
Diversity: A Poor Man's Solution to Drone Takeover

Ali Davanian1, Fabio Massacci2 and Luca Allodi3
1Redsocks security, Laan van Nieuw, The Hague, Netherlands

2Department of Information Engineering and Computer Science, University of Trento, Povo, Trento, Italy
3Faculty of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, Netherlands

Keywords: Micro Air Vehicle Communication Protocol (MAVLink) Security, Drone Takeover, Unmanned Aerial

Vehicle (UAV) Security, Moving Target Defense (MTD), Software Diversity.

Abstract: Drones are the new targets for hackers. On one hand, their widespread use and security weakness have made

them very attractive for the attackers. On the other hand, there are a few security solutions for drones. Out of

these few, some are just proposals, and fewer are in the early stage of development. We first assess the

requirements of a security solution for drones and then analyse the effect of traditional cryptographic solutions

on the drone’s traffic volume and energy consumption. With recourse to Moving Target Defence, we propose

a novel instruction diversity solution for drone security that is portable, and has zero overhead.

1 INTRODUCTION

In recent years, Unmanned Aerial Vehicles (UAV)

also known as drones have gained a lot of attention

especially for commercial purposes (UAV Expert

News, 2016); yet less has been done toward the

security of drones. In a recent Proof of Concept

(POC), a police drone has been successfully hijacked

(Rodday, 2016). In future attempts, adversaries can

go even further and covertly take over the drones. An

adversary can mislead the operator and mount a

stealthy takeover attack by using the communication

protocol predefined commands. A stealthy takeover

especially applies to the radio-based drones where the

drone is out of the sight.

MAVLink is the most famous UAV protocol

(Figure 1). Security weakness of MAVLink protocol

(Meier et al., 2011) is well known among UAV

community (Google groups, 2013). The protocol

neither incorporates authentication nor encryption.

Several solutions have been proposed for more recent

versions of MAVLink protocol (Meier et al., 2013)

(Tridgell and Meier, 2015). These solutions however

are not fully implemented. In addition, MAVLink

structural limits and performance constraints

propelled others to abandon MAVLink and develop

custom protocols like GIDL (Pike, 2013).

We propose a ‘poor man’s’ security solution for

MAVLink with recourse to Moving Target Defense

(Evans et al., 2011) and software diversity (Larsen et

al., 2014). This solution offers reasonable security

against general purpose and targeted attacks whilst

imposing zero performance overhead. In the rest of

this paper, in section 2, we shed light on the drone

takeover attacks and the existing security solutions

for MAVLink. In section 3, we present the threat

model for UAV systems and future stealthy-

automatic version of the takeover attacks. In section

4, we discuss the performance constraints that

security solutions must consider for UAV systems. In

section 5, we present our poor man’s solution to the

drone takeover and enhance it based on our security

analysis. In section 6, we conclude the paper.

2 ATTACKS AND DEFENCES

WIFI and Radio drones have proved to be vulnerable

since a long time ago. Deligne was the first scholar

who could reverse engineer a toy drone and leverage

its lack of authentication (Deligne, 2012). Deligne

circumvented a simple Mac Filtering by spoofing the

MAC address of the Ground Control Station’s (GCS).

One year later, Kamkar presented a drone capable of

hacking other drones (Kamkar, 2013). This drone,

named Skyjack, exploits MAVLink lack of

authentication vulnerability. Skyjack hacks into other

drones by using aireplay-ng and sending deauth

packets to disconnect the legitimate owners. Since the

drone does not authenticate the users, the attacker can

Davanian, A., Massacci, F. and Allodi, L.
Diversity: A Poor Man’s Solution to Drone Takeover.
In Proceedings of the 7th International Joint Conference on Pervasive and Embedded Computing and Communication Systems (PECCS 2017), pages 25-34
ISBN: 978-989-758-266-0
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

25

take over as soon as the WIFI connection is

established. In the same year, the security of

MAVLink over SIK Radio modem has been analyzed

(Marty, 2013); similarly, because of lack of

MAVLink authentication, an attacker can take over if

she can establish the Radio connection to the drone.

Marty assumes that the initial modem configuration,

to communicate with the drone, is already known.

Because of the broadcast nature of Radio

communication, the attacker just requires the NET ID

of the drone and the GCS for the attack. With a SIK

Radio modem, this can be easily obtained by

changing the modem’s behavior to communicate with

every node using the sniffed Net ID (Shellntel, 2017).

Even without sniffing, the Net ID can be brute forced

because it is only 16 bits long.

Rodday’s work (Rodday, 2016) is the most recent

work in the drone takeover area. Rodday acquires the

target MAC Address using a XBEE broadcast

message. The XBEE protocol family follows IEEE

802.15.4 standard (Layer, 2013). The drone on which

Rodday mounts his attack works at 868 MHz

frequency. According to IEEE 802.15.4 standard, the

topology can be either MESH or Peer-To-Peer. With

the former, the attacker needs to find the Personal

Area Network (PAN) ID while with the latter, the

node’s destination address is necessary for the

communication. Rodday’s contribution is in finding

the drone’s destination address using a simple

broadcast command. Finding MAC Address by a

bruteforce is also possible due to its prognostic

structure; vendor ID is part of the MAC address and

the attacker can guess this. After the drone responds

with its destination address, the attacker can send any

commands she wishes.

Drones cannot accept commands from multiple

sources since “During a mission at most one

‘Navigation’ command and one ‘Do’ or ‘Condition’

command can be running at one

time” (ARDUPILOT, 2017b). In order to overcome

this limitation, Deligne, Kamkar and Rodday rely on

deauthenticating the WIFI user. Since such

vulnerability does not exist in XBEE, the

aforementioned Proof of Concepts assume, the owner

is not active in case of Radio hijacking. That said, in

practice, the attacker need disconnect the legitimate

user, and consider the user reaction when the latter

finds out her drone is hijacked. Otherwise, the user

intervenes physically when the drone is nearby e.g. in

case of WIFI drones (150 meters coverage) or the

attack fails because the drone receives commands

from two sources e.g. in case of Radio drones. As a

result of such constraint, adversaries will mount

“stealthy takeover attacks”.

To address the threats against drones, the

community has proposed new secure drone-operator

communication protocols. The first notable secure

UAV project based on MAVLink protocol is

SMACCMPilot (Pike et al., 2013). SMACCMPilot

invokes GIDL as the application level protocol. GIDL

adapts MAVLink and uses AES GCM for

authentication and encryption. This solution’s

drawback, however, is portability and compatibility

since it is based on Haskell backend. 3DR, Yuneec,

Parrot and many other vendors use MAVLink itself

and already have their own infrastructure.

Figure 1: MAVLink packet encapsulation.

Meier et al., proposed a secure version of

MAVLink protocol (Meier et al., 2013) with

compatibility constraint in mind. sMAVLink has the

same encryption algorithm as GIDL though it is not

based on Haskell. While GIDL encrypts the payload,

header and CRC, sMAVLink focuses only on the

payload. This allows the architect to leave the

MAVLink packet structure untouched. That said, to

support the solution, the payload (or message)

structure should evolve according to Figure 2.To the

best of our knowledge, sMAVLink has never been

implemented.

Since January 2016, MAVLink version 2.0

supports Packet Signing as a security feature (Tridgell

and Meier, 2015). A fast authentication mechanism

with backward compatibility is the motivation of

packet signing solution. MAVLink packet signing is

the result of prolonged discussion between MAVLink

and Pixhawk (a well-known autopilot

implementation) developers (Google groups, 2013).

Key agreement in packet signing is done offline via a

USB or Serial cable (similar to GIDL), and the key is

32 bytes long. The key is used to compute the hash of

the legacy packet and a few new fields. These new

fields are link-id (8 bits), timestamp (48 bits) and the

signature itself (48 bits). Link-id is the identifier of a

communication channel between GCS and the drone.

Timestamp is used to avoid replay attacks. The

signature is the first 48 bits of a SHA-256 hash of the

PEC 2017 - International Conference on Pervasive and Embedded Computing

26

secret key, header, payload, CRC, link ID and

timestamp. These 13 bytes (including signature, link

ID and timestamp) should be added to the end of a

MAVlink packet. For backward compatibility, an

environment parameter in firmware is used to

determine whether to accept unsigned packets.

Whenever this packet signing parameter is zero,

packets without signature are accepted. This

parameter is not communicated during the flight.

Figure 2: sMAVLink payload structure.

Backward compatibility and portability is a

problem with all the aforementioned solutions. GIDL

is the worst solution in this regard because it is built

on a complete new infrastructure. sMAVLink has

never been implemented probably because it

completely changes the structure of MAVLink

packets and imposes many portability issues.

Although packet signing is backward compatible and

best portable options among all available solutions, it

requires the vendors to update their source codes to

MAVLink version 2. Given its recent release time, it

takes time before vendors can adapt their branches

and update to the last version of MAVLink to support

packet signing. In summary, a practical solution to

address the current security problems immediately

must have backward compatibility, portability and

implementation simplicity requirements.

3 THREAT MODEL

We identify a taxonomy of attackers in the spirit of

(Anderson and Kuhn, 1996):
 Script kiddies

 Motivated attackers

 Funded organizations

Script kiddies are attackers who attack just for fun or

thieves who target a drone for its payload value.

Script kiddies usually do not create a tool or an

exploit; rather, they use off-the-shelf tools. Aircrack-

ng (Rodday, 2016) (Kamkar, 2013), killerbee (Spears

et al., 2011) and MAVProxy (Marty, 2013) are some

of the tools used for the proof of concepts discussed

in section 2 Since all these tools are python-based,

they may be integrated in a global downloadable tool

to automate the whole attack.

Motivated attackers have an adequate knowledge

of the system. Attackers from this group target a

specific drone or a set of drones, perform motivated

reconnaissance before attacking and spend time

analysing the system. They not only use the same

tools script kiddies use but also customize them for

their target based on their analysis. They can monitor

the target for a longer period.

A funded organization consists of professional

adversaries working as a team. These professionals

have not only the skills to analyze the system

meticulously but also adequate funding that allows

them to recruit insiders from the vendor companies.

Such attackers, for example, may lure an employee to

install a drone specific backdoor like Maldrone (Sasi,

2015) on the drone. Attackers of this type are outside

our threat model.

Currently available attacks, as described in

section 2, are oversimplified and not applicable in

practice. A more powerful attack that all actors may

perform in future is a stealthy takeover attack that we

define in the following way:

1. Victim is identified

2. Drone is attacked over the air

3. Original GCS is disconnected

4. The operator observes no abnormality

5. The drone flies to the attacker’s nest

Step 3 and 4 are essentially what make a drone

takeover successful in a real case scenario. Otherwise,

the user intervention makes the takeover impossible.

In a successful stealthy takeover, the attacker sends

falsified monitoring data to hide the attack from the

user. These misleading monitoring data prevent the

user from any subsequent counteraction (incident

response) that may hamper the attack. Figure 3

illustrates a schema of a stealthy takeover attack.

Table 1 reports the MAVLink commands that

implement each step described in Figure 3.

Importantly, to utilize these commands for any

MAVLink based drone, the attacker can fully

automate its exploit messages using MAVLink

header files prepared by Lorenz Meier et al (GitHub,

2017a).

Diversity: A Poor Man’s Solution to Drone Takeover

27

1. Initialize(Connection_Parameters)

2. FootPrint(Target)

a) Grab_Model_Info(Drone_Address)

b) Find_FeedBack_Interval(Drone_Model)

c) Gather_TargSet_Trajectory(Master_

adrs)

3. Take_Over_Drone(Drone_Adrs,GCS_Adrs)

a) Cut_Off_Telemetry(GCS_Address)

b) Mislead_GCS(GCS_Address, Interval,

Trajectory)

c) Send_Control_Command(Drone_Adrs)

Figure 3: Stealthy take over attack.

Table 1: MAVLink predefined commands needed for

stealthy attack.

Phase.

Step

Generic

Command
MAVLink Command

2.1
WHO_ARE_Y

OU
AUTOPILOT_VERSION

2.2
FEEDBACK_

INTERVAL

MAV_CMD_GET_MESSAGE_IN

TERVAL

2.3
NEXT_WAYP

OINT

MISSION_CURRENT

2.3 MISSION_REQUEST

2.3 MISSION_REQUEST_LIST

3.1

DISCONNEC

T_GCS

CHANGE_OPERATOR_CONTRO

L

3.1
MAV_CMD_COMPONENT_ARM_

DISARM

3.1
MAV_CMD_SET_MESSAGE_IN

TERVAL

3.1 MAV_CMD_DO_SET_MODE

3.2

DRONE_FEE

DBACK

HEARTBEAT

3.2 GPS_RAW_INT

3.2 GPS_RAW

3.2 GLOBAL_POSITION_INT

3.2 SYS_STATUS

3.3
GO_TO_LOC

ATION
MAV_CMD_NAV_WAYPOINT

3.4 LAND MAV_CMD_NAV_LAND

4 PERFORMANCE CONSTRAINT

Any security solution for drones should cope with

their performance constraints. Performance

constraint limits latency, persistent space and power

consumption overhead. A security solution imposes

latency in two ways. Firstly, it increases processing

time. For instance, MAVLink packet signing has a

computational overhead of 26 microseconds per

packet (Tridgell and Meier, 2015). Secondly, a

security solution adds extra bytes to every packet for

the purpose of verification. This will increase the

network traffic and the communication time.

Moreover, a security solution will increase the

firmware size. For example, MAVLink packet

signing code is 812 bytes. The code size is not

negligible given PIXHawk flash size that is 1 MB

(Tridgell and Meier, 2015). Last but not the least,

power consumption increases because of the increase

in CPU and network usage.

To understand the effect of an encryption oriented

solution, we assess network traffic and protocol

power consumption overhead of a security solution.

In order to define Protocol Energy Consumption

overhead (𝐸𝑜), we define ∆𝐸 (measured in 𝜇𝐽) as the

difference of protocol energy consumption after(𝐸𝑎)

and before (𝐸𝑏) applying a security solution.

Moreover, we define traffic overhead (𝑇𝑜) in terms of

extra traffic bytes per command (∆𝑇) divided by the

original command traffic size. ∆𝑇 (in byte) is the

difference of the traffic size per command after

applying a security solution (𝑇𝑎) and traffic size per

command before security control in place(𝑇𝑏):

𝐸𝑜 =
∆𝐸

𝐸𝑏

 ∆𝐸= 𝐸𝑎 − 𝐸𝑏 (1)

𝑇𝑜 =
∆𝑇

𝑇𝑏

 ∆𝑇 = 𝑇𝑎 − 𝑇𝑏 (2)

Total energy consumption 𝐸 is modeled as a linear

composition of a data transmission energy

consumption function, 𝐸𝑇𝑟(.) and security control

energy consumption function, 𝐸𝑆(.):

𝐸 = 𝐸𝑆(.) + 𝐸𝑇𝑟(.) (3)

𝐸𝑆(.) models the required energy to calculate the

cypher from the message and verify the message

using signature. In other words, 𝐸𝑆 depends on the

message size (𝑇𝑛), number of messages (𝑚) and the

signature size (𝑆). 𝑇𝑛 is the total size of the protocol’s

headers and the payload for the layer n that the

security solution is defined. We extrapolate 𝐸𝑆 as a

linear function of the required energy to

encrypt/decrypt a byte (𝐸𝑆𝐵):

𝐸𝑆 = 𝐸𝑆 (𝑇𝑛 , 𝑆) ≅ 𝑚 ∗ (𝑇𝑛 + 𝑆) ∗ 𝐸𝑆𝐵 (4)

𝐸𝑇𝑟(.) models the required energy to transmit

messages. 𝐸𝑇𝑟 depends on the number of messages

(𝑚), total number of bytes to be transmitted for each

message (𝑇) and transmission energy consumption

per byte (𝐸𝑡𝐵):

𝐸𝑇𝑟 = 𝑚 ∗ 𝑇 ∗ 𝐸𝑡𝐵 (5)

In order to calculate 𝑇, we need to calculate the actual

number of required bytes to transmit one message of

layer 𝑛. We assume a communication protocol like

MAVLink works on layer n. We assume the

maximum payload size to be sent over the network on

PEC 2017 - International Conference on Pervasive and Embedded Computing

28

the ith layer of a protocol stack is 𝑝𝑖 byte. 𝑇𝑖 , which

is total size of message in ith layer, consists of the

𝑇𝑖+1 payload and ith-layer headers, ℎ𝑖. Depending on

the fragmentation, 𝑇𝑖+1 will be sent using 𝛼𝑖 chunks

of size 𝑝𝑖 . 𝑇, total traffic, is 𝑇1 i.e. it is a message with

all the additional headers on the physical media:

{
 𝑇𝑛 = 𝑃𝑛 + 𝐻𝑛
𝑇𝑖 = 𝑇𝑖+1 + 𝛼𝑖𝐻𝑖 1 ≤ 𝑖 < 𝑛 ,

 (6)

𝑇𝑖+1 must fit into 𝛼𝑖 chunks of size 𝑝𝑖 . The number of

fragmentations 𝛼𝑖 must thus satisfy the following

conditions:

{

𝛼𝑛 = 1
𝛼𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛((𝛼𝑖 − 1) 𝑝𝑖 < 𝑇𝑖+1 ≤ 𝛼𝑖𝑝𝑖),

1 ≤ 𝑖 < 𝑛

 (7)

Considering that layer 1 is purely physical and just
propagates layer 2 frames (𝐻1 = 0), we can calculate
𝑇:

𝑇1 = 𝑇2 + 0 = ∑ 𝐻𝑖

𝑛−1

𝑖=2

𝛼𝑖 + 𝛼2𝑝2 (8)

Example: We consider the combination of MAVLink

and XBEE and application of AES and SHA1

encryption algorithms as security controls. We base

our calculation on transmission energy consumption

reported in (Fourty et al., 2012) and cryptographic

algorithms energy consumptions reported in

(Potlapally et. al, 2003).

In MAVLink case, n is equal to 3 since there is no

transport protocol layer between MAVLink and

Xbee. We call 𝛼2 after applying encryption 𝛼2,𝑎 and

𝛼2 before applying encryption 𝛼2,𝑏. Hence:

𝑇𝑎 = 𝐻2𝛼2,𝑎 + 𝑝2𝛼2,𝑎 = 𝛼2,𝑎(𝐻2 + 𝑝2)
𝑇𝑏 = 𝐻2𝛼2,𝑏 + 𝑝2𝛼2,𝑏 = 𝛼2,𝑏(𝐻2 + 𝑝2)

∆𝐸= 𝑚 ∗ ((𝛼2,𝑎-𝛼2,𝑏) ∗ (𝐻2 + 𝑝2) ∗ 𝐸𝑡𝐵 +
 (𝑇3 + 𝑆) ∗ 𝐸𝑆𝐵) .

Packet size (𝑇3) for MAVLink version 1.0 is 263

bytes (Figure 1). As packet signing redesigns

MAVLink, 𝑇3will increase to 276 bytes. We can

assume other encryption based security solutions

have at least the same increase for 𝑇3. Moreover in

XBEE, header size can vary depending on the mode

(DIGI, 2017). For the sake of this study, we assume

XBEE does not operate in encryption mode. Table 2

summarizes the value of the variables for MAVLink

over XBEE.𝑆 for MAVLink Packet Signing is 13

bytes and for sMAVLink is 15 bytes (refer to section

2). Solving (7) using Table 2 variables, we deduce

𝛼2,𝑏 and 𝛼2,𝑎value. According to 𝛼2,𝑎 values,

sMAVLink in broadcast mode has 𝑇𝑜 of 33% while

𝑇𝑜 for other cases is 0 since no additional frames are

needed.

Table 2: This table reports the number of required frames

before applying encryption 𝛼2,𝑏and the number of frames

after applying encryption 𝛼2,𝑎to send a message based on

the datalink layer protocol and security status.

Mode
Unsecure
version

Signature
≤ 13

13<Signature ≤
60

Broadcast

mode

V
ar

ia
b

le

V
al

u
e

V
ar

ia
b

le

V
al

u
e

V
ar

ia
b

le

V
al

u
e

𝑇3 263 𝑇3 276 𝑇3 277 – 336

𝑇2 100 𝑇2 100 𝑇2 100

𝐻2 8 𝐻2 8 𝐻2 8

𝛼2,𝑏 3 𝛼2,𝑎 3 𝛼2,𝑎 4

Peer to
peer

mode

𝑇3 263 𝑇3 276 𝑇3 277 – 336

𝑇2 100 𝑇2 100 𝑇2 100

𝐻2 16 𝐻2 16 𝐻2 16

𝛼2,𝑏 4 𝛼2,𝑎 4 𝛼2,𝑎 4

Limiting 𝑇3 by 𝛼2,𝑎 using (7), we conclude that if

𝑆 ≤ 13, there is no overhead in traffic. On the other

hand, if 13 < 𝑆 ≤ 60, 𝑇𝑜 can increase to 33%. Since

AES and AES GCM are in the same family, we

approximate 𝑆 to be in the same range as sMAVLink

(13 < 𝑆 ≤ 60). We also approximate 𝑆 of SHA1 to

be ≤ 13 since MAVLink packet signing uses SHA

family (SHA256).

Table 3: It reports the protocol energy consumption

overhead per command (∆𝐸and 𝐸𝑜) based on S.

 𝑆 𝐸𝑡𝐵 𝐸𝑆𝐵 ∆𝐸 𝐸𝑜

AES 15 7.09 𝜇𝐽 1.62 𝜇𝐽 1.159 𝑚𝐽 55%

SHA 13 7.09 𝜇𝐽 0.76 𝜇𝐽 0.210 𝑚𝐽 10%

Even if the traffic overhead is zero, there is at least

10% energy consumption overhead in addition to the

processing time overhead. In (Fourty et al., 2012),

transmission energy consumption of an 802.15.4

network has been analyzed. For a 19 bytes length

frame, the energy consumption is 134.85 𝜇𝐽.

Moreover, from (Potlapally et. al, 2003), we can

derive an approximation of the energy consumption

of AES (for 128 bit length key and based on CBC

block cypher) and SHA1. AES and SHA1 energy

consumption per byte are reported respectively 1.62

𝜇𝐽 and 0.76 𝜇𝐽. We calculate ∆𝐸 per byte for 𝐴𝐸𝑆 and

SHA1 based on 𝑆 value we approximated. Table 3

presents energy consumption values per byte.

Diversity: A Poor Man’s Solution to Drone Takeover

29

5 DIVERSITY SOLUTION

Software diversity, a branch of moving target

defense, as a protection mechanism has gained a lot

of attentions in recent years (Larsen, et al. 2014). The

idea in diversification is to produce final machine (or

intermediate) codes that fulfil the same purpose

though they are different in form. Instruction Set

Diversity is a diversification method that is used to

thwart code injection (Barrantes et al., 2005). This

method relies on changing the bytecode randomly and

recovering it before execution on the processor. We

build on this idea by using diversity to change the

format of the MAVLink instruction set so that the

same functionalities are present but in a different

syntactical form. Our solution is a novel instruction

diversity approach since we are diversifying remote

instructions in order to limit the access while existing

solutions focus on the local machine instructions in

order to thwart code injection. In the rest of this

section, we present our solution and a basic

application of the general idea. Next, we analyse the

solution by considering bruteforce and eavesdropping

attacks perpetrated by script kiddies and motivated

hackers. Finally, we propose a more robust

implementation based on our security analysis result.

5.1 General Idea

Our solution aims to hide the required commands for

a takeover attack by randomizing command values

for each drone-GCS pair. The communication

between authentic nodes is still possible as long as we

use the same diversified commands for them. If the

attacker tries to send the default protocol value, the

behavior of the drone will be unexpected. At best the

command will be ignored, at worst it will generate

anomalous behaviors (ARDUPILOT, 2017b). The

anomalous behavior is visible to a user who is

tracking and guiding the drone since the drone does

not operate as expected. In such scenario, the user

must send an emergency land command by which the

drone returns to the nest. After sending this

command, the drone shall not accept command from

any sources since commands may come from an

untrusted source.

Instruction in MAVLink protocol is determined

using Message ID field and Payload fields, which

contain the arguments for the command. We assume

Message ID is 𝑤 bit long and Payload part of the

instruction is 𝑑 bit long. Since Message ID is too

small to define a Command instruction, Message ID

plus a few more bytes of the payload are used as the

Command instruction identifier. For a basic

implementation, we consider 𝑑 to be the length of

these Command indicator bytes. 𝑑 bits of payload

convey a command meaning only when Message ID

flags a command instruction (Message ID = 𝑋). We

assume 𝑀 is the set of all the possible Message IDs

and 𝐶 is the set of all the possible arguments in the

payload. A message in 𝑀 is defined by 𝑚𝐼𝐷 where 𝐼𝐷

is the actual Message ID value. Accordingly, we

define 𝑐𝐼𝐷. We define size-of operator using |.|:

𝑀 = {𝑚1, 𝑚2, 𝑚3, … , 𝑚|𝑀|}, |𝑀| = 2𝑤

𝐶 = {𝑐1, 𝑐2, 𝑐3, … , 𝑐|𝐶|}, |𝐶| = 2𝑑

The set of all instructions is defined by 𝐼. Members of

𝐼 are defined by tuple (𝑚𝐼𝐷, 𝑐𝐼𝐷). Command

instructions are represented by (𝑚𝑋, 𝑐𝐼𝐷) and

ordinary messages are defined by (𝑚𝐼𝐷,𝑛𝑢𝑙𝑙), 𝐼𝐷 ≠

𝑋. We assume 𝜎𝑀 is the set of all the possible

permutations over 𝑀.Accordingly, we define 𝜎𝐶 the

set of all the permutations over 𝐶. Since 𝜎𝐶 and 𝜎𝑀

are independent, the set of all the possible instruction

permutations (𝜎𝐼) is all the combinations of a 𝜎𝑀

member and a 𝜎𝐶 member.

𝑀𝑗 ∈ 𝜎𝑀, 1 ≤ 𝑗 ≤ |𝜎𝑀|

𝐶𝑘 ∈ 𝜎𝐶 , 1 ≤ 𝑘 ≤ |𝜎𝐶|

𝐼𝑗,𝑘 ∈ 𝜎𝐼 𝑠. 𝑡. 𝐼𝑗,𝑘 = (𝑀𝑗 , 𝐶𝑘)

We define 𝜌 a strong permutation function that

randomly picks an element in 𝐼𝑗,𝑘. The construction of

𝜌 is purely off-line and is executed only once at the

drone installation. Several well-known constructs can

be used. For example, the Luby-Rackoff construction

(Naor and Reingold, 1999) generates a pseudorandom

permutation from a pseudorandom function;

similarly, the methodology described in (Goldreich,

et al., 1986) can be used to construct a pseudorandom

function from a strong pseudorandom generator such

as BBS (Blum et al., 1986). Even with small 𝑤 and 𝑑,

𝜌 has large space |𝜎𝐼| to perform randomization:

|𝜎𝑀| = |𝑀|! = 2𝑤!
|𝜎𝐶| = |𝐶|! =2𝑑!
|𝜎𝐼| = |𝜎𝑀| ∗ |𝜎𝐶| = 2𝑤! × 2𝑑!

In practice, if |𝑀| is significantly smaller than |𝐶|, as

it is for MAVLink version 1.0, attackers will first

exploit (𝑚𝑖,𝑛𝑢𝑙𝑙) tuples for messages without

argument. For this reason, the defense strength lies on

the complexity of finding the random 𝐶𝑘. For

implementation, we randomly change the instruction

values using 𝜌 before compilation and since the

instruction values will be used as identifiers,

randomizing their value will not harm the application

logic. Interoperability in a UAS is possible as long as

drone’s firmware and GCS are compiled using the

PEC 2017 - International Conference on Pervasive and Embedded Computing

30

same header file for instructions.

MAVLink is a header-only message marshalling

library (GitHub, 2017b). The messages are defined in

one xml file. After applying 𝜌, its output must be fed

to an xml file generator to produce the expected xml

file by MAVLink. Next, to create the header file, the

header generator script must run with the created xml

file as the parameter(ARDUPILOT, 2017a). Later,

both GCS and the firmware should be compiled using

the same message header file. Finally, the firmware

code should be flashed into the autopilot. Vendors can

write a script that does the following:

1. Generates a new instruction set for each user using

𝜌

2. Creates message definition XML file

3. Generates the header file

4. Compiles the code

5. Updates the drone firmware and GCS

It is very important for the vendor to provide this

solution as an automatic update mechanism that users

can regularly run. Since these steps are run before the

flight and when the system is offline, the overhead of

this solution is zero. This solution does not alter the

execution paths, hence during flight time, the

operation is the same; the only difference is matching

commands with a different vector. Moreover, the

additional space required for this solution is zero.

Finally, this solution by default is resistant to script

kiddies since the off-the-shelf exploits do not work

anymore. This solution will work “off-the-shelf” for

the current MAVLink implementations with little

more than a header-file replacement in contrast to

other proposed solutions that require changing the

packet structure.

5.2 Security Analysis

Bruteforcing, which is trying all the possible

combinations, is the first cyber-attack that adversaries

may mount against our defense. In brute force, the

attacker tries all the possible values for a command to

retrieve the actual command value. In order to

perform an attack, the attacker needs to know at least

𝑟 instructions required for that type of attack. 𝑏 of

these instructions belong to the set 𝑀 and the rest is

from the set 𝐶. The attacker needs to perform BF

number of trials to find 𝑟 commands:

BF = ∑ (|𝑀| − 𝑖)𝑏− 1
𝑖=0 + ∑ (|𝐶| − 𝑗)𝑟− 𝑏

𝑗=0

In case of stealthy takeover on MAVLink, 𝑏 is 10 and

𝑟 is 16 (see Table 1). BF for this attack is 395716

trials. Although 395716 operations in cryptography is

totally breakable, in our scenario it is strong enough.

The complexity of breaking this defense lies on the

difficulty of verifying whether the command had the

expected effect without human aid. For instance, if

the attacker is searching for the command to throttle,

she ca0nnot bruteforce all the possible commands in

a loop because after transmission of each command

she needs to observe physically the drone and see if it

had the desired throttle effect.

An alternative to brute force attack against these

systems is eavesdroping. The attacker eavesdrops the

communication between the drone and the GCS to

extract the commands he needs for hijacking. The

analysis of the eavesdropped traffic for command

extraction can be performed automatically or

manually. A combination of the two approaches

would form a known plain-text attack. Mainly for

automatic analysis the attacker has two choices:

 Pattern matching

 Commands frequency analysis

Pattern matching is based on two examinations. The

first examination is the length of the payload and the

number of parameters. This method, though, is not

really effective because any command with the same

number of parameters has almost the same format in

a communicated packet. This is because the traffic

contains value also for empty parameters and

autopilot ignores these values (Meier et al., 2011).

The second examination is on the domain of the

value. This check will also generate many false

positives since two commands may have same

parameter domains while doing different things. An

example of such is MAV_CMD_NAV_LAND and.

MAV_CMD_NAV_VTOL_TAKEOFF commands

that both have the same number of parameters and

domains but do exactly opposite things.

Commands frequency analysis is not conclusive

too. By measuring the frequency of some commands,

the attacker may find the most common messages.

This is possible mainly because the instruction space

is limited. Moreover, not all of this space is used;

Message IDs 180 – 240 and more than 99% of

MAV_CMD commands are unused (Meier et al.,

2011). Additionally, some commands are transmitted

more frequent than the others are. For example,

HEARTBEAT message is transmitted based on an

interval and analyzing that can give a hacker the

insight about both the interval and the heartbeat

command. Waypoint commands are other types of

commands that can be detected; however, these

commands are not enough for a stealthy takeover. As

mentioned in section 2 if the attack is not stealthy, it

is unlikely to be successful in a practical scenario.

An alternative to the automatic traffic analysis is

manual behavioral analysis. A computer may not

Diversity: A Poor Man’s Solution to Drone Takeover

31

distinguish the behavior of a drone after a command;

however, a human can do so. We call this approach

behavioral analysis since it depends on the human

intelligence to detect a command’s effect. The

attacker may choose behavioral analysis by simply

observing the drone behavior after capturing a

command. This method can also be integrated by the

previous method to simplify the attacker’s work.

Nevertheless, some commands may be revealed by a

very low probability essentially because they are not

frequent at all. CHANGE_OPERATOR_CONTROL

and MAV_CMD_SET_MESSAGE_INTERVAL are

such commands that are essential for stealthy

takeover of a Radio drone. As presented in Table 1,

these commands allow the attacker to disconnect the

legitimate user and mislead her. Additionally, if the

attacker again chooses to perform an overt attack on

a WIFI drone, disregarding these commands, he has

to wait for the MAV_CMD_NAV_LAND command

to be sent. After sending this command, the attacker

has a very limited time to intercept the command and

run the attack (less than 1 minute) because after that

the drone lands and it will be disarmed. Even the

attacker succeeds, the drone is few meters away from

the legitimate user.

A motivated attacker may crack the commands

listening to airwaves for a long time. Then, the

attacker may try to steal the drone during the next

flight while disconnecting the owner. Regularly

updating the drones’ firmware and the GCS mitigates

the threat of leaking sensitive commands.

Both in bruteforce attack and eavesdropping,

issuing command, while the legitimate owner

controls the drone, results in unexpected behavior.

The unexpected behavior of the drone will violate the

‘stealthy drone takeover’ requirements. The jig-

jagged erratic behavior of the drone is an indicator of

compromise. Based on this, a proper incident

response such as security emergency landing can be

realized by adding a command that initiates return-to-

nest process and disables remote control.

5.3 Enhancement

A more robust solution to the aforementioned attacks

would be including also the arguments of the

MAVLink command in the random permutation. This

would require a compiled bit-shift preprocessor that

regenerates the original arguments. A fixed

permutation of 𝑑 bits can be done with O(𝑑)

instructions (Lee et al., 2001). This will increase the

search space of a bruteforce attack to more than 256

bits (Message ID + Payload), which renders a

bruteforce search infeasible in practice. Known plain

texts attacks will not be effective as well. A known

plain text attack may only succeed based on two

premises. Firstly, the attacker must recover the

parameters of a command. This requires precision at

bit level to identify target GPS coordinates for GPS-

oriented commands by looking at the drone position.

Secondly, the attacker’s infrastructure must be

capable of cracking the permutation in a small

window of 20 minutes. The script kiddies and

motivated attackers cannot fulfil these two premises.

That said, the overhead and implementation cost of

this solution is not zero. However, in comparison to

AES (see Table 3), there is no network traffic

overhead for this solution. Moreover, the instruction

overhead of this solution is definitely less than SHA

and AES; they require far more instructions for

encryption than 256 ones that this solution needs to

rebuild a payload. Compatibility, Performance and

protection comparison of all the security solutions are

shown in Table 4.

6 CONCLUSIONS

In this research, we discuss the security weaknesses

of drones and how hackers have leveraged these

weaknesses in recent years to take control over the

drones. We, further, present the concept of stealthy

takeover attacks as a practical evolution of state-of-

the-art attacks. Despite the current unavailability of

security solutions, improvements based on the drone

constraints are required; in particular, we argue how

an encryption oriented security solution can generate

significant overhead on the network and increase

energy consumption. Taken into account the threats

UAV systems face, we employ Moving Target

Defence instruction diversity technique to secure

drones. We show how our solution has better

performance than existing solutions and offer

acceptable defence against script kiddies and the

motivated hackers. Even if attackers partially succeed

in finding some commands, the incident response is

possible because the attack would not be stealthy.

A more robust solution would be Payload bit

permutation that would be resilient against the threats

we consider (script kiddies and the motivated

attackers). Clearly, a powerful funded organization

may afford the cost required to satisfy the premises of

cracking bit permutation. However, this is out of the

scope for a commercial solution addressing the

commodity drones.

PEC 2017 - International Conference on Pervasive and Embedded Computing

32

Table 4: Comparison of MAVLink security solutions.

 GIDL sMavlink Packet Signing Diversity

Compatibility

Protocol alteration Severe Low Moderate Low

Backward Compatibility No No Partly No

Implementation complexity Extremely High High Moderate Low

Performance
Computational overhead Low Medium Low None

Memory overhead Low Low Low Very Low

Protection

Confidentiality Yes Yes No Partly(*)

Access control Yes Yes Yes Yes

DOS defense No No No No

- (*) requires coupling digital interception with physical observation and reverse kinematics.

ACKNOWLEDGEMENTS

The authors thank the anonymous reviewers,

Professor Van de Pol and Redsocks Security

researchers for their valuable comments.

REFERENCES

UAV Expert News (2016), “Drone Wars has a new front on

Retailers”, November, available at:

http://www.uavexpertnews.com/drone-wars-has-a-

new-front-on-retailers-amazon-prime-air-drone-

unveiled/ (accessed 19 December 2016).

Rodday, N., de Oliveira Schmidt, R. and Pras, A. (2016).

Exploring Security Vulnerabilities of Unmanned Aerial

Vehicles.

Meier, L., Camacho, J., Godbolt, B. and Goppert, J. (2011.).

“MAVLINK Common Message Set”, MAVLINK

Common Message set specifications, available at:

https://pixhawk.ethz.ch/mavlink

Google Groups - Toward Secure MAVLink. (2013),

available at:

https://groups.google.com/d/topic/mavlink/u0UK_-

wRVSI (accessed April 10, 2016).

Meier, L., Gho, G., Karapanos, N., & S. (2013, August).

SMAVLink Request for Comments, available at:

https://docs.google.com/document/d/1upZ_KnEgK3H

k1j0DfSHl9AdKFMoSqkAQVeK8LsngvEU/edit#

Tridgell, A., Meier, L. (2015). MAVLink 2.0 packet

signing proposal, available at: https://docs.google.

com/document/d/1ETle6qQRcaNWAmpG2wz0oOpF

KSF_bcTmYMQvtTGI8ns/edit#heading=h.r1r08t7lr2

pc (accessed 7 April 2016).

Pike, L. (2013), “Keynote talk I: Building a high-assurance

unpiloted air vehicle”, paper presented at Eleventh

IEEE/ACM International Conference on Formal

Methods and Models for Codesign (MEMOCODE),

October, pp. 33-34.

Evans, D., Nguyen-Tuong, A., & Knight, J. (2011),

Effectiveness of moving target defenses, Springer New

York Columns on Moving Target Defense, pp. 29-48.

Larsen, P., Homescu, A., Brunthaler, S., & Franz, M,

(2014), SoK: Automated software diversity, 2014 IEEE

Symposium on Security and Privacy (SP), May, pp.

276-291.

Deligne, E. (2012), ARDrone corruption, Journal in

Computer Virology, Vol. 8 No.1, pp. 15-27.

Kamkar, S. (2013), SkyJack, available at: https://github.

com/samyk/skyjack. (accessed 7 April 2016).

Marty, J. A. (2013), Vulnerability analysis of the mavlink

protocol for command and control of unmanned aircraft

(No. AFIT-ENG-14-M-50), Air force institute of

technology wright-patterson afb oh graduate school of

engineering and management.

Layer, M. P. (2013), Part 15.4: Low-Rate Wireless Personal

Area Networks (LR-WPANs).

Pike, L., Hickey, P., Bielman, J., Elliott, T., DuBuisson, T.,

Launchbury, K. (2013.), Secure MAVLink

(SMAVLink), available at:

http://smaccmpilot.org/software/commsec-

overview.html (accessed April 10, 2016).

Anderson, R., & Kuhn, M. (1996), “Tamper resistance-a

cautionary note”, in Proceedings of the second Usenix

workshop on electronic commerce, November, Vol. 2,

pp. 1-11.

Spears, R., and R. Melgares. (2011), "ZigBee security: find,

fix, finish.", presentation presented at ShmooCon,

Washington, D.C.

Sasi, R. (2015, January), Maldrone the first backdoor for

drones, Fb1h2s aka Rahul Sasi’s Blog.

Fourty, N., Van Den Bossche, A., & Val, T. (2012), “An

advanced study of energy consumption in an IEEE

802.15. 4 based network: Everything but the truth on

802.15. 4 node lifetime”, Computer Communications,

Vol. 35 No.14, pp. 1759-1767.

Potlapally, N. R., Ravi, S., Raghunathan, A., & Jha, N. K.

(2003, August), “Analyzing the energy consumption of

security protocols”, in Proceedings of the 2003 ACM

international symposium on Low power electronics and

design, pp. 30-35.

Barrantes, E. G., Ackley, D. H., Forrest, S., & Stefanović,

D. (2005), “Randomized instruction set emulation”,

Transactions on Information and System Security

(TISSEC), ACM, Vol. 8 No. 1, pp. 3-40.

Diversity: A Poor Man’s Solution to Drone Takeover

33

Wash, R. (2010), “Folk models of home computer

security”, in Proceedings of the Sixth Symposium on

Usable Privacy and Security, July, p. 11.

Naor, M., & Reingold, O. (1999), “On the Construction of

Pseudorandom Permutations: Luby—Rackoff

Revisited”, Journal of Cryptology, Vol. 12 No. 1, pp.

29-66.

Goldreich, O., Goldwasser, S., & Micali, S. (1986), “How

to construct random functions”, Journal of the ACM

(JACM), Vol. 33 No. 4, pp. 792-807.

Blum, L., Blum, M., & Shub, M. (1986), “A simple

unpredictable pseudo-random number generator”,

SIAM Journal on computing, Vol. 15 No. 2, pp. 364-

383.

Lee, R. B., Shi, Z., & Yang, X. (2001), “Efficient

permutation instructions for fast software

cryptography”, IEEE Micro, Vol. 21 No. 6, pp. 56-69.

GitHub (2017a) https:// github.com/mavlink.

DIGI (2017) http://knowledge.digi.com/articles/

Knowledge_Base_Article/Maximum-payload-size-for-

Digi-RF-products.

ARDUPILOT (2017a) http://ardupilot.org/dev/docs/ code-

overview-adding-a-new-mavlink-message.html.

Shellntel (2017) http://www.shellntel.com/blog/2015/

9/25/drone-code-execution.

ARDUPILOT (2017b) http://ardupilot.org/plane/docs/

common-mavlink-mission-command-messages-

mav_cmd.html#common-mavlink-mission-command-

messages-mav-cmd.

GitHub (2017b) https://github.com/mavlink/c_library/

blob/master/message_definitions/common.xml.

PEC 2017 - International Conference on Pervasive and Embedded Computing

34

