
What Techniques Can Be Used for GUI Risk-based Testing?

Behzad Nazarbakhsh and Dietmar Pfahl
Institute of Computer Science, University of Tartu, J. Liivi 2, Tartu 50490, Estonia

Keywords: GUI Testing, GUI Risk-based Testing, Risk Analysis, Risk-based Testing, System under Test, Test-based
Risk Analysis.

Abstract: Risk-based testing (RBT) is an approach that uses metrics to find critical parts of software applications under
test. In order to understand to what extend RBT has been applied for GUI testing, and to capture the lessons
learned, we conducted a literature review. Based on the selected literature, we discuss the advantages that
RBT may bring to the various activities involved in testing. Moreover, we analyze the rationale for applying
different variants of RBT presented in the selected literature. Finally, we discuss the RBT techniques which
can be specifically used for GUI testing.

 INTRODUCTION

Graphical user interface (GUI) is a fundamental
software component with critical impact on how a
user perceives a software. This explains why GUI
testing is important. GUI testing checks whether the
interface of a software application meets the
specification. Since GUI testing comes on top of the
standard verification and validation activities
required to test software applications, there is a need
to reduce test effort by making GUI testing efficient
and effective.

Testers don't have much interest to repeat testing
activities or perform testing more than what is
necessary (Garousi, V., Mäntylä, M., 2016). To avoid
unnecessary test activities, testers prefer to make a
decision about what part of the software application
has priority for testing. Making this kind of decision
is always critical, hard and uncertain for the testers
(Crispin, L., Gregory, J., 2009). Metrics may help to
recognize the defect-proneness of system modules, so
that extra development, maintenance, and test effort
can be directed to those modules (Last, 2005). Risk-
based testing (RBT) combines test process with
metrics such as probability, time, and impact criteria.

RBT helps to control, manage, and assess the test
process during the software development lifecycle
(Sharma, 2014). However, it is still unclear to testers
when and how it should be practiced and one needs to
understand “How far RBT has been practiced for
testing the GUI applications” (France, 2016).

The goal of this review is to establish a body of
knowledge regarding approaches that combine risk-
based testing and GUI testing.

The rest of this paper is organized as follows. In
Sect.2, we discuss risk definitions to understand risk-
based testing and its concepts. In Sect.3, we describe
our methodology and how the research process and
data extraction has been done in this study. In Sect.4,
we provide the answers to our research questions.
Moreover, we identify and discuss different
approaches, techniques, methods that have been
practiced for implementing RBT. In Sect.5, we
discuss threats to validity before concluding in Sect.6.

 RISK ANALYSIS AND
TESTING

Many industrial test projects focus on software risks
(Grood, D., Derk, J., 2008). There are different kinds
of risks which can impact software negatively such as
risks related to the customer business, software
interoperability risks and others. For testing software
applications based on risks, risk analysis should be
carried out to determine the impact of a risk on certain
software quality attributes. Moreover, the probability
of an identified risk must be assessed.

Suman et al. (2014) provide a list of quality
attributes specified in different quality models
(Figure 1). These software quality attributes may
serve to classify risks. For example, Felderer et al.

Nazarbakhsh, B. and Pfahl, D.
What Techniques Can Be Used for GUI Risk-based Testing?.
DOI: 10.5220/0006416102390248
In Proceedings of the 12th International Conference on Software Technologies (ICSOFT 2017), pages 239-248
ISBN: 978-989-758-262-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

239

(2014) claim that security, correctness, and
functionality are three dominant risk drivers.

Figure 1: Comparison chart of software quality attributes of
software quality models.

Test-based risk analysis (TRA) and Risk-based
testing (RBT) are two strategies for the combined use
of risk analysis and testing (Hettiarachchi, C., Do, H.,
Choi, B., 2016).

TRA aims to answer questions such as “How safe
is safe enough?”, and “Which of several different
risks is lowest?” (Papageorgiou, 2015). In the TRA
strategy, testing is used to identify, validate and
analyze risk results.

RBT analyzes risks to identify and select tests.
Moreover, it aids to prioritize and emphasize the
appropriate tests during test execution based on the
risk of failure, likelihood or impact of failure
(Felderer, M., Schieferdecker, I., 2014).

RBT can identify risky software components by
finding the probability of risk occurrence via threats
on critical requirements or feature complexity. A
software component is risky when it has a high
probability to fail or its failure will have a serious
consequence (Noor, T., Hemmati, H., 2015). In
general, the risk of software components can be
defined by the probability to fail, and the consequence
of the failure, R݅݇ݏ(݂) = ܲ(݂) ∗ where f is a ,(݂)ܥ
software component, Risk(f) is the risk exposure, P(f)
is the failure probability and C(f) is the cost of the
failure (Bai, 2012).

Inside-Out and Outside-In are two heuristic
approaches that have been presented in (Bach, 1999)
to explore and analyze the risks in a piece of software.
The inside-out approach starts with learning the
software component states and identifying the risks
associated with them. Outside-In starts with defining
the group of risks and then react to the threat in a
specific situation.

The outside-in approach collects information
about the component to be tested, determines the
scalability of the problem, discovers the importance
level of a risk, finds the unknown risks that should be
recorded and checks the risk distribution (Alam, M.,
Irshad Khan, A., 2013). Inside-Out and Outside-In
approaches not only find the threats and
vulnerabilities of software but exploit defective
components and analyze failure consequences. In
(Shahamiri, R., Nasir, W., 2008), risks are grouped
based on three categories for the Outside-In approach.
Those approaches, namely a) Quality Criteria b)
Generic Risks c) Risk Catalogs.

Into the category "Quality Criteria" all risks have
a specific risk driver. Examples of quality criteria are
capability, reliability, usability, performance, and
localizability. New and existing requirements can be
elicited or classified based on quality criteria.

Generic risks are the common risks to all software
systems such as complexity, novelty, change,
upstream and downstream dependency, criticality,
precision, popularity, strategy, third-party software,
bugginess, and recent failure history (Bach, 1999).

Finally, risk catalogs are lists of risks that have
been identified during past testing activities, e.g.,
memory clobbering, software misconfigurations, and
other issues.

There are RBT techniques to communicate the
risks and organize the testing around those risks. Bach
(1999) distinguishes three techniques to
communicate risks: a) risk watch list, b) risk matrix,
c) component risk matrix.

Risk watch list is an approach which assists the
test cycle by repeatedly reviewing a collection of the
risks. While the risk matrix assists in sorting the risks
according to the level of importance. Lastly, the
component risk matrix technique is employed for
testing the software components based on risks
specified during the test.

RBT techniques can jointly be used to effectively
control and manage the test process. For example,
RBT can be implemented for producing and tracing
the log files which records the test progress.
Moreover, it can be integrated into the test automation
tools to control the execution of test cases or compare
the actual outcomes of tests with the predicted
outcomes. Therefore, risks and risk-based testing are
helpful to assist testers in deciding where and to what
extent testing should be automated.

ICSOFT 2017 - 12th International Conference on Software Technologies

240

 METHOD

This study has been conducted as a Systematic
Literature Review (SLR) loosely following the
guidelines proposed by Kitchenham (2007). We
conducted the following steps: 1) Formulation of
research questions; 2) Identification of relevant
literature; 3) Study quality assessment and data
extraction.

3.1 Research Questions

For developing our search strategy, we applied the
PICOC method (Population, Intervention,
Comparison, Outcome, and Context) proposed by
Petticrew et al. (2005). In the following, we present
the steps involved in the PICOC method.

Population: Numerous software test projects using RBT.
Intervention: There are various RBT techniques,
methods and solutions that can be involved during the test
life cycle of the project.
Comparison: Our research is not a comparative study.
Therefore, this section has not been answered.
Outcomes: There are RBT techniques and methods that
can be employed for GUI testing.
Context: RBT techniques and methods are used for the
different types of testing. Testing the GUI applications
can gain benefits from RBT techniques.

Following are the main research questions addressed
in this study:

(RQ1) What are the benefits of RBT?
(RQ2) What are the testing types and purposes for
which RBT has been used?
(RQ3) What techniques exist for performing RBT?
(RQ4) What is the main goal of each selected study,
and what key strategies are used to achieve that
specific goal?
(RQ5) Which RBT techniques have been
specifically used for GUI testing?

3.2 Finding the Relevant Literatures

We used six online data sources in which most of the
software engineering articles can be found. These
data sources are IEEE Explore, Springer Link,
Science Direct, ACM, BASE, and Google Scholar.
We searched for keywords such as “risk-based
testing”, “risk analysis”, “risk assessment”, “GUI
risked-based testing”, “GUI risk analysis, “GUI
risked-based testing framework”, “risk-oriented
testing”, “test-driven risks analysis”, “risked-based
testing tools” and combinations of those keywords.

3.2.1 The Search Process

The first step of our search process is finding the
papers based on the defined search strings. In this
step, we found overall 150 papers. We selected the
papers for further analysis based on three criteria: 1)
Papers that mentioned risk or RBT in their title or
abstracts; 2) Papers that were published in the last
eight years (2008–2016); and 3) In the case of
duplication, we retain only one copy of that paper.

We found 64 papers that met the above criteria.
The imprecise or unclear studies were removed from
the SLR. Moreover, the content of each paper was
assessed to decide whether the paper should be
included into SLR or not. The inclusion/ exclusion
and assessment criteria are described in the next
section. Finally, we looked at the references of the
included papers and assessed those as well, which
answer our research questions. Finally, we found 22
papers relevant to our research questions. In the
following, we label these papers with P01 to P22.
These labels are also added to the respective papers in
Sect. 7 (Bibliography).

3.2.2 Inclusion and Exclusion Criteria

Our Inclusion Criteria are:
1) The papers are about empirical research in
software engineering (SE), testing of software and
communicating systems, test automation, GUI testing
and risk-based testing knowledge area.
2) The papers describe the approaches combining
software risk analysis and software test automation,
explicitly GUI risk-based testing.
3) The papers are written in English and published in
the peer-reviewed journals, conferences, workshops,
and book chapters (published in journals or
conference).

Our Exclusion Criteria are:
1) The papers discuss informally risk analysis and
testing without presenting a concrete approach.
2) Invalid and incomplete documents such as white
papers, technical report, and general web pages.

3.2.3 Classification of Studies

After studying our 22 selected papers, we understood
that most papers propose and discuss different types
of RBT or benefits of applying RBT for different
types of testing. There was only one paper that
actually focused on RBT used to test GUIs.
Consequently, we classified our papers into 2
categories. This classification is presented in Table 1.
“Category 1” comprises papers which propose

What Techniques Can Be Used for GUI Risk-based Testing?

241

solutions to identify and assess risks in the context of
software testing. “Category 2” comprises papers that
use the RBT approach for various types of testing.
Indeed, this classification can help us to find the
applicable risk analysis methods and techniques for
GUI testing. Finally, after classifying and analyzing
all papers, we extracted data to answer our research
questions.

Table 1: Papers category.

Category 1
P22, P18, P02, P03, P09, P05, P10, P13,
P01, P15, P04, P07, P21, P16

Category 2 P11, P08, P19, P12, P20, P06, P14, P17

3.3 Study Quality Assessment

After classifying the papers, we assessed their quality.
In our opinion, the quality of a paper is better
whenever: a) It has a high degree of formality; b) It is
focusing on concrete and specific contribution; c) It
provides the empirical evidence; d) It describes the
chosen research method adequately, or e) It describes
tool support for the presented method.

We developed a checklist to measure the papers’
quality. The compliance of a study with each checklist
item was measured using the following scoring system:
a) 0 for no compliance; b) 0.5 for partial compliance,
and 1 for full compliance. Our checklist was prepared
by adopting the questions from checklists that were
prepared in (Sulayman, M., Mendes, E., 2009). Lastly,
we extracted the relevant data that may be used to
answer the SLR’s research questions. Following are
the questions used in the checklist and the summarized
scores present in Table 2.
1. Does the methodology address the research questions?
2. Does the paper discuss any of the previous RBT

literature?
3. Is the methodology specified in the paper repeatable?
4. Do the findings of the paper address the original

research questions?
5. Are the aims of the research clearly stated?
6. Was the proposed concept, technology, framework

used for risk-based testing?
7. Does the paper describe the research method?
8. Does the research use any tools for their study?
9. Does the paper report an empirical study?
10. Does the paper report an evaluation?

Table 2: Assessment scores of selected studies.

Assessment score Papers
8.0 P18, P09, P12, P01, P20, P15, P07
8.5 P02, P03, P06, P04
9.0 P05, P10, P14, P17, P16
9.5 P19, P13, P22

10.0 P08, P21, P11

 RESULTS

The following sub-sections summarize the results
related to research questions RQ1-RQ5.

4.1 RQ1: What Are the Benefits of
RBT?

The answer to RQ1 lists the advantages that RBT may
bring to software testing. The main RBT goal is to
reduce testing complexity by prioritizing different
parts of the system under test. Besides this, RBT
optimizes test efforts by reducing the number of test
cases, minimizing time and cost of software testing
(P11) to enhance the quality of a software product
(P16). Moreover, it aids testers to reduce the cost of
software maintenance (P21) and determine how much
software testing is sufficient to attain the product
quality. RBT has been successfully applied to find the
right unit tests, integration tests, security
vulnerabilities or end to end tests and to measure the
security of software (P10). The overall benefits of
RBT are summarized in Table 3.

Table 3: Risk-based testing benefits.

Benefits Papers
To optimize test process. P11
To reduce the overall cost of the project. P11, P21
To reduce the number of test cases. P19
To enhance the quality of software product. P16
To give insight on how much to test the
software.

P22

To find out which parts of the software are
critical and have priority to test.

P08

To improve software maintenance. P21
To increase test coverage. P22
To discover software vulnerabilities. P10, P06

4.2 RQ2: What Are the Testing Types
and Purposes in Which RBT Has
Been Used?

The answer to RQ2 explains different objectives of
RBT’s usage. Moreover, it shows what type of
software testing can be supported by RBT. The risk-
based analysis was employed to prioritize the risky
parts of the system under test (SUT) or to identify
software failures and threats (P18).

The studies such as (P02), (P03) combined the
risk analysis information and assessment activities
with requirements engineering activities. The
sequence-based specification is the pioneer RBT
methodologies that built based on requirements of the
embedded system (P05). Hettiarachchi et al. (2016)

ICSOFT 2017 - 12th International Conference on Software Technologies

242

transformed the use case requirements to FTA via
augmenting the behavioral tree with the risk
information. ORTS tool is implemented for regression
testing purpose. This tool selects test cases after
analyzing risk which threats the software under
development. The risks of a software under
developments are classified based on the number of
change point excised, change types, invocation
counts of change points, and bug history (P12). In
Lachmann et al. (2017), test cases prioritization
practiced based on the sum of the risks of all actions
and considering the risks that not covered by
previously chosen test case scenarios. RBT was
practiced in (P19), (P13), (P17), (P01) to select or
prioritize test cases. The automate test case
generation for GUI testing has been appeared in
(P08). Entin et al. (2012) proposed the model
definition for the purposes of regression and risk-
based testing of GUIs. Moreover, the new algorithms
for detecting the suitable test case derivation was
discussed.

Behavior Engineering (BE) method was practiced
to derive requirements models via using behavior
trees. This technique employed UML profile, risk
extension of behavior trees, tooling to capture risk
matrices and testing directives to generate test cases
(P20). Risk-Based Vulnerability Testing (RBVT) is
another framework proposed to assess risks and
generate test cases by practicing the risk metrics and
vulnerability test patterns (P06). Convergence of risk
analyzing, statistical service-oriented computing and
semantic engineering can be used to automate web
service integration testing. The proposed technique in
(P04) ranked and selected test cases for web service
testing via dynamic and online risk measurement and
control. The estimation of probabilities, the
specification of dependencies, dynamic updating of
estimates, and sensitivity evaluation of group testing
rule parameters are the activities which can be used
for web service integration.

The risk-based approach was also applied to test
the web services transactions quality and
distinguishing situations in which transaction require
to be tested in (P07). There are few studies such as
(P11), (P15) that applied RBT to improve the risk
management process while testing the software. The
risk management process can find the most important
defects earlier than the traditional approaches (P11).
XRISK is the model that was developed to analyze
the risk of software failure based on finding and
analyzing risks in the source code (P21). The
designed risk model comprises the metrics related to
the static structure of the source code and the dynamic
test coverage of the code (P21). Risk-based security

testing and Risk-based Fuzz testing were used in
(P10), (P06) to test the implementation of software
security flaws. It could handle malicious input and
focused on certain security aspects. Indeed, a
combination of RBT and security testing assist test
process to concentrate on the certain software
vulnerabilities.

We classified different approaches that have been
practiced based on their objectives and type of
software testing in Table 4 and Table 5. Table 4
shows that most of the studies have been tried to
practice RBT for risk analysis or improving test
activities such as selecting, prioritizing and
generating test cases. On the other hand, Table 5
presents different software testing types that may gain
benefits from RBT.

Table 4: Classification based on purpose of studies.

Purpose Studies

Risk analysis and assessment
P18, P02, P03, P22,
P09, P05, P08, P04,
P07, P10, P13, P06

Test case prioritization and
selection

P19, P10, P13, P14,
P12, P17, P01

Test case generation
P22, P08, P20, P16,

P06
Risk management P11, P15

Source code risk analysis P21
Requirement risks identification P02, P18, P03

Table 5: Classification based on type of software testing.

Software testing type Studies
Security testing P10, P06

Regression testing P08, P12
GUI testing P08

User acceptance test P02, P18, P03, P11, P05
Web service integration test P04, P07

4.3 RQ3: What Approaches Exist for
Performing RBT?

RQ3 investigates the various approaches and
techniques that have been practiced in the domain of
risk-based testing. Risk identification and risk
analyzing techniques are the most challenging part of
RBT implementation. Risk analysis methods and
techniques assist in managing and mitigating risks.
Moreover, it can be used for learning the relations
between the risks. For this reason, part of our answer
to this question is finding the techniques that can be
used for risk analysis.

It is important to find the risk analysis methods
and techniques to manage and mitigate risks. Lund et
al. (2011) introduced two risk analysis methods

What Techniques Can Be Used for GUI Risk-based Testing?

243

(OCTAVE and CRAMM) to show that how risk
analysis can be carried out. Operationally Critical
Threat, Asset, and Vulnerability Evaluation
(OCTAVE) is the risk-based strategic assessment and
planning method which identifies the critical assets
and threat profiles as a key component to mitigate
risks. CCTA Risk Analysis and Management Method
(CRAMM) analysis and manages risks by
identifying, assessing risk and finding the appropriate
treatments for hazards.

There are risk analysis techniques which can be
integrated into diverse methods to addresses some
aspects of the risk analysis process. Hazard and
Operability (HazOp) is a risk identification technique
that was practiced to analyzes the hazards and
operational concerns related to that (P03). In (P09),
Failure Mode Effect Analysis/Failure Mode Effect
and Criticality Analysis (FMEA/FMECA) techniques
were practiced to detect a system’s possible failure
modes and determines their consequences. In the
other word, these techniques determine which failures
of a system's components may lead to which system
faults as well as to which consequences and by which
countermeasures those consequences can be
mitigated (P22).

Fault Tree Analysis (FTA) is widely used for
analyzing risks. It assists in identifying the potential
causes in the components which may lead to hazards.
In (P09) risk analysis has been combined FTA and
FME to include structural views of the system under
consideration into defect analysis. Event Tree
Analysis (ETA) and Attack Tree are the other event
tree techniques like FTA. ETA determines the
probability of consequences once a risk occurred by
specifying every detail about the expected outcome of
an unwanted incident. Attack Tree is a formal and
methodical way of describing the security of a system
based on the exposable attacks (P15).

Cause-Consequence Analysis (CCA) is a graph-
based technique that can be practiced for risk
analysis. This model combines the features of fault
trees and event trees. Even though this technique is
introduced in the literature review of (P15) but the
selected papers in this study have not practiced this
technique. Bayesian Network is an important acyclic
graph-based technique demonstrates the relations
between causes and effects. Moreover, it can be used
as a mathematical model for computing the
probabilities. This technique is used in (P01) to
predict the number of faults in the software
component. Finally, Markov analysis is a method that
looks at the system as several states and determines
and assigns probabilities to the changes between these
states. This technique is suitable for analyses systems

that may fail partially. In (P08), a set of algorithms
based on Markov chains were implemented to
calculate fair transition probabilities. The risk
analysis techniques are mostly practiced for
preventing the unnecessary rejected test cases
creation, identifying the hazards and hazardous states
and defect removal in test engineering. The above-
discussed risk analysis techniques are summarized in
Table 6.

Table 6: Risk analysis model and related techniques.

Risk analysis
models

Risk analysis techniques Papers

Table-based HazOp, FMEA, FMECA
P03, P09,
P15, P22

Tree-based FTA, ETA, Attack Trees
P09, P05,
P15, P07,

P16

Graph-based
CCA, Bayesian Network,

Markov Analysis
P08, P01,

P20

After finding different RBT techniques for
analyzing risks, we discovered that most of papers
practiced different model-based testing to stimulate
the testing process towards automation. Consequen-
tly, identifying and understanding the purpose of
different practiced models in each study is necessary.
Model-Based Testing (MBT) have been practiced in
many studies to analyze the risks for test cases
derivation or execution. Approaches that practiced in
(P22), and (P09) assume that the precise test models
are available to analysis and manage risks.

RiteDAP is an MBT approach that augmented the
risk information analysis in the model to prioritize
and generate test cases (P19). APSP is another MBT
approach that employed the non-risk-based
prioritization strategies such as Random
Prioritization (RP), Optimal Prioritization (OP), Total
Action Coverage Prioritization (TACP) and
Additional Action Coverage Prioritization (AACP).
Then, a metric algorithm was practiced for analyzing,
evaluating and prioritizing the risk in the model
(P09). Model-Based Statistical Testing (MBST) is the
model that employed to decline the complexity of the
test problem by using risks (P05).

Bayesian statistical (BST) is a model that powers
the selection of test cases based on the prediction of a
risk decrement (P01). This model assists in
integrating test framework with the supporting
decisions model. The selection and prioritization of
this model had been done through calculating defect
probability, using statistical model covering Bayes
Risk (BR) decision criterion, cost factors, likelihood
functions and operating characteristics.

ICSOFT 2017 - 12th International Conference on Software Technologies

244

In (P22), RBT and non-RBT approaches were
practiced to generate critical test cases. In the first
method, non-critical test cases were filtered after test
case generation. In the second method, RBT was
practiced to derive out the critical test cases by using
Markov analysis. After studying the evaluation of this
approach, it is claimed that in second method the test
coverage is increased and the critical faults can be
detected earlier.

The system behavior model was integrated with
FTA to generate the test cases out of misuse cases in
(P16). In this model, the risk information was
extracted from fault tree analysis and integrated into
system state charts. Then, the attack patterns and
threat profiles techniques were employed to generate
test cases. The risk-based regression test model
combined risk analysis, test case selection and end-
to-end test scenario selection with each other to
enhance the accuracy of test cases selection (P17). In
this model, the test cases are selected by calculating
severity probability for each test case; and applying
risk exposure technique that was proposed in
(Amland, S.). Moreover, for calculating the risk
exposure, the highest risk test scenario was selected
based on integrated traceability that employed in
(P12), and (P17).

There are few studies which tailored algorithms to
enhance the performance of risk analysis and boost
the test case generation. For instance, the greedy
algorithm was implemented to analyses the group of
tests by using risk metrics. In (P08), new graph-based
algorithm integrated with Markov chains to enhance
the critical test case generation.

There are models such as CORAS model (P15),
pattern-based approach, Based Security Risk
Assessment (TBRA) or Risk-Based Security Testing
(RBST) that exploit the vulnerabilities, determine the
data protectability and maintain the functionalities
from the software security perspective (P10). For
generating the test cases from security models there
are models like a) Complete model, b) Partial model,
and c) Missing model. The Complete model derives
automatically security tests from a formal model. In
the Partial model, security tests are partially
generated automatically and partially added
manually. Missing model is not practicing any test
models and the test generation is missed in this
model. Testing approaches attempted to integrate
these models with the software product risks. The
behavioral fuzzing is the risk-based fuzzing approach
which generates tests and finds authentication bypass
vulnerabilities. In this approach, the behavior model
was augmented with security-related information
where vulnerabilities might be relevant (P16). The

model-based security testing models are classified in
Table 7.

Table 7: Model-based security testing classification.

Complete

model
Partial model

Missing
model

Risks
integrated into

models

Automated
RBT security
test generation

Risk enhanced
scenario-

based MBT

Adapted
RBT

Risks not
integrated into

models
Adapted MBT

Scenario-
based MBT

Individual
knowledge

4.4 RQ4: What Is the Main Goal of
Each Selected Study, and What
Key Strategies Are Used to Achieve
That Specific Goal?

RQ4 helps identify the key reasons of practicing RBT
in each study. Table 8 explains the goal of each study
and Table 9 explains the strategy which was practiced
to achieve those goals.

Table 8: Goal of each study.

Paper Goal

P18
Testing software based on the priority of its
requirements.

P02 Prioritizing the test cases of software.

P03
Discovering risk information from software
requirement and integrating them into the test
design process.

P22
Generating high-risk test cases which can trigger
the certain critical software situation.

P09

Integrating requirements engineering activities
into the tasks of system test engineering and
generating test cases based on the founded
hazardous states in the software.

P05
Reducing the complexity of the test problem
represented by a large number of possible test
cases.

P08
Automatically derive test cases which cover the
most critical part of a graphical user interface.

P19 Risk-based test case derivation and prioritization.

P10
Integration of risk assessment with security testing
as a single process.

P13
Prioritizing what to test against the list of
requirements.

P14
Identifying the software components failure and
computing their impact probabilities.

P12 Generating the optimized regression test suite.

P17
Identifying, prioritizing, and selecting test
procedures after identifying the software risks.

P01 Risk-based test selection and prioritization.
P20 Combining the test generation directives and risk

level to generate risk-optimized test suites.

What Techniques Can Be Used for GUI Risk-based Testing?

245

Table 8: Goal of each study (cont.).

Paper Goal

P06
Optimizing test process by integrating risk
analysis and security testing.

P11
Reducing the number of risk items that can be
used for software risk estimation and simplify test
case prioritization.

P15
Managing risks that may be manifested in the
software by identifying, analyzing and assessing
the software vulnerabilities.

P04
Ordering set of test cases to detect bugs and
evaluate web service environment.

P07
Testing the transactional requirements in web
service environment.

P21
Computing the risk index of specified function
then verifying the number of functions that have
high risks of failure in a source code.

P16
Proposing RBT approaches to derive test cases
from critical functions, and requirements.

Table 9: Practiced Strategy in each study.

Paper Strategy

P18
Formulating an algorithm based on the severity
and the probability of risk factors that may be
founded in the software requirement.

P02
Formulating a method for finding the most
important or poorest parts of the software product
based on its cost of failure.

P03
Combining RBT with MBT by using the UML
Testing Profile (UTP2).

P22
Deriving test cases from MBST and constructing
the critical test cases by applying algorithmic
method.

P09
Build a test model and analyze the hazards that
obstruct the software safety goals.

P05
Combining combinatorial and model-based
techniques to auto-generate test cases by focusing
on critical function.

P08
Minimize the number of test cases based upon the
risk calculation.

P19
Prototyping a tool to prioritize the system test
cases using RBT.

P10
Proposing a tool-based approach that combines
the notion of risk-assessment with a pattern-based
approach.

P13
Generating test cases after prioritizing use cases
based on the identified risks.

P14
Using delta-oriented architectures to prioritize the
test cases after computing a failure probability.

P12
Prototyping the tool for generating the test suite.
Capturing the runtime traces of test execution and
identifying the change points during build update.

P17

Using risk graph to set of statements about the
likelihood of occurrence of events and the
consequence of events occurring. Then
prioritizing and selecting tests based on the
severity and confidence of the statement.

P01
Selecting the test cases using Bayesian decision
theory to predict the risks.

P20
Proposing methodology to risk-based testing that
deals with the transition from risk management
and requirements engineering.

P06
Generating test cases by identifying test patterns
from different threat scenarios.

P11

Estimating risks by correlating with requirements.
Then, calculating the risk exposure for the
requirements and risk items to prioritize
requirements and test cases.

P15
Proposing risk model to evaluate the software
security risks.

P04
Scoring and selecting test cases through
identifying risks of software features.

P07
Develop a model to pattern the web service
transaction, then applying model-based testing
techniques over that model.

P21
Proposing a static and dynamic risk model using
metrics that are either related to the structure of
source code or test coverage of the code.

P16
Using fault trees method and integrating FTA into
state-based behavior models.

4.5 RQ5: Which RBT Techniques Have
Been Specifically Used for GUI
Testing?

RQ5 addresses the RBT techniques which have been
specifically used for GUI testing. Moreover, it points
out the future research directions in the domain of
risk-based GUI testing. Among our selected papers,
only (P08) concentrated on model risk-based testing
of GUI. The main objective of (P08) was
understanding that how risk analysis can derive the
test cases of the critical part of GUI. The critical part
of GUI is the portion of GUI that may contain bugs
such as GUI crash or some wrongly displayed value
which may be discovered during the comparison with
the target value.

Combinations of different algorithms are
proposed to reduce the size of the test suite, which is:
a) Markov chains and random walk algorithms and b)
Chinese postman algorithm. Some researchers
adopted risk-based prioritization algorithms which
are proposed in (P19). Besides that, an algorithm
named “Adventurer`s Journey” was proposed to
generate risk-based test cases directly instead of
prioritizing the test cases (P08). Finally, Entin et al.
(2012) claimed, for the future development of risk-
based GUI testing, researchers should concentrate on
defining the risks in usage models, making the risk
calculation more realistic and creating the traceability
between requirements and models.

ICSOFT 2017 - 12th International Conference on Software Technologies

246

 THREATS TO VALIDITY

There are several threats to validity in our review.
There is a possibility that some papers could not be
found because of the design of the search query and
time constraints. Moreover, only one researcher was
involved in analyzing, filtering and classifying the
literature. Consequently, the risk of bias and
inaccuracy of data extraction cannot be ignored.
Although our selected data sources are well-known
sources with the availability of the highest amount of
papers in our search domain, there are possibilities of
missing papers related to GUI risk-based testing.

 CONCLUSIONS

In this literature, we identified and studied 22
scientific papers that concentrated on risk-based
testing. We recognized different techniques, methods,
and algorithms that can be used for RBT. This review
has attempted to understand how far RBT has been
practiced for GUI testing, how much GUI risk-based
testing is advance and what techniques can be applied
to it. We confronted with the inadequate collection of
the publication in the domain of GUI risk-based
testing. Indeed, the number of studies that focus on
GUI risk-based testing are few. Among all the papers
that we collected in SLR, most of RBT studies was
concentrating on regression testing, security testing,
and user acceptance testing. We found only one paper
(P08) that was specifically discussing an approach to
perform GUI risk-based testing.

Our results indicate that the potential of
prioritizing and detecting the most critical parts of
GUI applications could make RBT an asset for GUI
testing. Indeed, it assists testers to identify the
dangerous test areas and prioritize the critical GUI
features. Moreover, it can be used to estimate the risks
values of each feature and specify tests for the highest
risk features. Finally, analyzing the risks of the SUT,
modeling threat/failure, and presenting the tests for
the severe threats are the benefits that it brings to
identify the part of a system failure. We listed a set of
algorithms such as Markov chains, random walk,
Chinese postman that can be used to achieve the
above goals.

REFERENCES

Adorf, H., Felderer, M., Varendorff, M., Breu, R., 2015. A
Bayesian Prediction Model for Risk-Based Test

Selection. Euromicro Conference on Software
Engineering and Advanced Applications, pp. 374-382.

Alam, M., Irshad Khan, A., 2013. Risk-based Testing
Techniques: A Perspective Study. International
Journal of Computer Applications, Volume 65, pp. 33-
41.

Ali, S., Yue, T., Hoffmann, A., Wendland, M., 2014. How
does the UML Testing Profile Support Risk-Based
Testing. IEEE International Symposium on Software
Reliability Engineering Workshops, Volume 13, pp.
311-316.

Amland, S., 1999. Risk Analysis Fundamentals and Metrics
for Software Testing. Barcelona, 5th International
Conference EUROSTAR 99.

Bach, J., 1999. Heuristic Risk-Based Testing. s.l.:Software
Testing and Quality Engineering Magazine.

Bai, X., 2012. Risk Assessment And Adaptive Group
Testing of Semantic Web Service. International
Journal of Software Engineering and Knowledge
Engineering, 22(5), pp. 595-620.

Bauer, T., Eschbach, R., Größl, M., Hussain, T. , Streitferdt,
D., Kantz, F., 2009. Combining combinatorial and
model-based test approaches for highly configurable
safety-critical systems. Enschede, s.n.

Botella, J., Legeard, B., Peureux, F., Vernotte, A., 2014.
Risk-Based Vulnerability Testing Using Security Test
Patterns. In: Leveraging Applications of Formal
Methods, Verification and Validation. Specialized
Techniques and Applications. Corfu: Springer Berlin
Heidelberg, pp. 337-352.

Casado, R., Tuya, J., Younas, M., 2010. Testing Long-lived
Web Services Transactions Using a Risk-based
Approach. International Conference on Quality
Software, pp. 337-340.

Crispin, L., Gregory, J., 2009. A practical guide for testers
and agile teams. Boston: Pearson Education, Inc..

Entin, V., Winder, M., Zhang, B., Christmann, S., 2012.
Introducing Model-Based Testing in an Industrial
Scrum Project. Proceeding AST '12 Proceedings of the
7th International Workshop on Automation of Software
Test, pp. 43-49.

Felderer, M., Schieferdecker, I., 2014. A taxonomy of risk-
based testing. International Journal on Software Tools
for Technology Transfer, 18(Springer Berlin
Heidelberg), p. 559–568.

France, H., 2016. Defining the right testing strategy,
Toronto: QA Consultants.

Garousi, V., Mäntylä, M., 2016. When and what to
automate in software testing? A multi-vocal literature
review. information and Software Technology, Volume
76, pp. 92-117.

Gleirscher, M., 2011. Hazard-based Selection of Test
Cases. Proceedings of the 6th International Workshop
on Automation of Software Test, pp. 64-70 .

Grood, D., Derk, J., 2008. Test Risk Analysis. In: TestGoal.
Leiden: Springer, pp. 101-108.

Großmann, J., Schneider, M., Viehmann, J., Wendland, M.,
2014. Combining Risk Analysis and Security Testing.
In: Leveraging Applications of Formal Methods
Verification and Validation Specialized Techniques and

What Techniques Can Be Used for GUI Risk-based Testing?

247

Applications. Corfu: Springer-Verlag Berlin
Heidelberg, p. 322–336.

Hettiarachchi, C., Do, H., Choi, B., 2016. Risk-based test
case prioritization using a fuzzy expert system.
Information and Software Technology, pp. 1-15.

Huang, S., Zhu, J., Ni, Y., 2009. ORTS: A Tool for
Optimized Regression Testing Selection. Proceedings
of the 24th ACM SIGPLAN conference companion on
Object oriented programming systems languages and
applications, pp. 803-804.

Jørgensen, K., 2008. A Software Tool for Risk-based
Testing, Trondheim: Department of Computer and
Information Science, NTNU.

Kitchenham, B., 2007. Guidelines for performing
Systematic Literature Reviews in Software
Engineering, Durham: EBSE Technical Report.

Lachmann, R., Beddig, S., Lity, S., Schulze, S., Schaefer,
I., 2017. Risk-Based Integration Testing of Software
Product Lines. VAMOS '17 Proceedings of the Eleventh
International Workshop on Variability Modelling of
Software-intensive Systems, pp. 52-59.

Last, M., 2005. Data Mining For Software Testing. In: Data
Mining and Knowledge Discovery Handbook. US:
Springer Science+Business Media, Inc., pp. 1239-1247.

Lund, M., Solhaug, B., Stølen, K., 2011. Model-Driven Risk
Analysis The CORAS Approach. Berlin: Springer-
Verlag Berlin Heidelberg.

Nazier, R., Bauer, T., 2015. Automated Risk-based Testing
by Integrating Safety Analysis Information into System
Behavior Models. 23rd International Symposium on
Software Reliability Engineering Workshops, pp. 213-
218.

Noor, T., Hemmati, H., 2015. Mining Test Case Traces to
Improve Risk-Driven Testing. Montréal, s.n.

Papageorgiou, S., 2015. Risk Acceptance Criteria and Risk
Based Damage Stability. Final Report, part 1: Risk
Acceptance Criteria, Høvik: European Maritime Safety
Agency.

Petticrew, M., and Roberts, H., 2005. Systematic Reviews
in the Social Sciences: A Practical Guide. UK: Wiley-
Blackwell.

Scarfone, K., Souppaya, M., Cody, A., Orebaugh, A., 2008.
Technical Guide to Information Security Testing and
Assessment, Gaithersburg: National Institute of
Standards and Technology.

Seehusen, F., 2014. A Technique for Risk-Based Test
Procedure Identification, Prioritization and Selection.
In: Leveraging Applications of Formal Methods,
Verification and Validation. Corfu: Springer
Heidelberg, p. 277–291.

Shahamiri, R., Nasir, W., 2008. Intelligent and Automated
Software Testing Methods Classification. Malaysia, s.n.

Sharma, P., 2014. Risk Based Testing: Technique for Risk-
based Test Case Generation and Prioritization.
International Association of Scientific Innovation and
Research (IASIR), Volume 14, pp. 60-65.

Srivastva, P., Kumar, K., Raghurama, G., 2008. Test Case
Prioritization Based on Requirements and Risk Factors.
ACM SIGSOFT Software Engineering Notes, 33(4).

Stallbaum, H., Metzger, A., Pohl, K., 2008. An Automated
Technique for Risk-based Test Case Generation and
Prioritization. Proceedings of the 3rd international
workshop on Automation of software test, pp. 67-70.

Sulayman, M., Mendes, E., 2009. A Systematic Literature
Review of Software Process Improvement for Small
and Medium Web Companies. International
Conference on Advanced Software Engineering and Its
Applications, pp. 1-8.

Suman A., Manoj W., 2014. A Comparative Study of
Software Quality Models. International Journal of
Computer Science and Information Technologies,
Volume 5, pp. 5634-5638.

Wendland, M., Kranz, M., Schieferdecker, I., 2012. A
Systematic Approach to Risk-Based Testing Using
Risk-annotated Requirements Models. The Seventh
International Conference on Software Engineering
Advances, pp. 636-642.

Wong, W., Qi, Y., Cooper, K., 2008. Source Code-Based
Software Risk Assessing. Symposium on Applied
Computing, pp. 1485-1490.

Xu, W., Deng, L., Zheng, Q., 2012. Annotating Resources
in Sequence Diagrams for Testing Web Security. New
Generations (ITNG), Ninth International Conference
on Information Technology, pp. 873- 874.

Zimmermann, F., Eschbach, R., Kloos, J., Bauer, T., 2009.
Risk-based Statistical Testing: A Refinement-based
Approach to the Reliability Analysis of Safety-Critical
Systems. Toulouse, 12th European Workshop on
Dependable Computing.

ICSOFT 2017 - 12th International Conference on Software Technologies

248

