
Initialization of Recursive Mixture-based Clustering with Uniform
Components

Evgenia Suzdaleva1, Ivan Nagy1,2, Pavla Pecherková1,2 and Raissa Likhonina1
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Abstract: The paper deals with a task of initialization of the recursive mixture estimation for the case of uniform com-
ponents. This task is significant as a part of mixture-based clustering, where data clusters are described by
the uniform distributions. The issue is extensively explored for normal components. However, sometimes the
assumption of normality is not suitable or limits potential application areas (e.g., in the case of data with fixed
bounds). The use of uniform components can be beneficial for these cases. Initialization is always a critical
task of the mixture estimation. Within the considered recursive estimation algorithm the key point of its initial-
ization is a choice of initial statistics of components. The paper explores several initialization approaches and
compares results of clustering with a theoretical counterpart. Experiments with real data are demonstrated.

1 INTRODUCTION

The use of mixture models is widespread in a range
of applications working with multi-modal systems re-
quiring to be described and identified (Hu et al., 2015;
Bao and Shen, 2016), for example, industry, fault de-
tection, transportation, marketing, medicine, etc. In
the field of data analysis, mixtures are used for model-
based clustering (Roy et al., 2017; Bouveyron and
Brunet-Saumard, 2014; Scrucca, 2016), where clus-
ters in the data space are described by distributions of
mixture components.

Various distributions are intensively investigated
for tasks of mixture-based clustering (Fernández et
al., 2016; Suzdaleva et al., 2015; Browne and McNi-
cholas, 2015; Morris and McNicholas, 2016). Gaus-
sian mixtures are probably the most frequently met
models, see, e.g., (Malsiner-Walli et al., 2016; Li et
al., 2016; O’Hagan et al., 2016), etc.

This paper considers a clustering with uniform
components of the mixture model. This is benefi-
cial for applications producing specific measurements
with fixed boundaries, where the assumption of nor-
mality or belongingness to the exponential family is
not suitable. A focus of the paper is a task of the mix-
ture initialization, which is known to be a critical part
of the mixture estimation significant for starting an
estimation algorithm.

Recent papers on the mixture initialization found

in the literature (Scrucca and Raftery, 2015; Mel-
nykov and Melnykov, 2012; Kwedlo, 2013; Shireman
et al., 2015; Maitra, 2009) are mostly concerned with
initialization of the expectation-maximization (EM)
algorithm (Gupta and Chen, 2011) used in iterative
approaches to mixture estimation. However, the ap-
proach discussed in the presented paper is based on
the recursive Bayesian estimation avoiding iterative
computations. It was considered for normal models
in (Peterka, 1981) and for normal mixtures in (Kárný
et al., 1998; Kárný et al., 2006; Nagy et al., 2011).
Extension of the approach for uniform components is
presented in (Nagy et al., 2016).

Within the mentioned framework, the initializa-
tion is primarily concerned with a choice of (i) the
number of components, (ii) the initial statistics of a
model of switching the components and (iii) the ini-
tial statistics of components. In this area, paper (Suz-
daleva et al., 2016) based on (Kárný et al., 2003) is
found, again devoted to the initialization with normal
mixtures.

This paper explores several initialization ap-
proaches for estimation of the mixture of uniform
components. The main emphasis is on the choice of
the initial statistics of components. The discussed me-
thods are based on the use of prior data and on a com-
bination of expert-based visualization techniques and
well-known clustering methods applied to prior data.

The paper is organized in the following way. Sec-
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tion 2 introduces models and gives basic facts about
their individual estimation. Section 3 presents a brief
summary of recursive Bayesian estimation of mix-
tures of uniform components. Section 4 specifies the
initialization problem and considers four initialization
approaches. Section 5 provides results of their experi-
mental comparison. Conclusions and open problems
are given in Section 6.

2 MODELS

A considered system generates the continuous data
vector yt at each discrete time instant t = 1,2, .....
The system is assumed to work in mc working modes.
Each of them is indicated at the time instant t by the
value of the unmeasured dynamic discrete variable
ct ∈ {1,2, . . . ,mc}, which is called the pointer (Kárný
et al., 1998).

For description of such the multi-modal system a
mixture model is used, which is here comprised of mc
components in the form of the following probability
density functions (pdfs)

f (yt |Θ,ct = i), i ∈ {1,2, . . . ,mc}, (1)

where Θ = {Θi}mc
i=1 is a collection of unknown

parameters of all components, and Θi includes
parameters of the i-th component in the sense that
f (yt |Θ,ct = i) = f (yt |Θi) for ct = i.

The general component pdf (1) is specified as the
uniform distribution. Under assumption of the inde-
pendence of individual entries of the vector yt (made
in this paper) the pdf (1) takes the following form
∀i ∈ {1,2, . . . ,mc}

f (yt |L,R,ct = i) =

{
1

Ri−Li
for yt ∈ (Li,Ri) ,

0 otherwise,
(2)

where {Li,Ri} ≡ Θi, and their entries (Ll)i and (Rl)i
are minimal and maximal bounds of the l-th entry yl;t
of the K-dimensional vector yt within the i-th uniform
component.

A component, which describes data generated by
the system at the time instant t is said to be active.
Switching the active components is described by a
model of the pointer ct as follows:

f (ct = i|ct−1 = j,α) , i, j ∈ {1,2, . . . ,mc}, (3)

represented by the transition table
ct = 1 ct = 2 · · · ct = mc

ct−1 = 1 α1|1 α2|1 · · · αmc|1
ct−1 = 2 α1|2 · · ·
· · · · · · · · · · · · · · ·

ct−1 = mc α1|mc · · · αmc|mc

where a current value of the pointer corresponds to
the active component, and the unknown parameter α
is the (mc×mc)-dimensional matrix, and its entries
αi| j are non-negative probabilities of the pointer ct = i
(expressing that the i-th component is active at time t)
under condition that the previous pointer ct−1 = j.

2.1 Individual Model Estimation

The estimation of parameters of the individual i-th
uniform component (2) in the case of independent
data entries is performed using the initially chosen
statistics Lt−1 and Rt−1 with the update of their l-th
entries for each l ∈ {1, . . . ,K} in the following form,
see, e.g., (Casella and Berger, 2001):

if yl;t < Ll;t−1, then Ll;t = yl;t , (4)
if yl;t > Rl;t−1, then Rl;t = yl;t , (5)

where the subscript i is omitted for simplicity. The
point estimates of parameters are computed via

L̂t = Lt , R̂t = Rt . (6)

According to (Kárný et al., 2006), parameter α of
the pointer model (3) is estimated using the conju-
gate prior Dirichlet pdf in the Bayes rule, recomput-
ing its initially chosen statistics and its normalizing.
The mentioned statistics is denoted by vt−1, which is
here the square mc-dimensional matrix. Its entries in
the case of available values ct = i and ct−1 = j are
updated for i, j ∈ {1, . . . ,mc} in the following way:

vi| j;t = vi| j;t−1 +δ(i, j;ct ,ct−1), (7)

where δ(i, j;ct ,ct−1) is the Kronecker delta function,
which is equal to 1, if ct = i and ct−1 = j, and it is
0 otherwise. The point estimate of α is then obtained
by

α̂i| j;t =
vi| j;t

∑mc
k=1 vk| j;t

. (8)

However, values of ct and ct−1 are unavailable and
should be estimated. It means that generally for the
aim of the mixture-based clustering with the intro-
duced models it is necessary to estimate parameters
Θ and α and the pointer values.

3 UNIFORM MIXTURE
ESTIMATION

To specify a task of the mixture initialization, a neces-
sary theoretical background on recursive mixture es-
timation with uniform components should be given.
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The uniform distribution does not belong to the ex-
ponential family. Thus, extension of the general ap-
proach to recursive estimation (Kárný et al., 1998; Pe-
terka, 1981; Kárný et al., 2006; Nagy et al., 2011) for
this class of components is not straightforward and
might need the use of specific techniques of forget-
ting (Nagy et al., 2016).

Generally, the estimation algorithm is based on
using the joint pdf of unknown variables to be es-
timated and the Bayes and the chain rule (Peterka,
1981). The unknown parameters Θ and α (assumed
to be mutually independent) and the pointer values ct
and ct−1 enter the joint pdf as follows:

f (Θ,ct = i,ct−1 = j,α|y(t))︸ ︷︷ ︸
joint posterior pd f

∝ f (yt ,Θ,ct = i,ct−1 = j,α|y(t−1))︸ ︷︷ ︸
via chain rule and Bayes rule

= f (yt |Θ,ct = i)︸ ︷︷ ︸
(1)

f (Θ|y(t−1))︸ ︷︷ ︸
prior pd f o f Θ

× f (ct = i|α,ct−1 = j)︸ ︷︷ ︸
(3)

f (α|y(t−1))︸ ︷︷ ︸
prior pd f o f α

× f (ct−1 = j|y(t−1)),︸ ︷︷ ︸
prior pointer pd f

(9)

∀i, j ∈ {1,2, . . . ,mc}, where denotation y(t) =
{y0,y1, . . . ,yt} stands for the data collection up to the
time instant t, and y0 denotes the prior information.

Recursive formulas for estimation of ct , Θ and
α are derived by marginalization of (9) over Θ, α
and ct−1. In the first case, the marginalization over
parameters Θ gives a closeness of the current data
item yt to individual components at each time in-
stant t, which is called the proximity, see, e.g., (Nagy
et al., 2016). Here, the normal approximation of
the uniform component, optimal in the sense of the
Kullback-Leibler divergence, see (Kárný et al., 2006),
is taken. It means that the proximity mi of the i-th
component is the value of the normal pdf obtained by
putting the point estimates of the expectation and the
covariance matrix of this uniform component from
the previous time instant t−1 and the currently mea-
sured yt into

mi = (2π)−K/2|(Dt−1)i|−1/2

×exp
{
−1

2
(yt − (Et−1)i)

′
(D−1

t−1)i (yt − (Et−1)i)

}
,

(10)

where K is a dimension of the vector yt , (Et−1)i is the
K-dimensional expectation vector of the i-th compo-
nent, each l-th entry of which is obtained via (6) as

follows:

(El;t−1)i =
1
2
((L̂l;t−1)i +(R̂l;t−1)i) (11)

and (Dt−1)i is the covariance matrix containing on the
diagonal

(Dl;t−1)i =
1
12

((R̂l;t−1)i− (L̂l;t−1)i)
2. (12)

The proximities from all mc components comprise
the mc-dimensional vector m.

Similarly, the integral of (9) over α provides
the computation of its point estimate (8) using the
previous-time statistics vt−1.

However, the general purpose of the estimation is
to obtain the component weights (i.e., probabilities
that the components are currently active). For this
aim, the proximities (10) are multiplied entry-wise
by the previous-time point estimate of the parame-
ter α (8) and the prior weighting mc-dimensional vec-
tor wt−1, whose entries are the prior (initially chosen)
pointer pdfs (ct−1 = j|y(t−1)), i.e.,

Wt ∝
(
wt−1m′

)
.∗ α̂t−1 (13)

where Wt denotes the square mc-dimensional matrix
containing pdfs f (ct = i,ct−1 = j|y(t)) joint for ct and
ct−1, and .∗ is a “dot product” that multiplies the ma-
trices entry by entry. The matrix Wt is normalized so
that the overall sum of all its entries is equal to 1, and
subsequently it is summed up over rows, which al-
lows to obtain the vector wt with updated component
weights wi;t for all components.

The maximal wi;t defines the currently active com-
ponent, i.e., the point estimate of the pointer ct at time
t. This point estimate is subsequently used for data
clustering.

3.1 The Statistics Updates

The above theoretical background leads to the fol-
lowing relations for updating the component statistics
(Ll;t−1)i and (Rl;t−1)i with the help of the obtained
weights wi;t at time t (Nagy et al., 2016). A specific
feature of the uniform component statistics is their
moving depending on a newly arrived data item. The
number of non-updates of each statistics is described
by the geometrical distribution. When the statistics is
not updated for a relatively long time, it is forgotten.
A scheme of forgetting is as follows. For the mini-
mum bound statistics (Ll;t−1)i of the l-th entry of the
i-th component, the counter of its non-updates is set
as 0, i.e.,

(λL
l;t−1)i = 0 (14)
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and then the update with forgetting takes the form
δL = yl;t − (Ll;t−1)i, (15)

if δL < 0, (Ll;t)i = (Ll;t−1)i−wi;tδL, (16)

(λL
l;t)i = 0, (17)

else (λL
l;t)i = (λL

l;t−1)i +1, (18)

if (λL
l;t)i > n, (Ll;t)i = (Ll;t−1)i +φwi;t , (19)

where n is the allowed number of non-updates
computed from the distribution function of the ge-
ometrical distribution depending on the used confi-
dence interval and assumption of the statistics loca-
tion, see (Nagy et al., 2016), and φ is a small forget-
ting factor.

For the maximum bound statistics (Rl;t−1)i the up-
date is performed similarly, i.e., (λR

l;t−1)i = 0,

δR = yl;t − (Rl;t−1)i, (20)
if δR > 0, (Rl;t)i = (Rl;t−1)i +wi;tδR,(21)

(λR
l;t)i = 0, (22)

else (λR
l;t)i = (λR

l;t−1)i +1, (23)

if (λR
l;t)i > n, (Rl;t)i = (Rl;t−1)i−φwi;t . (24)

3.2 The Pointer Update

The statistics of the pointer model is updated simi-
larly to the update of the individual categorical model
and based on (Kárný et al., 2006; Kárný et al., 1998),
but with the joint weights Wi, j;t from the matrix (13),
where the row j corresponds to the value of ct−1, and
the column i to the current pointer ct

vi| j;t = vi| j;t−1 +Wj,i;t . (25)

3.3 Algorithmic Summary

The briefly summarized above relations comprise the
following algorithmic scheme of clustering at each
time instant:
• Measuring the new data item;
• Computing the proximity of the data item to indi-

vidual components;
• Computing the probability of the activity of com-

ponents (i.e., weights) using the proximity, the
point estimate of the pointer model and the past
activity, where the maximal probability declares
the currently active component;

• Classifying data according to the declared active
component;

• Updating the statistics of all components and the
pointer model;

• Re-computing the point estimates of parameters
necessary for calculating the proximity.

4 MIXTURE INITIALIZATION

The main feature of the discussed recursive clustering
is its on-line performance and updating with each new
measurement. It is dangerous from the point of view
of the unsuccessful start of the algorithm, as it can
lead to dominance of one of the components. How-
ever, prior data sets, which are usually available in
most application areas (e.g., previous measurements,
realistic simulations, etc.) can be analyzed off-line for
the initialization purposes using a combination of rel-
atively simple expert-based techniques, e.g., (Suzdal-
eva et al., 2016) and well-known clustering methods
such as, e.g., k-means (Jain, 2010), etc.

The initialization task is specified for the above
recursive algorithm in the following way. For time
t = 0, ∀i, j ∈ {1,2, . . . ,mc} and for l ∈ {1,2, . . . ,K} it
is necessary to set:

• the number of components mc,

• the initial statistics of the pointer model vi| j;0 and
the initial weighting vector w0,

• the initial components statistics (Ll;0)i and (Rl;0)i.

The last point is the key one. It is explained by com-
puting the proximity value, which depends on the pa-
rameter point estimates and, therefore, on the com-
ponent statistics. With the accurately chosen number
of components and the pointer statistics the proximity
with wrong initial component statistics leads to the
unsuccessful clustering.

4.1 Choice of Number of Components

Here a set of anonymized medical hematological prior
data is used for demonstration of the data visualiza-
tion with the aim of determining the number of com-
ponents. The following specific variables comprise
the 8-dimensional vector yt :

• y1;t – precollection number of leucocytes, [109/l];

• y2;t – precollection number of HTK, [%];

• y3;t – precollection number of Hemoglobin (Hbg),
[g/dl];

• y4;t – precollection number of platelet count
(PLT), [109/l];

• y5;t – precollection number of CD34+, [µl];

• y6;t – precollection number of CD34+ in total
blood volume (TBV), [106],

• y7;t – concentration of mono-nuclear cells (MNC),
[%];

• y8;t – concentration of CD34+/kg, [106].
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Figure 1: Visualization of selected prior data entries.

Figure 2: Three clusters detected by k-means in selected
prior data entries.

All the data entries are plotted against each other in
the form of upper triangular matrix of figures to de-
tect a number of visible clusters. If the visual analy-
sis is successful, and data clusters are distinguishable,
their number can be validated by using the k-means
method. To save space, selected data entries plotted
against each other are demonstrated in Figure 1. Two
bottom plots indicate that three clusters can be de-
tected, and they are also slightly distinguishable in the
two top plots. To verify the number of components,
the k-means is used, see Figure 2.

The initialized number of components can be also
validated by evolution of components weights during
the on-line estimation. This is demonstrated in Sec-
tion 5.

4.2 Initial Pointer Settings

The initial statistics of the pointer model vi| j;0 and the
initial weighting vector w0 are initialized either uni-
formly or randomly in combination with their upda-
ting by prior data.

4.3 Initial Components Statistics

Here four approaches to setting the initial statistics of
components are explored.

4.3.1 Component Centers via Mid-point Update

One of the approaches is to find centers of compo-
nents instead of the left and right bounds for initial de-
tection of components (Nagy et al., 2016). In this case
additional statistics should be used. They are (sl;0)i,
(ql;0)i, which are l-th entries of the K-dimensional
vectors st and qt , where the last comprises a diago-
nal of a matrix. Starting from random values, they are
updated by a small set of prior data ∀i∈ {1,2, . . . ,mc}
and ∀l = {1, . . . ,K} in the following way.

(sl;t)i = (sl;t−1)i +wi;tyl;t , (26)

(ql;t)i = (ql;t−1)i +wi;ty2
l;t , (27)

After updating they are used to compute the point esti-
mates of the mid-point and mid-range vectors of each
component (St)i and (ht)i respectively as follows.

(Ŝt)i = (st)i/t, (28)
(Dt)i =

(
(qt)i− (st)i(s′t)i/t

)
/t, (29)

(ĥt)i =
√

3diag((Dt)i), (30)

where (Dt)i is the covariance matrix of the uniform
distribution, and

√
3diag((Dt)i) denotes the square

roots of entries of the vector diag((Dt)i). (28) and
(29) from the previous time instant are placed instead
of the expectation and the covariance matrix into the
proximity (10). In the end of updating by prior data
the mid-point (Ŝl;t)i is the center of the i-th compo-
nent for the l-th data entry. The point estimates of the
minimum and maximum bounds are then obtained as

(L̂l;t)i = (Ŝl;t)i− ε, (31)

(R̂l;t)i = (Ŝl;t)i + ε, (32)

with small ε, and they are used in (11) and (12) during
the on-line estimation according to Section 3.

4.3.2 Centers based on K-means

Another way is to use the centers of clusters initially
detected by the k-means method from prior data and
put them into (31) and (32) to be used during the on-
line estimation according to Section 3.
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4.3.3 Centers as Averages

The average values from individual prior data entries
with small deviations can be taken as initial centers of
components and then substituted into (31) and (32).

4.3.4 Bounds as Minimum and Maximum

Here the minimum and maximum values of corre-
sponding entries of the data vector yt are used directly
as the component statistics (Ll;0)i and (Rl;0)i respec-
tively. Then via (6) they enter (11) and (12).

4.3.5 Initialization Algorithm

This section presents Algorithm 1 tailored to the dis-
cussed initialization approaches. It is supposed to run
only with the available prior data set up to the time
instant t = T (where T is whole number of prior data)
before the on-line time loop of the clustering.

Finally, in the case of using Section 4.3.1, results
of Algorithm 1 are (Ŝl;T )i, which is the center of the
i-th component for the l-th entry of yt , and the com-
ponent weights, both recursively updated by all prior
data. Results obtained according to Sections 4.3.2
and 4.3.3 are the component centers computed off-
line and the component weights. With the help of the
last technique from Section 4.3.4, the initial bounds
of components are obtained along with the weighting
vector.

For the on-line (i.e., for t = T + 1,T + 2, . . .) es-
timation of the component bounds and classification
of data among components according to the actual
maximum weight, the algorithm summarized in Sec-
tion 3.3 is applied. For the three first initialization
techniques, relations (31) and (32) should be used be-
fore measuring the first data item yt .

5 EXPERIMENTS

This section provides the experimental comparison of
the described initialization approaches with the help
of real data introduced in Section 4.1. The validation
of approaches was performed according to three fol-
lowing criteria:
• Evolution of component weights, which express

the activity of components, is observed during the
on-line estimation. The rare activity of some com-
ponent or its absence indicates that the number of
components is incorrectly initialized and proba-
bly too high. The regular activity of all compo-
nents validates the correct choice of the number
of components.

Algorithm 1.

{Preliminary initialization (for t = 0)}
Set the number of components mc.
for all i, j ∈ {1,2, . . . ,mc} and l ∈ {1,2 . . . ,K} do

Set the initial random values of the component
mid-point and mid-range statistics (sl;0)i, (ql;0)i
and the pointer statistics v0 according to (26),
(27) and (25).
Using these statistics, compute the point esti-
mates (28), (29), (30) and (8).

end for
for all i ∈ {1,2, . . . ,mc} do

Set the initial (random or uniform) weighting
vector w0.

end for
{Initialization with prior data set (for t = 1, . . . ,T )}
for t = 1,2, . . . ,T do

Load the prior data item yt .
for all i, j ∈ {1, . . . ,mc} and l ∈ {1, . . . ,K} do

Obtain the proximities (10) as follows:
if According to Section 4.3.1, then

Use (28) and (29) in (10).
else if According to Section 4.3.2, then

Put the k-means centers in (31) and (32).
Compute (11), (12) and (10).

else if According to Section 4.3.3, then
Use means of data entries as (Ŝl;t)i in (31)
and (32).
Compute (11), (12) and (10).

else if According to Section 4.3.4, then
Set (Ll;t)i and (Rl;t)i as minimum and max-
imum values of prior data entries.
Using (6), compute (11), (12) and (10).

end if
Using (10) and (8), compute the weighting
vector wt via (13), its normalization and sum-
mation over rows.
Update the pointer statistics (25).
Re-compute its point estimate (8).
if According to Section 4.3.1, then

Update the statistics (26), (27).
Re-compute the point estimates (28), (30)
and (29) and go to the first step of the ini-
tialization with prior data.

end if
end for

end for

• Evolution of the point estimates of component
parameters (i.e., bounds) is monitored at the be-
ginning of the on-line estimation. Fast locating
the stabilized values of the point estimates means
that the initialization is successful.

• The shape and the location of final clusters de-
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tected in the data space by starting the estimation
algorithm with the mentioned initialization tech-
niques are compared. Comparison with k-means
clustering is also demonstrated.

5.1 Evolution of Component Weights

A fragment of the evolution of the component
weights with the statistics initialized according to
Section 4.3.1 is demonstrated in Figure 3. It can be
seen that all three components are regularly active.
The plotted weights are approaching to 0 or 1 that
unambiguously expresses the activity of components.
The k-means based initial statistics give the similar
activity, see Figure 4. The initialization via methods
from Sections 4.3.3 is shown in Figure 5. It produces
a bit more probabilities close to 0.5. However, in gen-
eral, the result is similar to two first methods.

The last method based on minimum and maxi-
mum prior values according to Section 4.3.4 provides
only two detected components. Figure 6 shows at the
y-axis that the weights of the first component in the
top plot are too low, and this component is never de-
clared to be active.

Figure 3: Evolution of component weights with initial
statistics according to Section 4.3.1.

5.2 Evolution of Bounds

Comparing the evolution of the minimum and maxi-
mum bounds of individual entries within each compo-
nent, it can be noticed that a speed of localization of
stabilized estimate values is similar for the first three
methods, i.e., with exception of Section 4.3.4. The
bounds of one of the components are stabilized a bit
slower than the others: component 2 in the case of
Section 4.3.1, component 3 with Section 4.3.2 and
component 1 with Sections 4.3.3. The bounds of the
rest of the components detect their final values rela-
tively quickly. To save space, an example of the left
bound evolution is shown in Figure 7 for initialization
based on Section 4.3.1, where the difference between
the second component and the rest of them should be

Figure 4: Evolution of component weights with initializa-
tion according to Section 4.3.2.

Figure 5: Evolution of component weights with initializa-
tion according to Section 4.3.3.

Figure 6: Evolution of component weights with initializa-
tion according to Section 4.3.4.

noticed. The right bound evolution with the k-means
initialization due to Section 4.3.2 is demonstrated in
Figure 8, where the same can be said about the third
component.

Initialization according to Section 4.3.4 provides
a worse stabilization in search of stabilized values of
the bounds, see an example of the left bound evolu-
tion for the third component in Figure 9, where the
evolution of the left (minimum) bounds of individual
data entries is presented.

5.3 Clusters

Clusters of the most interesting pair of data entries
from the practical (hematological) point of view are
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Figure 7: Evolution of the left bounds with initialization
according to Section 4.3.1.

Figure 8: Evolution of the right bounds with initialization
according to Section 4.3.2.

Figure 9: Evolution of the left bounds of the third compo-
nent with initialization according to Section 4.3.4.

presented here. The entries y5;t , which is the pre-
collection number of CD34+, and y8;t , which is the
concentration of CD34+/kg, are chosen. Their clus-
ters detected according to the estimated pointer value
can be seen in Figure 10, where comparison of results
initialized according to Sections 4.3.1, Section 4.3.2,
4.3.3 and 4.3.4 is demonstrated. The colors of the
clusters in the figure are chosen randomly in all of the
plots. The clusters are enumerated according to the
order in which they have been detected and plotted.
The shapes and the location of the detected clusters
should be compared.

The insignificant difference in the location of two
upper clusters can be seen in three first figures, while
in the bottom figure the clustering practically fails.
Only two data items are classified as belonging to the
first cluster, i.e., two clusters are detected.

For validation of clustering, the k-means algo-
rithm was run with whole data set. Results of this
clustering are given in Figure 11. It can be seen that
the shape and location of clusters are very similar in
Figure 11 and in the first and the third top plots in
Figure 10. The second top plot differs a bit.

5.4 Discussion

To summarize the experimental part of the work, it
can be stated that the obtained results of the recursive
clustering are validated by such the well-known the-
oretical counterpart as k-means. It should not be for-
gotten that k-means works with whole available data
set off-line, while the recursive clustering is based on
a completely different philosophy of on-line estima-
tion. The use of the normal approximation as the
proximity function for uniform components is also
successfully validated.

Among the discussed initialization techniques the
last method concerned with using the minimum and
maximum bound statistics has the worst results. This
indicates that the initialization via centers of uniform
components is a reasonable way of starting the esti-
mation algorithm. The initialization with randomly
chosen centers (which is not shown here to save
space) mostly leads to a dominance of one compo-
nents.

The described initialization still need an expert’s
intervention, namely, for a choice of the component
number. Surely, automatization of this process would
be preferable. This will be one of the tasks within the
current project.
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Figure 10: Comparison of clusters of y5;t and y8;t with
different initialization techniques obtained via recursive
mixture-based clustering.

6 CONCLUSIONS

The paper explores four approaches to a task of
initialization of recursive mixture-based clustering
with the uniform components under the Bayesian

Figure 11: Clusters of y5;t and y8;t detected by k-means.

methodology. The investigated approaches are based
on processing the prior data set with the aim of set-
ting the initial statistics of uniform components. The
comparison with the theoretical counterpart shows
that the presented results are promising.

However, there still exists a series of open prob-
lems in the discussed area, e.g., a start of forgetting
both the bounds (it must not be the same). Further,
modeling dependent uniformly distributed variables
with parallelogram-shaped clusters is still not solved.
This is also a subject of the planned research work.
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