
N

*R
EA
D_
EX
TE
RN
AL
_S
TO
RA
GE

*A
CC
ES
S_
FI
NE
_L
OC
AT
IO
N

ve
nd
in
g.
BI
LL
IN
G

RE
CE
IV
E_
BO
OT
_C
OM
PL
ET
ED

*C
AM
ER
A

GE
T_
TA
SK
S

*R
EA
D_
CO
NT
AC
TS

SY
ST
EM
_A
LE
RT
_W
IN
DO
W

*R
EC
OR
D_
AU
DI
O

gs
f.
RE
AD
_G
SE
RV
IC
ES

US
E_
CR
ED
EN
TI
AL
S

WR
IT
E_
SE
TT
IN
GS

SE
T_
WA
LL
PA
PE
R

*C
AL
L_
PH
ON
E

A
p
p
 
%

Figure 3: Top 24 requested permissions in the dataset. Dangerous permissions are labeled with*.

Table 1: RmPerm: Performance and size statistics.

#Permissions SizeRatio Exec. time[s] Test results
AppName original new ∆ APK DEX PC Tablet Inst. Monkey

AdobeReader 6 3 3 1.16 1.00 5.70 27.41
CandyCrushSaga 10 8 2 1.08 0.99 6.17 30.83
Facebook 48 33 15 1.03 0.94 4.04 27.73
Instagram 25 17 8 1.19 1.01 7.13 30.15
LedFlashLight 9 8 1 1.06 1.00 6.60 27.47
MGuard 35 33 2 0.97 1.00 8.46 32.57 X n. a.
Shazam 20 13 7 1.04 1.00 7.25 35.49 X
Skype 45 33 12 1.13 1.00 11.49 44.82
Snapchat 15 7 8 1.07 1.00 5.14 25.17
Spotify 23 19 4 1.11 1.00 8.49 35.50 X
SwiftKey 14 11 3 1.18 1.00 9.62 31.90 X
Telegram 32 21 11 1.12 1.00 5.94 23.94 X
Twitter 31 22 9 1.45 1.00 8.76 28.19
Viber 56 41 15 1.21 1.00 7.65 29.35
Whatsapp 50 38 12 1.45 1.00 7.38 26.95 X
... ... ... ... ... ... ... ... ... ...

Average 6.8 4.9 2.1 1.1 1.1 3.9 27.1
Std deviation 5.9 4.4 2.4 0.2 3.1 3.3 9.8

SECRYPT 2017 - 14th International Conference on Security and Cryptography

322



(a) PC.

0 2 4 6 8 10

Dex size [MiB]

0

5

10

15

20

25

30

35

40

T
im

e
 [
s]

Tablet data
Fitted curve

(b) Tablet.
Figure 4: Time required to repackage an app.

experimental assessment on a Dell XPS 9530 (Ubuntu
16.04, Intel i7-4712HQ @ 2.30GHz, 16GB RAM),
as well as on two Asus Z170CG (Android 5.0.2, In-
tel Atom x3-C3200 @ 900MHz, 1GB RAM) that we
used to install and (automatically) stimulate the apps.

Our results indicate that on 81,000 samples,
2,358 repackaged apps failed in step 2; that is, they
could not be installed successfully. Among these, 572
failed the step 3 too; this means that the correspond-
ing original APKs were already broken in some way.
Therefore, we discarded them and we considered a
new set, consisting of the original samples except for
the already broken APKs; that is, 81,000− 572=
80,428 apps. On this set, the 98%= 78,642/80,428
of repackaged apps have been successfully installed.
Then, we stimulated the installed apps according
to step 4. Among these, 66,051 were repackaged
and stimulated without crashes, while 14,377 (=
80,428− 66,051) failed and required further analy-
sis. Therefore, we applied step 5 to such apps obtain-
ing that 3,633 original apps crashed, thereby proving
that the same problems affected the original app, too.
For this reason, we also discarded these APKs. Sum-
ming up, the 86%= 66,051/76,795 of working apps
have been successfully modified, installed and exe-
cuted properly after removing all dangerous permis-
sions.

Discussion on Global Statistics. We analyzed the
average values for the whole dataset in terms of per-
mission removal, size of APKs and DEX after repack-
aging, as well as the time required for the whole pro-
cess. To this aim, Table 1 summarizes global and
some per-app statistics; the database containing all the
data can be freely downloaded (sql, 2017). Regard-
ing permissions, removing dangerous ones has led to
the removal, on average, of 38% of all app permis-
sions, as original apps have on average 6.8 permis-

sions while repackaged ones have 4.9, with a large
standard deviation value in both cases.
Repackaging phase does not alter the size of the
APKs significantly; on average, repackaged APKs are
smaller by a factor of 1.1, with a standard deviation of
0.2. Modified DEX files are smaller on average, with
a factor of 1.1 and a large standard deviation of 3.1.
This is due to the fact that, when removing a set of
permissionsP, we also remove all invocations tovoid
API methods, requiring some permissionp ∈ P, for
which we do not have explicitly defined a redirection.
Furthermore, the size of the original manifest file is
decreased, but the size of DEXs is increased due to
the addition of custom classes/methods.

RmPerm Performance. We have measured the
time needed to remove all dangerous permissions
from an app, in two different use cases: when Rm-
Perm is running on a PC, and when RmPerm is run-
ning on an Android device. We have measured the
running time on all APKs of our sample set when run-
ning on the PC, while we have randomly picked 1,000
apps when RmPerm was run on the Android device.
Indeed, we were only interested to check whether run-
ning RmPerm on an Android device was practical and
if the running time was still linear in the size of the
DEX file. Fig. 4 shows the performance results: the
DEX size, says, is generally a sensible parameter for
predicting the running timet; indeed, as shown by the
fitted curve,t(s) is roughly a linear function. How-
ever, there are cases where a relatively small DEX
file is contained in a large APK; for instance, this is
the case for apps containing graphical/multimedia re-
sources, like games. In these cases, the time to copy
the resources from the original APK into the new one
may prevail the time needed to process and rewrite
the bytecode. This is the reason for the jitters in both
graphs. Results have been positive in both regards:

RmPerm: A Tool for Android Permissions Removal

323



while obviously slower, running RmPerm on the de-
vice requires less than 30 seconds on average, and the
times are still linear in the size of the DEX file, even
though the slope is less steep and there is a constant
cost, presumably due to the start-up time of RmPerm
on Android.

4 RELATED WORK

As shown by previous work (Felt et al., 2011b;
Felt et al., 2011a) , many Android apps areover-
privileged, that is, they request more permissions than
they actually need, thereby making the built-in per-
mission system rather inadequate to protect the users
and their privacy. To address these concerns, some
authors have proposed to enrich the built-in security
framework, by modifying the underlying operating
system, and requiring changes to the app sources, in
order to exploit the new features.
One of the top problems related to Android permis-
sions is the fact that, up to Android 6, the protection
offered by the system was anall-or-nothing choice
at installation time, when the user was asked to ac-
ceptall permissions requested by the app, or to abort
the installation altogether. Moreover, with the current
permissions management, if an app requests a dan-
gerous permission, belonging to a certain permission
group, and the user agrees on its usage, then the user is
actually agreeing on acceptingall permissions of the
same group. That is, any subsequent update of the app
can request, and be silently granted, any other permis-
sion belonging to an accepted group. Clearly, a fine-
grained control was needed. For this reason, many
proposals, including ours, tackle the built-in permis-
sion system directly.Apex (Nauman et al., 2010) is
a policy enforcement framework that allows users to
selectively grant permissions to apps, as well as im-
pose constraints on the usage of resources. This im-
plementation requires some changes to the Android
code base so, while we share a similar goal, the strik-
ing difference is that we require no changes to the un-
derlying system.
Some work addresses privacy concerns directly:
AppFence (Hornyack et al., 2011) retrofits the An-
droid operating system to protect private data from
being exfiltrated, by replacingshadow data, in place
of data that the user wants to keep private, and
by blocking network transmissions that contain data
the user marked for on-device use only.Mock-
Droid (Beresford et al., 2011) modifies the Android
operating system to allow users tomock the app’s ac-
cesses to a resources . We use a similartrick to avoid
that apps crash due to unexpected exceptions, once

we have removed some of their permissions. How-
ever, we repackage apps and leave the operating sys-
tem untouched. Finally,TISSA (Zhou et al., 2011) is
a privacy-mode implementation in Android. All the
above proposals allow to run unmodified apps more
safely, at the cost of modifying the underlying An-
droid operating system, which severely hampers the
widespread adoption of these solutions.
Other proposals (Xu et al., 2012; Jeon et al., 2012;
Davis et al., 2012; Backes et al., 2013; Davis and
Chen, 2013; Reddy et al., 2011) bypass the need to
modify the underlying operating system by repackag-
ing arbitrary apps to attach user-level sandboxing and
policy enforcement code. These proposals, like ours,
use static analysis to identify the usage of API meth-
ods and instrument the bytecode to control the access
to these invocations. However, with the exception
of (Jeon et al., 2012), discussed below, all of these
do not remove permissions from the manifest of the
original appA, when creating the repackaged appA′;
thus, the underlying OS process that runsA′ retains all
permissions of the original appA. This means that in-
complete/flawed implementations of bytecode rewrit-
ing can lead to bypassing access control mechanisms,
e.g., by using Java reflection and/or native code (Hao
et al., 2013).
Dr. Android (Jeon et al., 2012) is a tool that uses byte-
code rewriting to replace Android permissions with
a specified set of fine-grained versions, that are ac-
cessed through a separate service, calledMr. Hide.
In this case bytecode rewriting is adopted for replac-
ing API calls, used by the original app, with interpro-
cess communication primitives to queryMr. Hide ser-
vice. These primitives are rather expensive, so there
is a significant slowdown on API invocations. With
our approach, instead, API invocations are “short-
circuited” or removed altogether, making repackaged
apps slightlyfaster than the original.
Finally, Boxify (Backes et al., 2015) has introduced a
concept of app sandboxing on stock Android, based
on app virtualization and process-based privilege sep-
aration. While this approach eliminates the need to
repackage apps, it requires a lot of additional code
(about 12 K lines of Java code, plus 3.5 K LoC of
C/C++, according to the paper), which should be care-
fully audited4. On the contrary, our approach simply
requires to customize 57 trivial Java methods. More-
over, Boxify requires the presence of a fully privi-
leged controller process, calledBroker, which is an
attractive target for privilege escalation attacks.

4Authors promised to make the source code available, but
at the time of writing, more than a year later, it is still un-
available.

SECRYPT 2017 - 14th International Conference on Security and Cryptography

324



5 CONCLUSION AND FUTURE
WORK

We have presented a novel approach, and its sup-
porting tool, to enable Android users to better pro-
tect their privacy by selectively removing permissions
from any app, on any Android version. Indeed, our
approach, which removes permissions from the set
requested by an app by rewriting its APK, does not
require any modification to the underlying operating
system and is thus compatible with all versions and
hardware architectures. The core idea is to remove
the (user-selected) permissions from the app mani-
fest, while redirecting API invocations, which need
those removed permissions, to custom methods that
return properly-crafted objects. These redirections,
that we introduce by rewriting the DEX bytecode,
aim at avoiding the throwing of (unexpected) secu-
rity exceptions at runtime, which would make the
app crash. We have implemented this approach in an
open-source tool, RmPerm, that we have used to as-
sess the effectiveness of our idea on a set of 81,000
real-world samples. The experimental results have
been encouraging; indeed, we have blindly removed,
from these apps,all dangerous permissions obtain-
ing that 86% of these rewritten apps can be installed
and executed without crashing. We plan to run more
fine-grained tests to assess which subsets of danger-
ous permissions are more problematic. Obviously,
we could not expect a 100% success-rate: some apps
do need some of the permissions they request. How-
ever, as we expected, the majority of them can be run
equally fine with a strict subset of the permissions
they originally requested. By using RmPerm, users
can freely decide where to draw the “privacy line” and
can run virtually any app without disclosing more per-
sonal information than they want to.
A limitation of our current implementation is that
apps using anti-tampering techniques can detect that
they have been rewritten. However, our experiments
indicate that, for the time being, Android apps very
seldom adopt anti-tampering techniques. Another
limitation is that RmPerm currently redirects only “di-
rect” API invocations, that is, we do not even try to
redirect API invocations executed through the use of
Java reflection or native code. We are considering
how to extend our approach to intercept those reflec-
tive invocations too; however, this limitation is not
severe as it may sound. With our approach, no Java
nor any native code could ever exploit a removed per-
mission, no matter what, since involved permission
requests are actually removed from the app manifest.
As remarked, the worst case scenario is a crash of the
less-privileged app, but not a privacy leak.

Android 6 has introduced the possibility of both in-
stalling apps without granting all requested permis-
sions at once, and toggling permissions at a later
time. So, the usefulness of RmPerm could appear
as dramatically reduced through the growing adop-
tion of the latest Android versions. However,
RmPerm offers a finer grained permission selection,
which is unavailable in the Android user interface.
In fact, Android 6 allows the user to only grant/-
denygroupsof permissions. For instance, because the
user-level permission groupcontacts consists of the
set of permissionsREAD_CONTACTS, WRITE_CONTACTS
andGET_ACCOUNTS, an user cannot grant an app the

ability to read his/her contacts, without granting the
ability to write them too. While, by using RmPerm,
such a policy is easily enforceable.

REFERENCES

(2017a). Androguard permission mapping. https://github.
com/androguard. Accessed 2017-06-02.

(2017b). Android: distribution of market shares at
march 2017. https://developer.android.com/about/
dashboards/index.html. Accessed 2017-06-02.

(2017). Apkmuzzle app. https://play.google.com/
store/apps/details?id=it.saonzo.apkmuzzle.

(2017). dexlib2. https://github.com/JesusFreke/ smali/tree/-
master/dexlib2. Accessed 2017-06-02.

(2017). Empirical assessment with rmperm. https://github.
com/CSecLab/BatchRmPerm/tree/master/dbDump.
Accessed 2017-06-02.

(2017). Monkey. https://developer.android.com/studio/test/
monkey.html. Accessed 2017-06-02.

(2017). Requesting permissions. https://developer. an-
droid.com/guide/topics/permissions/requesting.html.
Accessed 2017-06-02.

(2017). Rmperm tool. https://github.com/CSecLab/ Rm-
Perm. Accessed 2017-06-02.

Backes, M., Bugiel, S., Hammer, C., Schranz, O., and von
Styp-Rekowsky, P. (2015). Boxify: Full-fledged App
Sandboxing for Stock Android. In24th USENIX Se-
curity Symposium.

Backes, M., Gerling, S., Hammer, C., Maffei, M., and von
Styp-Rekowsky, P. (2013). AppGuard – enforcing
user requirements on Android apps. InInternational
Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems. Springer.

Beresford, A. R., Rice, A., Skehin, N., and Sohan, R.
(2011). Mockdroid: trading privacy for application
functionality on smartphones. InProceedings of the
12th workshop on mobile computing systems and ap-
plications. ACM.

Davis, B. and Chen, H. (2013). Retroskeleton: retrofitting
Android apps. InProceeding of the 11th annual inter-
national conference on Mobile systems, applications,
and services, pages 181–192. ACM.

RmPerm: A Tool for Android Permissions Removal

325



Davis, B., Sanders, B., Khodaverdian, A., and Chen, H.
(2012). I-ARM-Droid: A rewriting framework for in-
app reference monitors for Android applications.Mo-
bile Security Technologies, 2012(2):17.

Felt, A. P., Chin, E., Hanna, S., Song, D., and Wagner, D.
(2011a). Android permissions demystified. InPro-
ceedings of the 18th ACM conference on Computer
and communications security, pages 627–638. ACM.

Felt, A. P., Greenwood, K., and Wagner, D. (2011b). The
effectiveness of application permissions. InProceed-
ings of the 2nd USENIX conference on Web applica-
tion development, pages 7–7.

Hao, H., Singh, V., and Du, W. (2013). On the effectiveness
of api-level access control using bytecode rewriting
in android. InProceedings of the 8th ACM SIGSAC
symposium on Information, computer and communi-
cations security, pages 25–36. ACM.

Hornyack, P., Han, S., Jung, J., Schechter, S., and Wether-
all, D. (2011). These aren’t the droids you’re looking
for: retrofitting Android to protect data from impe-
rious applications. InProceedings of the 18th ACM
conference on Computer and communications secu-
rity, pages 639–652. ACM.

Jeon, J., Micinski, K. K., Vaughan, J. A., Fogel, A., Reddy,
N., Foster, J. S., and Millstein, T. (2012). Dr. An-
droid and Mr. Hide: fine-grained permissions in An-
droid applications. InProceedings of the second ACM
workshop on Security and privacy in smartphones and
mobile devices, pages 3–14. ACM.

Nauman, M., Khan, S., and Zhang, X. (2010). Apex: ex-
tending Android permission model and enforcement
with user-defined runtime constraints. InProceedings
of the 5th ACM Symposium on Information, Computer
and Communications Security. ACM.

Reddy, N., Jeon, J., Vaughan, J., Millstein, T., and Foster,
J. (2011). Application-centric security policies on un-
modified android.UCLA Computer Science Depart-
ment, Tech. Rep, 110017.

Xu, R., Saïdi, H., and Anderson, R. (2012). Aurasium:
Practical policy enforcement for Android applica-
tions. In Presented as part of the 21st USENIX Se-
curity Symposium (USENIX Security 12), pages 539–
552.

Zhou, Y., Zhang, X., Jiang, X., and Freeh, V. W. (2011).
Taming information-stealing smartphone applications
(on Android). In International conference on Trust
and trustworthy computing, pages 93–107. Springer.

SECRYPT 2017 - 14th International Conference on Security and Cryptography

326


