
Using Signifiers for Data Integration in Rail Automation

Alexander Wurl1, Andreas Falkner1, Alois Haselböck1 and Alexandra Mazak2,∗
1Siemens AG Österreich, Corporate Technology, Vienna, Austria

2TU Wien, Business Informatics Group, Austria

Keywords: Data Integration, Signifier, Data Quality.

Abstract: In Rail Automation, planning future projects requires the integration of business-critical data from heteroge-
neous data sources. As a consequence, data quality of integrated data is crucial for the optimal utilization of
the production capacity. Unfortunately, current integration approaches mostly neglect uncertainties and incon-
sistencies in the integration process in terms of railway specific data. To tackle these restrictions, we propose
a semi-automatic process for data import, where the user resolves ambiguous data classifications. The task
of finding the correct data warehouse classification of source values in a proprietary, often semi-structured
format is supported by the notion of a signifier, which is a natural extension of composite primary keys. In a
case study from the domain of asset management in Rail Automation we evaluate that this approach facilitates
high-quality data integration while minimizing user interaction.

1 INTRODUCTION

In order to properly plan the utilization of production
capacity, e.g., in a Rail Automation factory, informa-
tion from all business processes and project phases
must be taken into account. Sales people scan the
market and derive rough estimations of the number
of assets (i.e. producible units) of various types (e.g.
control units for main signals, shunting signals, dis-
tant signals, etc.) which may be ordered in the next
few years. The numbers of assets get refined phase
by phase, such as bid preparation or order fulfill-
ment. Since these phases are often executed by differ-
ent departments with different requirements and in-
terests (e.g. rough numbers such as 100 signals for
cost estimations in an early planning phase, vs. de-
tailed bill-of-material with sub-components such as
different lamps for different signal types for a final
installation phase), the same assets are described by
different properties (i.e. with - perhaps slightly - dif-
ferent contents) and in different proprietary formats
(e.g. spreadsheets or XML files). Apart from the tech-
nical challenges of extracting data from such propri-
etary structures, heterogeneous feature and asset rep-
resentations hinder the process of mapping and merg-
ing information which is crucial for a smooth over-
all process and for efficient data analytics which aims

∗Alexandra Mazak is affiliated with the CDL-MINT at TU
Wien.

at optimizing future projects based upon experiences
from all phases of previous projects. One solution ap-
proach is to use a data warehouse and to map all het-
erogeneous data sets of the different departments to
its unified data schema.

To achieve high data quality in this process, it is
important to avoid uncertainties and inconsistencies
while integrating data into the data warehouse. Espe-
cially if data includes information concerning costs, it
is essential to avoid storing duplicate or contradicting
information because this may have business-critical
effects. Part of the information can be used to identify
corresponding data in some way (i.e. used as key),
part of it can be seen as relevant values (such as quan-
tities and costs). Only if keys of existing information
objects in the data warehouse are comparable to that
one of newly added information from heterogeneous
data sets, that information can be stored unambigu-
ously and its values are referenced correctly.

Keys are formed from one or many components of
the information object and are significant for compar-
ing information of heterogeneous data sets with infor-
mation stored in the data warehouse. If two of such
keys do not match, this is caused by one of two sig-
nificantly different causes: (i) two objects should have
the same key but they slightly differ from each other,
and (ii) two objects really have different keys. Us-
ing solely heuristic lexicographical algorithms (Co-
hen et al., 2003) to automatically find proper matches

172
Wurl, A., Falkner, A., Haselböck, A. and Mazak, A.
Using Signifiers for Data Integration in Rail Automation.
DOI: 10.5220/0006416401720179
In Proceedings of the 6th International Conference on Data Science, Technology and Applications (DATA 2017), pages 172-179
ISBN: 978-989-758-255-4
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

does not necessarily succeed to reliably distinguish
those two cases because each character of the key
might be important and have a deeper meaning, or
not. Inappropriate heuristics lead to wrong matching
results, which may have major consequences to busi-
ness. Therefore it is critical to rely on semantics for
matching algorithms.

To support this proposition, we adapt the concept
of signifiers (Langer et al., 2012). A human actor - an
expert of the domain - defines a useful combination
of properties during the design phase. In the integra-
tion process of a new data set to the data warehouse,
we use this definition for calculating each information
object’s key. In case of mismatches between the data
warehouse and the new data set during data integra-
tion, a manual control either confirms the mismatch
or interacts aiming for a match. The signifier serves
as a key to uniquely identify an object in the course of
normalization of information in the data warehouse.

The main contributions of this paper are: (i) we re-
veal challenges of integrating heterogeneous data sets
into a data warehouse in an industrial context; (ii) we
introduce a technique using a signifier to avoid in-
consistencies between assets in the data warehouse;
(iii) we show how some minimal human interaction
can significantly improve the matching result; (iv) we
evaluate in a case study how those techniques improve
data quality.

2 PROBLEM DEFINITION

We address data integration scenarios where values
from highly heterogeneous data sources are merged
into a conjoint data warehouse. In more detail,
merged features and assets of different data sources
inherently share the same content but reveal various
overlapping compositions which are caused by alter-
nating amounts of data generated by manual estima-
tions or obtained from the installed base. In order
to avoid duplicate and contradicting data in the data
warehouse, corresponding information from different
data sources needs to be identified. Unfortunately,
there are no global IDs available to identify informa-
tion objects over different data sources. Instead, com-
puting keys from the different data representations in
the sources allows to match them with keys which are
already stored in the data warehouse. Figure 1 shows
the setting and the issues in more detail.

One typical format is spreadsheets (such as Mi-
crosoft Excel) where each row represents an informa-
tion object, e.g., the expected quantity from a plan-
ning phase. ”Source1” in Figure 1 has five columns
where the first three are used to compute a key (by

Figure 1: Integration scenario of heterogeneous data sets.

function ”extractKey1”) and the fourth column (se-
lected by function ”extractValue1”) contains a rele-
vant value, e.g., the quantity in form of a numerical
value.

Another format is XML which contains structured
objects (such as representations of physical objects),
e.g., a bill of materials from an installation phase.
”SourceN” in Figure 1 shows some objects. Each ob-
ject consists of sub-elements in which all information
of the corresponding object is included - either for use
in keys (accessed by function ”extractKeyN”) or for
values. In this example, the value is not selected di-
rectly, but aggregated from all objects with the same
key (using aggregation function ”aggregateValueN”),
e.g., by counting all those object instances to derive
their quantity as a numerical value.

The essence of each data source can be seen as a
set of triples, containing a key, a value, and the source
identifier. As an intermediate representation, those
triples are merged into the data warehouse which
comprises the history of all values with references
to data sources and keys. The keys are necessary to
map different data representations of the same infor-
mation from different data sources onto each other. If
a key from a triple matches an existing key, the latter
is reused, e.g., ”key11” for the triple from ”source1”
in Figure 1. Else, a new key is added to the data ware-
house, e.g., ”keyN1” for the triple from ”sourceN”.
This means that the new information does not corre-
spond to other information in the data warehouse.

Such a scenario poses the following questions:

Using Signifiers for Data Integration in Rail Automation

173

• Can a simple approach, such as to assemble some
properties as components for a unique identifica-
tion key, cover many use cases?

• High heterogeneity in technical aspects, data
model, and semantics requires an advanced ap-
proach. How can the extraction functions (e.g.,
”extractKey1”, ”extractValue1”, ”extractKeyN”)
be defined in a systematic way?

• How shall a match be defined in detail? Per-
fect match vs. near match (case-sensitivity, lex-
icographical distance)? How to avoid wrong
matches?

• How to decide whether (syntactically) not match-
ing keys refer to the same information? Are syn-
onyms used?

• The process of comparing keys needs some user
interaction (expert knowledge). What is the best
process? How to minimize efforts?

3 RELATED WORK

Data cleansing, also known as data cleaning, is an
inevitable prerequisite to achieve data quality in the
course of an ETL-process (Bleiholder and Naumann,
2009). Naumann describes data cleansing as use case
of data profiling to detect and monitor inconsistencies
(Naumann, 2014). Resolving inconsistencies as part
of the transformation phase has been a topic for the
last two decades (Leser and Naumann, 2007; Sharma
and Jain, 2014).

In the work of (Rahm and Do, 2000; Naumann,
2014) tasks for ensuring data quality are classified;
various data cleaning techniques have been proposed
such as rule-based (Dallachiesa et al., 2013; Fan and
Geerts, 2012), outlier detection (Dasu and Johnson,
2003; Hellerstein, 2008), missing values (Liu et al.,
2015), and duplicate detection (Bilenko and Mooney,
2003; Wang et al., 2012). Most of these techniques
require human involvement.

The work of (Müller and Freytag, 2005; Krishnan
et al., 2016) points out that integrating data is an itera-
tive process with user interaction. Various approaches
take this into consideration. Frameworks proposed in
(Fan et al., 2010; Khayyat et al., 2015) enable the user
to edit rules, master data, and to confirm the calcu-
lations leading to correct cleaning results. A higher
detection accuracy in duplicate detection by a hybrid
human-machine approach is achieved in the work of
(Wang et al., 2012). As presented in (Liu et al., 2015),
numerous techniques are used to associate the data to
get useful knowledge for data repairing, e.g., calculat-
ing similarities of contextual and linguistic matches

being able to determine relationships. In (Volkovs
et al., 2014) a logistic regression classifier learns from
past repair preferences and predicts the type of repair
needed to resolve an inconsistency.

As (Dai et al., 2016) reports that - although there
are various data profiling tools to improve data qual-
ity - if people use them without having in mind a
clear quality measurement method according to their
needs, they are challenged by limited performance
and by unexpectedly weak robustness. (Gill and
Singh, 2014) claims that various frameworks offer the
integration of heterogeneous data sets but a frame-
work for quality issues such as naming conflicts,
structural conflicts, missing values, changing dimen-
sions has not been implemented in a tool at one place
yet.

The work of (Gottesheim et al., 2011) analyzes
the representation of real-world objects in the con-
text of ontology-driven situations. Similar to how
real-world objects are characterized by attributes, in
(Langer et al., 2012) the characteristics of models are
described by a signifier. Basically, the concept of a
signifier has its origin in the domain of model-driven
engineering (MDE) where a signifier enhances the
versioning system by describing the combination of
features of model element types that convey the su-
perior meaning of its instances. A signifier improves
versioning phases in comparing and merging models
leading to a higher quality of finally merged mod-
els. As we integrate objects from different sources,
a signifier structures the combination of properties
and finally improves data integration when objects
to be integrated are compared and merged with ob-
jects in the data warehouse. Similarly, the work of
(Papadakis et al., 2015) addresses real-world entities
with blocking approaches based on schema-agnostic
and schema-based configurations. A schema-based
approach may be an alternative to signifiers but with
precision limitations in terms of a superior number of
detected duplicates when comparing properties. On
the other hand, a schema-agnostic approach may skip
differing important information of real-world objects
when clustering similar properties. In the integra-
tion process of objects, signifiers (1) provide a careful
and flexible identification structure for properties, and
(2) support normalization of information in the data
warehouse.

4 USING SIGNIFIERS FOR DATA
INTEGRATION

We propose a strategic technique in the ETL-process
to instantly react on potential inconsistencies, e.g.,

DATA 2017 - 6th International Conference on Data Science, Technology and Applications

174

when there is not a perfect match of a source ob-
ject with an object in the data warehouse. Instead
of names or IDs, we use and extend the concept of
signifiers, as introduced in (Langer et al., 2012), for
mapping an object of a data source to the right object
type in the data target (the data warehouse). In simple
terms, a signifier is an object consisting of different
components. To check if two objects match, the com-
ponents of their signifiers are checked pairwise.

To cope with the usage of different wordings or
words in different languages in the data source, we
need two versions of signifiers: a source signifier and
a target signifier which is extended by aliases.
Definition. A Source Signifier is an n-tuple of
strings. The term Si refers to the ith component of
a source signifier S.

The meaning of each element of the signifier is
determined by its position in the tuple. In the railway
asset management example described in section 1, we
use signifiers of length 3, representing category, sub-
category and subsubcategory, respectively. Example:
(”Signal”, ”Main Signal”, ”8 Lamps”).
Definition. A Target Signifier is an n-tuple of sets of
strings. The term Ti refers to the ith component of a
target signifier T.

Target signifiers allow to specify more than
one string per component. These strings represent
aliases. Example: ({”Signal”, ”S”}, {”Main Signal”,
”MainSig”, ”Hauptsignal”, ”HS”}, {”8”, ”8 Lamps”,
”8lamps”})

The main task of integrating a new object from a
data source into a target data warehouse is to match
source and target signifiers. To be able to deal with
approximate matches, too, we use a distance function
dist(s, t), returning a value from [0,1], where 0 means
that the two strings s and t are equal. There are many
well-studied string metrics that can be used here –
see, e.g., (Cohen et al., 2003). Given a string distance
function dist(., .), we define the minimum distance of
a string s and a set of strings ts by: distmin(s, ts) =
mini=1..|ts| dist(s, tsi).

In order to express different significances of dif-
ferent components of a signifier, we use weight fac-
tors wi for each component i. The total sum of all
weighted components of a signifier is 1. In Section 5,
the weighting of the components is demonstrated.
Definition. Let S be a source signifier and T be a
target signifier with n components. Let dist(., .) be
a string distance function. Let wi be component
weights. The function Dist(S,T) returns a value from
[0,1] and is defined in the following way:

Dist(S,T) = ∑
i=1..n

distmin(Si,Ti)∗wi

Now we are in the position to formally define per-
fect and approximate matches.

Definition. Let S be a source signifier and T be a
target signifier. S and T perfectly match, if and
only if Dist(S,T) = 0. For a given threshold value
τ (0 < τ < 1), S and T approximately match, if and
only if 0 < Dist(S,T)≤ τ.

The algorithm of integrating a source data object
into the target database (data warehouse) is a semi-
interactive task based on the previously defined per-
fect and approximate matches. If a perfect match is
found, the new object is automatically assigned to the
target data warehouse. In all other cases, the user is
asked to decide what to do. The following steps sum-
marize this algorithm for adding a source object with
signifier S to a target database with existing target sig-
nifiers T S:

1. If we find a T ∈ T S that is a perfect match to S,
add the new object to the target database using T .
Done.

2. Let T Sapprox be the (possibly empty) set of target
signifiers that are approximate matches to S. Ask
the user for a decision with the following options:

(a) Accept one T ∈ T Sapprox as match. The new
object will be added to the target database using
T . The aliases of T are updated in the target
database by adding all components of S, that
do not fully match, to the aliases in T .

(b) Accept S as a new target signifier. The new ob-
ject will be added to the database and S will be
added to the target signifiers.

(c) Abort import process and fix the source
database.

Each import of a data source potentially increases
and completes the number of target signifiers or ac-
cordingly the aliases of target signifiers. In that, user
interaction will decrease over time and the import of
source data will get closer and closer to run fully au-
tomatically.

5 CASE STUDY

In this section, we perform an empirical case study
based on the guidelines introduced in (Runeson and
Höst, 2009). The main goal is to evaluate if the ap-
proach using signifiers for the integration of data from
heterogeneous data sets into the data warehouse sig-
nificantly improves data quality, i.e., reduces incor-
rect classifications of objects imported into a given
data warehouse. Especially in the domain of rail au-
tomation with business critical data it is crucial to

Using Signifiers for Data Integration in Rail Automation

175

avoid incorrect classification of data. We conducted
the case study for the business unit Rail Automation,
in particular for importing planning, order calculation
and configuration data of railway systems into an as-
set management repository.

5.1 Research Questions

Q1: Can signifiers, as described in Section 4, mini-
mize the incorrect classification of objects at data im-
port?
Q2: Can our import process based on signifiers mini-
mize user interactions?
Q3: From an implementation point of view, how eas-
ily can conventional (composite) primary keys of ob-
jects in a data warehouse be extended to signifiers?

5.2 Case Study Design

Requirements. We perform our empirical tests in an
asset management scenario for Rail Automation. A
data warehouse should collect the amount of all assets
(i.e., hardware modules and devices) of all projects
and stations that are installed, currently engineered,
or planned for future projects. To populate this data
warehouse, available documents comprising planned
and installed systems should be imported. Planning
and proposal data, available in Excel format, can be
classified as semi-structured input: While the column
structuring of the tables is quite stable, the names of
the different assets often differ because of the usage of
different wording, languages, and formatting. The ta-
bles also contain typing errors, because they are filled
out manually as plain text. Configuration data for al-
ready installed systems is available in XML format
and is therefore well-structured. As the underlying
XML schema changed over time due to different en-
gineering tool versions, also XML data contain struc-
tural variability.

The exemplary import of a couple of different
Excel files, including files from projects of different
countries, and one XML file should be performed.
The test should start with an empty data warehouse,
i.e., no target signifiers are known at the beginning;
the set of appropriate target signifiers should be built
up during import of the different files.
Setup. The software architecture for our implementa-
tion of the ETL process for the case study is sketched
in Fig. 2. We use a standard ETL process as, e.g., de-
scribed in (Naumann, 2014). The extraction phase is
implemented with KNIME2.

The result of the extraction phase is a dataset
containing source signifiers and corresponding data

2https://www.knime.org/

Figure 2: Case study ETL process.

values. Our Signifier Matching component, imple-
mented in Python, tries to find for each entry in that
dataset a matching target signifier already stored in
the data warehouse. Ambiguities are resolved by ask-
ing the user. The load phase consists of updates to
the data warehouse: input data are added with their
references to a target signifier and a source descrip-
tor. New target signifiers and new aliases of existing
target signifiers are added, as well.

Using our method, the following application-
specific parameters must be adjusted: the number of
signifier components, the string distance metrics, the
weights of the signifier components, and the thresh-
old value for approximate matches. In our tests,
we used signifiers consisting of 3 components, rep-
resenting category, subcategory and subsubcategory
of a data object. For string comparison we used a
case-insensitive Jaro-Winkler distance (Cohen et al.,
2003). Weights and threshold are determined as
shown in the next section, specifically cf. Table 4.

5.3 Results

In this section, we present the results of our case study
from data and behavioral perspectives. Our main goal
was to analyze the applicability of signifiers in the
transform phase of the ETL process with respect to
data quality and amount of necessary user decisions.
Data Integration with Signifiers. We demonstrate
our approach by describing the key steps of data inte-
gration of an Excel source and an XML source on a
concrete example from the Rail Automation domain.
We are sketching the main database tables according
to Figure 1.

Target signifiers are represented in a table as de-
picted in Table 1. Each row represents an asset type
with a primary key, ID, for being referenced from data
tables. The other columns represent the components
of the target signifiers. Please note that such compo-
nents typically contain not only a single string but a
set of strings (i.e., aliases) for different wordings or
different languages.

Figure 3 shows a small part of an input ta-
ble (in German language). The extraction of the
first row results in the source signifier [Signale,

DATA 2017 - 6th International Conference on Data Science, Technology and Applications

176

Table 1: Target signifier table of the data warehouse.

ID Category SubCat. SubSubCat.
1 Signal Main Signal,

Hauptsignal,
HS

4 lamps,
4

2 Signal Shunting Signal,
Rangiersignal,

RS

2 lamps,
2

.

Hauptsignal, 4 Lampen] and value 10 represent-
ing the amount of main signals with 4 lamps in the
railway station. Obviously, this signifier has no per-
fect match in the target signifiers as shown in Table 1,
because German language and some extended word-
ing is used in the source Excel file. The matching dis-
tances according to our settings are 0.05 for the first
and 0.182 for the second target signifier. The first one
has a clearly lower distance value. After the user has
confirmed that this is the right match, firstly, the tar-
get signifier table is updated by adding aliases ”Sig-
nale” (for category) and ”4 Lampen” (for subsubcate-
gory) to signifier 1, and secondly, the object value 10
is added to the data table (see first row in Table 2) with
links to the right target signifier and its source. The
other rows are extracted in the same way (not shown
in the table).

Figure 3: An excerpt of objects in an Excel spreadsheet.

For the XML source document depicted in Fig-
ure 4, the signifier components for the first object are
built in the following way: The first component is the
tag name of the XML element, signal, the second
one its signal type, HS, and the third one is created
by counting the lamp sub-elements. Now we get the
source signifier [signal, HS, 4]. Since our distant
metrics are case-insensitive, we have a perfect match
with target signifier 1 in the data warehouse. The data
value for this kind of object is computed by counting
the number of objects of this type in the XML file.
After processing the second XML element in a simi-
lar way, the data table is updated. Table 2 shows the
resulting two entries at the end.
Results in Data Quality and User Interactions. We
performed our tests on several data sources in Excel
and XML format, starting with an empty data ware-
house without any target signifiers. In total about 90

Figure 4: An XML data source containing object elements.

Table 2: Data objects table after import of values from an
Excel and an XML source.

Signifier Value Source
1 10 Source 1 (Excel)

.
1 1 Source 2 (XML)
2 1 Source 2 (XML)

signifiers were created; 10% of these signifiers got
aliases. The different sources partly contained dif-
ferent wordings, languages, and abbreviations for ob-
ject designation, and contained typing errors. Qual-
itatively speaking, for the most of these different
wordings, our signifier matcher found approximate
matches and could very specifically ask the user for a
match decision. In case of no perfect match could be
found, the number of provided options was mostly in
the range of 3. A few signifiers had name variations
which fell out of the class of approximate matches,
and the user had to match them manually. Provided
that incorrect object classifications should be avoided,
the number of user decisions was minimal.

Table 3: The correlation of match candidates and expert ref-
erence (correct match).

correct match no
match candidate tp fp

no fn tn

For a quantitative assessment of the quality of
matches we use the F-measure (more specifically,
the F2-measure) from the field of information re-
trieval (Salton and Harman, 2003; Wimmer and
Langer, 2013). This measure is based on the notion

Using Signifiers for Data Integration in Rail Automation

177

of precision and recall, which are defined in terms
of true/false positives/negatives. Table 3 shows how
true/false positives/negatives are defined by compar-
ing the correct value as defined by an expert with
the match candidates computed by signifier match-
ing (perfect or approximate matches). Precision, re-
call and the F2-measure are defined as follows: P =
|t p|/(|t p|+ | f p|), R= |t p|/(|t p|+ | f n|), F2 = 5×P×
R/(4×P+R). We use the F2-measure here to empha-
size the recall value; it is important in our application
that we do not miss any correct matches.

Table 4 shows the results of our tests by preci-
sion, recall and F2 values. We varied the thresh-
old and weight values to find an optimal combina-
tion. We used threshold values τ1 = 0.01, τ2 = 0.025,
τ3 = 0.05, τ4 = 0.1; we used weight values w1 =
(1

14 ,
4

14 ,
9
14), w2 = (1

3 ,
1
3 ,

1
3), w3 = (9

14 ,
4
14 ,

1
14). It was

observed that:
• As expected, small threshold values lead to high

precision values, large threshold values lead to
high recall values. Precision and recall are neg-
atively correlated.

• For the set of used test data a value combina-
tion τ = 0.025 and w = (1

3 ,
1
3 ,

1
3) achieves the best

matching results, i.e., has the highest F2-measure
value.

• The F2 value of many threshold/weight combi-
nations are - in absolute terms - quite high, in-
dicating that the proposed method achieves high-
quality matches and is quite robust against small
changes of input parameters.

Table 4: Precision, recall and F2 values for signifier match-
ing tests varying approximate match threshold (τ) and sig-
nifier component weights (w).

τ1 = 0.00 τ2 = 0.025 τ3 = 0.05 τ4 = 0.1

P
w1: 1.000
w2: 1.000
w3: 1.000

w1: 0.891
w2: 0.930
w3: 0.901

w1: 0.779
w2: 0.887
w3: 0.793

w1: 0.710
w2: 0.835
w3: 0.432

R
w1: 0.895
w2: 0.895
w3: 0.895

w1: 0.950
w2: 0.950
w3: 0.950

w1: 0.956
w2: 0.950
w3: 0.950

w1: 0.961
w2: 0.950
w3: 0.956

F2

w1: 0.914
w2: 0.914
w3: 0.914

w1: 0.938
w2: 0.946
w3: 0.940

w1: 0.914
w2: 0.937
w3: 0.914

w1: 0.898
w2: 0.925
w3: 0.770

5.4 Interpretation of Results

We analyze the results with regard to our research
questions.
Q1: Can signifiers minimize the incorrect classifi-
cation of objects? Yes, according to the test results
shown in Table 4, our method is capable to achieve
high values of precision and recall values. Compared
to the ”perfect match only” scenario (τ = 0) with
its perfect precision, approximate matches showed a
weaker precision but a much better recall and there-

fore a better F-measure.
Q2: Can our import process based on signifiers min-
imize user interactions? Yes, provided that auto-
mated matches should only be made based on a per-
fect match, the number of user interactions were min-
imal in the sense that the user was not asked for a
similar match twice. Furthermore, the list presented
to the user for a manual match was sorted by match
distance; in most cases the user found his/her match
on the first or second place in that list.
Q3: From an implementation point of view, how eas-
ily can conventional (composite) primary keys of ob-
jects in a data warehouse be extended to signifiers?
Instead of using data tables with composite keys in
the data warehouse, signifiers are stored in a separate
table with a generated key for referencing from data
tables. Design and implementation of this separate
signifier table is straight-forward.

5.5 Threats to Validity

The first import of a data source where all signifier
components were translated to another language pro-
duces a lot of user interaction. This could be avoided
by generating and adding translations as aliases to the
signifiers in the data warehouse.

In situations where a signifier component repre-
sents a number (e.g., number of lamps of a railway
signal), plain string distance is not an optimal choice.
E.g., a human would consider ”2” closer to ”3” than
to ”5”, which is usually not the case in a string dis-
tance function. Our definition of signifiers as a tu-
ple of string components could be extended to com-
ponents of different types. This would allow the im-
plementation of type-specific distance functions and
solve that problem.

6 CONCLUSION AND FUTURE
WORK

In this paper, we identified various issues in the in-
tegration process of business-critical data from het-
erogeneous data sources. To address these issues, we
proposed a semi-interactive approach. We introduced
a technique using the notion of a signifier which is a
natural extension of composite primary keys to sup-
port the user resolving ambiguous data classification.
In a case study, we validated the applicability of our
approach in the industrial environment of Rail Au-
tomation. The results show a significant improvement
of data quality.

There are several ideas for future work. One re-
lates to extending the textual representation of com-

DATA 2017 - 6th International Conference on Data Science, Technology and Applications

178

ponent types with numerical values. This affects the
storage of values in the data warehouse as well as the
algorithm that compares values. Another direction
is to strive for a joint dictionary bridging language-
specific component terms. This accelerates the inte-
gration process especially in companies with interna-
tional respect.

ACKNOWLEDGEMENTS

This work is funded by the Austrian Research Promo-
tion Agency (FFG) under grant 852658 (CODA). We
thank Walter Obenaus (Siemens Rail Automation) for
supplying us with test data.

REFERENCES
Bilenko, M. and Mooney, R. J. (2003). Adaptive duplicate

detection using learnable string similarity measures.
In Proceedings of the ninth ACM SIGKDD, pages 39–
48. ACM.

Bleiholder, J. and Naumann, F. (2009). Data fusion. ACM
Computing Surveys (CSUR), 41(1):1.

Cohen, W. W., Ravikumar, P., and Fienberg, S. E. (2003).
A comparison of string distance metrics for name-
matching tasks. In Proceedings of IJCAI-03, August
9-10, 2003, Acapulco, Mexico, pages 73–78.

Dai, W., Wardlaw, I., Cui, Y., Mehdi, K., Li, Y., and Long, J.
(2016). Data profiling technology of data governance
regarding big data: Review and rethinking. In In-
formation Technology: New Generations, pages 439–
450. Springer.

Dallachiesa, M., Ebaid, A., Eldawy, A., Elmagarmid, A.,
Ilyas, I. F., Ouzzani, M., and Tang, N. (2013). Nadeef:
a commodity data cleaning system. In Proceedings of
the 2013 ACM SIGMOD, pages 541–552. ACM.

Dasu, T. and Johnson, T. (2003). Exploratory data mining
and data cleaning: An overview. Exploratory data
mining and data cleaning, pages 1–16.

Fan, W. and Geerts, F. (2012). Foundations of data quality
management. Synthesis Lectures on Data Manage-
ment, 4(5):1–217.

Fan, W., Li, J., Ma, S., Tang, N., and Yu, W. (2010). To-
wards certain fixes with editing rules and master data.
Proceedings of the VLDB Endowment, 3(1-2):173–
184.

Gill, R. and Singh, J. (2014). A review of contemporary
data quality issues in data warehouse etl environment.
Journal on Today’s Ideas - Tomorrow’s Technologies.

Gottesheim, W., Mitsch, S., Retschitzegger, W., Schwinger,
W., and Baumgartner, N. (2011). Semgentowards a
semantic data generator for benchmarking duplicate
detectors. In DASFAA, pages 490–501. Springer.

Hellerstein, J. M. (2008). Quantitative data cleaning for
large databases. United Nations Economic Commis-
sion for Europe (UNECE).

Khayyat, Z., Ilyas, I. F., Jindal, A., Madden, S., Ouzzani,
M., Papotti, P., Quiané-Ruiz, J.-A., Tang, N., and Yin,
S. (2015). Bigdansing: A system for big data cleans-
ing. In Proceedings of the 2015 ACM SIGMOD, pages
1215–1230. ACM.

Krishnan, S., Haas, D., Franklin, M. J., and Wu, E. (2016).
Towards reliable interactive data cleaning: a user sur-
vey and recommendations. In HILDA@ SIGMOD,
page 9.

Langer, P., Wimmer, M., Gray, J., Kappel, G., and Valle-
cillo, A. (2012). Language-specific model version-
ing based on signifiers. Journal of Object Technology,
11(3):4–1.

Leser, U. and Naumann, F. (2007). Informationsintegration
- Architekturen und Methoden zur Integration verteil-
ter und heterogener Datenquellen. dpunkt.verlag.

Liu, H., Kumar, T. A., and Thomas, J. P. (2015). Clean-
ing framework for big data-object identification and
linkage. In 2015 IEEE International Congress on Big
Data, pages 215–221. IEEE.

Müller, H. and Freytag, J.-C. (2005). Problems, methods,
and challenges in comprehensive data cleansing. Pro-
fessoren des Inst. für Informatik.

Naumann, F. (2014). Data profiling revisited. ACM SIG-
MOD Record, 42(4):40–49.

Papadakis, G., Alexiou, G., Papastefanatos, G., and
Koutrika, G. (2015). Schema-agnostic vs schema-
based configurations for blocking methods on homo-
geneous data. Proceedings of the VLDB Endowment,
9(4):312–323.

Rahm, E. and Do, H. H. (2000). Data cleaning: Prob-
lems and current approaches. IEEE Data Eng. Bull.,
23(4):3–13.

Runeson, P. and Höst, M. (2009). Guidelines for conduct-
ing and reporting case study research in software engi-
neering. Empirical software engineering, 14(2):131.

Salton, G. and Harman, D. (2003). Information retrieval.
John Wiley and Sons Ltd.

Sharma, S. and Jain, R. (2014). Modeling etl process for
data warehouse: an exploratory study. In In ACCT,
2014 Fourth International Conference on, pages 271–
276. IEEE.

Volkovs, M., Chiang, F., Szlichta, J., and Miller, R. J.
(2014). Continuous data cleaning. In 2014 IEEE 30th
ICDE, pages 244–255. IEEE.

Wang, J., Kraska, T., Franklin, M. J., and Feng, J. (2012).
Crowder: Crowdsourcing entity resolution. Proceed-
ings of the VLDB Endowment, 5(11):1483–1494.

Wimmer, M. and Langer, P. (2013). A benchmark for
model matching systems: The heterogeneous meta-
model case. Softwaretechnik-Trends, 33(2).

Using Signifiers for Data Integration in Rail Automation

179

