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Abstract: Drones are the new targets for hackers. On one hand, their widespread use and security weakness have made 

them very attractive for the attackers. On the other hand, there are a few security solutions for drones. Out of 

these few, some are just proposals, and fewer are in the early stage of development. We first assess the 

requirements of a security solution for drones and then analyse the effect of traditional cryptographic solutions 

on the drone’s traffic volume and energy consumption. With recourse to Moving Target Defence, we propose 

a novel instruction diversity solution for drone security that is portable, and has zero overhead.

1 INTRODUCTION 

In recent years, Unmanned Aerial Vehicles (UAV) 

also known as drones have gained a lot of attention 

especially for commercial purposes (UAV Expert 

News, 2016); yet less has been done toward the 

security of drones. In a recent Proof of Concept 

(POC), a police drone has been successfully hijacked 

(Rodday, 2016). In future attempts, adversaries can 

go even further and covertly take over the drones. An 

adversary can mislead the operator and mount a 

stealthy takeover attack by using the communication 

protocol predefined commands. A stealthy takeover 

especially applies to the radio-based drones where the 

drone is out of the sight.  

MAVLink is the most famous UAV protocol 

(Figure 1). Security weakness of MAVLink protocol 

(Meier et al., 2011) is well known among UAV 

community (Google groups, 2013). The protocol 

neither incorporates authentication nor encryption. 

Several solutions have been proposed for more recent 

versions of MAVLink protocol (Meier et al., 2013) 

(Tridgell and Meier, 2015). These solutions however 

are not fully implemented. In addition, MAVLink 

structural limits and performance constraints 

propelled others to abandon MAVLink and develop 

custom protocols like GIDL (Pike, 2013). 

We propose a ‘poor man’s’ security solution for 

MAVLink with recourse to Moving Target Defense 

(Evans et al., 2011) and software diversity (Larsen et 

al., 2014). This solution offers reasonable security 

against general purpose and targeted attacks whilst 

imposing zero performance overhead. In the rest of 

this paper, in section 2, we shed light on the drone 

takeover attacks and the existing security solutions 

for MAVLink. In section 3, we present the threat 

model for UAV systems and future stealthy-

automatic version of the takeover attacks. In section 

4, we discuss the performance constraints that 

security solutions must consider for UAV systems. In 

section 5, we present our poor man’s solution to the 

drone takeover and enhance it based on our security 

analysis. In section 6, we conclude the paper. 

2 ATTACKS AND DEFENCES 

WIFI and Radio drones have proved to be vulnerable 

since a long time ago. Deligne was the first scholar 

who could reverse engineer a toy drone and leverage 

its lack of authentication (Deligne, 2012). Deligne 

circumvented a simple Mac Filtering by spoofing the 

MAC address of the Ground Control Station’s (GCS). 

One year later, Kamkar presented a drone capable of 

hacking other drones (Kamkar, 2013). This drone, 

named Skyjack, exploits MAVLink lack of 

authentication vulnerability. Skyjack hacks into other 

drones by using aireplay-ng and sending deauth 

packets to disconnect the legitimate owners. Since the 

drone does not authenticate the users, the attacker can 
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take over as soon as the WIFI connection is 

established. In the same year, the security of 

MAVLink over SIK Radio modem has been analyzed 

(Marty, 2013); similarly, because of lack of 

MAVLink authentication, an attacker can take over if 

she can establish the Radio connection to the drone. 

Marty assumes that the initial modem configuration, 

to communicate with the drone, is already known. 

Because of the broadcast nature of Radio 

communication, the attacker just requires the NET ID 

of the drone and the GCS for the attack. With a SIK 

Radio modem, this can be easily obtained by 

changing the modem’s behavior to communicate with 

every node using the sniffed Net ID (Shellntel, 2017). 

Even without sniffing, the Net ID can be brute forced 

because it is only 16 bits long. 

Rodday’s work (Rodday, 2016) is the most recent 

work in the drone takeover area. Rodday acquires the 

target MAC Address using a XBEE broadcast 

message. The XBEE protocol family follows IEEE 

802.15.4 standard (Layer, 2013). The drone on which 

Rodday mounts his attack works at 868 MHz 

frequency. According to IEEE 802.15.4 standard, the 

topology can be either MESH or Peer-To-Peer. With 

the former, the attacker needs to find the Personal 

Area Network (PAN) ID while with the latter, the 

node’s destination address is necessary for the 

communication. Rodday’s contribution is in finding 

the drone’s destination address using a simple 

broadcast command. Finding MAC Address by a 

bruteforce is also possible due to its prognostic 

structure; vendor ID is part of the MAC address and 

the attacker can guess this. After the drone responds 

with its destination address, the attacker can send any 

commands she wishes. 

Drones cannot accept commands from multiple 

sources since “During a mission at most one 

‘Navigation’ command and one ‘Do’ or ‘Condition’ 

command can be running at one 

time” (ARDUPILOT, 2017b). In order to overcome 

this limitation, Deligne, Kamkar and Rodday rely on 

deauthenticating the WIFI user. Since such 

vulnerability does not exist in XBEE, the 

aforementioned Proof of Concepts assume, the owner 

is not active in case of Radio hijacking. That said, in 

practice, the attacker need disconnect the legitimate 

user, and consider the user reaction when the latter 

finds out her drone is hijacked. Otherwise, the user 

intervenes physically when the drone is nearby e.g. in 

case of WIFI drones (150 meters coverage) or the 

attack fails because the drone receives commands 

from two sources e.g. in case of Radio drones. As a 

result of such constraint, adversaries will mount 

“stealthy takeover attacks”. 

To address the threats against drones, the 

community has proposed new secure drone-operator 

communication protocols. The first notable secure 

UAV project based on MAVLink protocol is 

SMACCMPilot (Pike et al., 2013). SMACCMPilot 

invokes GIDL as the application level protocol. GIDL 

adapts MAVLink and uses AES GCM for 

authentication and encryption. This solution’s 

drawback, however, is portability and compatibility 

since it is based on Haskell backend. 3DR, Yuneec, 

Parrot and many other vendors use MAVLink itself 

and already have their own infrastructure.  

 

Figure 1: MAVLink packet encapsulation. 

Meier et al., proposed a secure version of 

MAVLink protocol (Meier et al., 2013) with 

compatibility constraint in mind. sMAVLink has the 

same encryption algorithm as GIDL though it is not 

based on Haskell. While GIDL encrypts the payload, 

header and CRC, sMAVLink focuses only on the 

payload. This allows the architect to leave the 

MAVLink packet structure untouched. That said, to 

support the solution, the payload (or message) 

structure should evolve according to Figure 2.To the 

best of our knowledge, sMAVLink has never been 

implemented. 

Since January 2016, MAVLink version 2.0 

supports Packet Signing as a security feature (Tridgell 

and Meier, 2015). A fast authentication mechanism 

with backward compatibility is the motivation of 

packet signing solution. MAVLink packet signing is 

the result of prolonged discussion between MAVLink 

and Pixhawk (a well-known autopilot 

implementation) developers (Google groups, 2013). 

Key agreement in packet signing is done offline via a 

USB or Serial cable (similar to GIDL), and the key is 

32 bytes long. The key is used to compute the hash of 

the legacy packet and a few new fields. These new 

fields are link-id (8 bits), timestamp (48 bits) and the 

signature itself (48 bits). Link-id is the identifier of a 

communication channel between GCS and the drone. 

Timestamp is used to avoid replay attacks. The 

signature is the first 48 bits of a SHA-256 hash of the 
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secret key, header, payload, CRC, link ID and 

timestamp. These 13 bytes (including signature, link 

ID and timestamp) should be added to the end of a 

MAVlink packet. For backward compatibility, an 

environment parameter in firmware is used to 

determine whether to accept unsigned packets. 

Whenever this packet signing parameter is zero, 

packets without signature are accepted. This 

parameter is not communicated during the flight. 
 

 

Figure 2: sMAVLink payload structure. 

Backward compatibility and portability is a 

problem with all the aforementioned solutions. GIDL 

is the worst solution in this regard because it is built 

on a complete new infrastructure. sMAVLink has 

never been implemented probably because it 

completely changes the structure of MAVLink 

packets and imposes many portability issues. 

Although packet signing is backward compatible and 

best portable options among all available solutions, it 

requires the vendors to update their source codes to 

MAVLink version 2. Given its recent release time, it 

takes time before vendors can adapt their branches 

and update to the last version of MAVLink to support 

packet signing. In summary, a practical solution to 

address the current security problems immediately 

must have backward compatibility, portability and 

implementation simplicity requirements. 

3 THREAT MODEL 

We identify a taxonomy of attackers in the spirit of 

(Anderson and Kuhn, 1996):  
 Script kiddies 

 Motivated attackers 

 Funded organizations 

Script kiddies are attackers who attack just for fun or 

thieves who target a drone for its payload value. 

Script kiddies usually do not create a tool or an 

exploit; rather, they use off-the-shelf tools. Aircrack-

ng (Rodday, 2016) (Kamkar, 2013), killerbee (Spears 

et al., 2011) and MAVProxy (Marty, 2013) are some 

of the tools used for the proof of concepts discussed 

in section 2 Since all these tools are python-based, 

they may be integrated in a global downloadable tool 

to automate the whole attack. 

Motivated attackers have an adequate knowledge 

of the system. Attackers from this group target a 

specific drone or a set of drones, perform motivated 

reconnaissance before attacking and spend time 

analysing the system. They not only use the same 

tools script kiddies use but also customize them for 

their target based on their analysis. They can monitor 

the target for a longer period.  

A funded organization consists of professional 

adversaries working as a team. These professionals 

have not only the skills to analyze the system 

meticulously but also adequate funding that allows 

them to recruit insiders from the vendor companies. 

Such attackers, for example, may lure an employee to 

install a drone specific backdoor like Maldrone (Sasi, 

2015) on the drone. Attackers of this type are outside 

our threat model. 

Currently available attacks, as described in 

section 2, are oversimplified and not applicable in 

practice. A more powerful attack that all actors may 

perform in future is a stealthy takeover attack that we 

define in the following way: 

1. Victim is identified 

2. Drone is attacked over the air 

3. Original GCS is disconnected 

4. The operator observes no abnormality 

5. The drone flies to the attacker’s nest  

Step 3 and 4 are essentially what make a drone 

takeover successful in a real case scenario. Otherwise, 

the user intervention makes the takeover impossible. 

In a successful stealthy takeover, the attacker sends 

falsified monitoring data to hide the attack from the 

user. These misleading monitoring data prevent the 

user from any subsequent counteraction (incident 

response) that may hamper the attack. Figure 3 

illustrates a schema of a stealthy takeover attack. 

Table 1 reports the MAVLink commands that 

implement each step described in Figure 3. 

Importantly, to utilize these commands for any 

MAVLink based drone, the attacker can fully 

automate its exploit messages using MAVLink 

header files prepared by Lorenz Meier et al (GitHub, 

2017a). 
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1. Initialize(Connection_Parameters) 

2. FootPrint(Target) 

a) Grab_Model_Info(Drone_Address) 

b) Find_FeedBack_Interval(Drone_Model) 

c) Gather_TargSet_Trajectory(Master_

adrs) 

3. Take_Over_Drone(Drone_Adrs,GCS_Adrs) 

a) Cut_Off_Telemetry(GCS_Address) 

b) Mislead_GCS(GCS_Address, Interval, 

Trajectory) 

c) Send_Control_Command(Drone_Adrs) 

 

Figure 3: Stealthy take over attack. 

Table 1: MAVLink predefined commands needed for 

stealthy attack. 

Phase.

Step 

Generic 

Command 
MAVLink Command 

2.1 
WHO_ARE_Y

OU 
AUTOPILOT_VERSION 

2.2 
FEEDBACK_

INTERVAL 

MAV_CMD_GET_MESSAGE_IN

TERVAL 

2.3 
NEXT_WAYP

OINT 

MISSION_CURRENT 

2.3 MISSION_REQUEST 

2.3 MISSION_REQUEST_LIST 

3.1 

DISCONNEC

T_GCS 

CHANGE_OPERATOR_CONTRO

L 

3.1 
MAV_CMD_COMPONENT_ARM_

DISARM 

3.1 
MAV_CMD_SET_MESSAGE_IN

TERVAL 

3.1 MAV_CMD_DO_SET_MODE 

3.2 

DRONE_FEE

DBACK 

HEARTBEAT 

3.2 GPS_RAW_INT 

3.2 GPS_RAW 

3.2 GLOBAL_POSITION_INT 

3.2 SYS_STATUS 

3.3 
GO_TO_LOC

ATION 
MAV_CMD_NAV_WAYPOINT 

3.4 LAND MAV_CMD_NAV_LAND 

4 PERFORMANCE CONSTRAINT 

Any security solution for drones should cope with 

their performance constraints. Performance 

constraint limits latency, persistent space and power 

consumption overhead. A security solution imposes 

latency in two ways. Firstly, it increases processing 

time. For instance, MAVLink packet signing has a 

computational overhead of 26 microseconds per 

packet (Tridgell and Meier, 2015). Secondly, a 

security solution adds extra bytes to every packet for 

the purpose of verification. This will increase the 

network traffic and the communication time. 

Moreover, a security solution will increase the 

firmware size. For example, MAVLink packet 

signing code is 812 bytes. The code size is not 

negligible given PIXHawk flash size that is 1 MB 

(Tridgell and Meier, 2015). Last but not the least, 

power consumption increases because of the increase 

in CPU and network usage. 

To understand the effect of an encryption oriented 

solution, we assess network traffic and protocol 

power consumption overhead of a security solution. 

In order to define Protocol Energy Consumption 

overhead (𝐸𝑜), we define ∆𝐸 (measured in 𝜇𝐽) as the 

difference of protocol energy consumption after(𝐸𝑎) 

and before (𝐸𝑏) applying a security solution. 

Moreover, we define traffic overhead (𝑇𝑜) in terms of 

extra traffic bytes per command (∆𝑇) divided by the 

original command traffic size. ∆𝑇 (in byte) is the 

difference of the traffic size per command after 

applying a security solution (𝑇𝑎) and traffic size per 

command before security control in place(𝑇𝑏): 

𝐸𝑜 =
∆𝐸

𝐸𝑏

 ∆𝐸= 𝐸𝑎 − 𝐸𝑏 (1) 

𝑇𝑜 =
∆𝑇

𝑇𝑏

 ∆𝑇 = 𝑇𝑎 − 𝑇𝑏  (2) 

 

Total energy consumption 𝐸 is modeled as a linear 

composition of a data transmission energy 

consumption function, 𝐸𝑇𝑟(. ) and security control 

energy consumption function, 𝐸𝑆(. ): 

𝐸 = 𝐸𝑆(. ) + 𝐸𝑇𝑟(. ) (3) 

𝐸𝑆(. ) models the required energy to calculate the 

cypher from the message and verify the message 

using signature. In other words, 𝐸𝑆 depends on the 

message size (𝑇𝑛), number of messages (𝑚) and the 

signature size (𝑆). 𝑇𝑛 is the total size of the protocol’s 

headers and the payload for the layer n that the 

security solution is defined. We extrapolate 𝐸𝑆 as a 

linear function of the required energy to 

encrypt/decrypt a byte (𝐸𝑆𝐵): 
 

𝐸𝑆 = 𝐸𝑆 (𝑇𝑛 , 𝑆) ≅ 𝑚 ∗ (𝑇𝑛 + 𝑆) ∗ 𝐸𝑆𝐵  (4) 
 

𝐸𝑇𝑟(. ) models the required energy to transmit 

messages. 𝐸𝑇𝑟 depends on the number of messages 

(𝑚), total number of bytes to be transmitted for each 

message (𝑇) and transmission energy consumption 

per byte (𝐸𝑡𝐵): 

𝐸𝑇𝑟 = 𝑚 ∗ 𝑇 ∗ 𝐸𝑡𝐵 (5) 
 

In order to calculate 𝑇, we need to calculate the actual 

number of required bytes to transmit one message of 

layer 𝑛. We assume a communication protocol like 

MAVLink works on layer n. We assume the 

maximum payload size to be sent over the network on 
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the ith layer of a protocol stack is 𝑝𝑖  byte. 𝑇𝑖  , which 

is total size of message in ith layer, consists of the 

𝑇𝑖+1 payload and ith-layer headers, ℎ𝑖. Depending on 

the fragmentation, 𝑇𝑖+1 will be sent using 𝛼𝑖 chunks 

of size 𝑝𝑖  . 𝑇, total traffic, is 𝑇1 i.e. it is a message with 

all the additional headers on the physical media: 
 

{
 𝑇𝑛 = 𝑃𝑛 + 𝐻𝑛                                                      
𝑇𝑖 = 𝑇𝑖+1 + 𝛼𝑖𝐻𝑖                           1 ≤ 𝑖 < 𝑛  ,

 (6) 

 

𝑇𝑖+1 must fit into 𝛼𝑖 chunks of size 𝑝𝑖 . The number of 

fragmentations 𝛼𝑖 must thus satisfy the following 

conditions: 
 

{

𝛼𝑛 = 1                                                                    
𝛼𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛((𝛼𝑖 − 1) 𝑝𝑖 <  𝑇𝑖+1 ≤ 𝛼𝑖𝑝𝑖),   

1 ≤ 𝑖 < 𝑛
  

 (7) 

 

Considering that layer 1 is purely physical and just 
propagates layer 2 frames (𝐻1 = 0), we can calculate 
𝑇: 
 

𝑇1 = 𝑇2 + 0 = ∑ 𝐻𝑖

𝑛−1

𝑖=2

𝛼𝑖 + 𝛼2𝑝2 (8) 

 

Example: We consider the combination of MAVLink 

and XBEE and application of AES and SHA1 

encryption algorithms as security controls. We base 

our calculation on transmission energy consumption 

reported in (Fourty et al., 2012) and cryptographic 

algorithms energy consumptions reported in 

(Potlapally et. al, 2003).  

In MAVLink case, n is equal to 3 since there is no 

transport protocol layer between MAVLink and 

Xbee. We call 𝛼2 after applying encryption 𝛼2,𝑎 and  

𝛼2 before applying encryption 𝛼2,𝑏. Hence: 

𝑇𝑎 = 𝐻2𝛼2,𝑎 + 𝑝2𝛼2,𝑎 =  𝛼2,𝑎(𝐻2 + 𝑝2)  
𝑇𝑏 = 𝐻2𝛼2,𝑏 + 𝑝2𝛼2,𝑏 =  𝛼2,𝑏(𝐻2 + 𝑝2)  

∆𝐸= 𝑚 ∗ (( 𝛼2,𝑎-𝛼2,𝑏) ∗ (𝐻2 + 𝑝2) ∗ 𝐸𝑡𝐵 +
 (𝑇3 + 𝑆) ∗ 𝐸𝑆𝐵) . 

Packet size (𝑇3) for MAVLink version 1.0 is 263 

bytes (Figure 1). As packet signing redesigns 

MAVLink, 𝑇3will increase to 276 bytes. We can 

assume other encryption based security solutions 

have at least the same increase for 𝑇3. Moreover in 

XBEE, header size can vary depending on the mode 

(DIGI, 2017). For the sake of this study, we assume 

XBEE does not operate in encryption mode. Table 2 

summarizes the value of the variables for MAVLink 

over XBEE.𝑆 for MAVLink Packet Signing is 13 

bytes and for sMAVLink is 15 bytes (refer to section 

2). Solving (7) using Table 2 variables, we deduce 

𝛼2,𝑏 and 𝛼2,𝑎value. According to 𝛼2,𝑎 values, 

sMAVLink in broadcast mode has 𝑇𝑜 of 33% while 

𝑇𝑜 for other cases is 0 since no additional frames are 

needed.   

Table 2: This table reports the number of required frames 

before applying encryption 𝛼2,𝑏and the number of frames 

after applying encryption 𝛼2,𝑎to send a message based on 

the datalink layer protocol and security status. 

Mode 
Unsecure 
version 

Signature 
≤ 13 

13<Signature ≤ 
60 

Broadcast 

mode 

V
ar

ia
b

le
 

V
al

u
e 

V
ar

ia
b

le
 

V
al

u
e 

V
ar

ia
b

le
 

V
al

u
e 

𝑇3  263 𝑇3  276 𝑇3  277 – 336 

𝑇2  100 𝑇2  100 𝑇2  100 

𝐻2  8 𝐻2  8 𝐻2  8 

𝛼2,𝑏  3 𝛼2,𝑎  3 𝛼2,𝑎  4 

Peer to 
peer 

mode 

𝑇3  263 𝑇3  276 𝑇3  277 – 336 

𝑇2  100 𝑇2  100 𝑇2  100 

𝐻2  16 𝐻2  16 𝐻2  16 

𝛼2,𝑏  4 𝛼2,𝑎  4 𝛼2,𝑎  4 

 

Limiting 𝑇3 by 𝛼2,𝑎 using (7), we conclude that if 

𝑆 ≤ 13, there is no overhead in traffic. On the other 

hand, if 13 < 𝑆 ≤ 60, 𝑇𝑜 can increase to 33%. Since 

AES and AES GCM are in the same family, we 

approximate 𝑆 to be in the same range as sMAVLink 

(13 < 𝑆 ≤ 60). We also approximate 𝑆 of SHA1 to 

be ≤ 13 since MAVLink packet signing uses SHA 

family (SHA256).  

Table 3: It reports the protocol energy consumption 

overhead per command (∆𝐸and 𝐸𝑜) based on S. 

 𝑆 𝐸𝑡𝐵 𝐸𝑆𝐵 ∆𝐸 𝐸𝑜 

AES 15 7.09 𝜇𝐽 1.62 𝜇𝐽 1.159 𝑚𝐽 55% 

SHA 13 7.09 𝜇𝐽 0.76 𝜇𝐽 0.210 𝑚𝐽 10% 

 

Even if the traffic overhead is zero, there is at least 

10% energy consumption overhead in addition to the 

processing time overhead. In (Fourty et al., 2012), 

transmission energy consumption of an 802.15.4 

network has been analyzed. For a 19 bytes length 

frame, the energy consumption is 134.85 𝜇𝐽. 

Moreover, from (Potlapally et. al, 2003), we can 

derive an approximation of the energy consumption 

of AES (for 128 bit length key and based on CBC 

block cypher) and SHA1. AES and SHA1 energy 

consumption per byte are reported respectively 1.62 

𝜇𝐽 and 0.76 𝜇𝐽. We calculate ∆𝐸 per byte for 𝐴𝐸𝑆 and 

SHA1 based on 𝑆 value we approximated. Table 3 

presents energy consumption values per byte. 
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5 DIVERSITY SOLUTION 

Software diversity, a branch of moving target 

defense, as a protection mechanism has gained a lot 

of attentions in recent years (Larsen, et al. 2014). The 

idea in diversification is to produce final machine (or 

intermediate) codes that fulfil the same purpose 

though they are different in form. Instruction Set 

Diversity is a diversification method that is used to 

thwart code injection (Barrantes et al., 2005). This 

method relies on changing the bytecode randomly and 

recovering it before execution on the processor. We 

build on this idea by using diversity to change the 

format of the MAVLink instruction set so that the 

same functionalities are present but in a different 

syntactical form. Our solution is a novel instruction 

diversity approach since we are diversifying remote 

instructions in order to limit the access while existing 

solutions focus on the local machine instructions in 

order to thwart code injection. In the rest of this 

section, we present our solution and a basic 

application of the general idea. Next, we analyse the 

solution by considering bruteforce and eavesdropping 

attacks perpetrated by script kiddies and motivated 

hackers. Finally, we propose a more robust 

implementation based on our security analysis result. 

5.1 General Idea 

Our solution aims to hide the required commands for 

a takeover attack by randomizing command values 

for each drone-GCS pair. The communication 

between authentic nodes is still possible as long as we 

use the same diversified commands for them. If the 

attacker tries to send the default protocol value, the 

behavior of the drone will be unexpected. At best the 

command will be ignored, at worst it will generate 

anomalous behaviors (ARDUPILOT, 2017b). The 

anomalous behavior is visible to a user who is 

tracking and guiding the drone since the drone does 

not operate as expected. In such scenario, the user 

must send an emergency land command by which the 

drone returns to the nest. After sending this 

command, the drone shall not accept command from 

any sources since commands may come from an 

untrusted source.  

Instruction in MAVLink protocol is determined 

using Message ID field and Payload fields, which 

contain the arguments for the command. We assume 

Message ID is 𝑤 bit long and Payload part of the 

instruction is 𝑑 bit long. Since Message ID is too 

small to define a Command instruction, Message ID 

plus a few more bytes of the payload are used as the 

Command instruction identifier. For a basic 

implementation, we consider 𝑑 to be the length of 

these Command indicator bytes. 𝑑 bits of payload 

convey a command meaning only when Message ID 

flags a command instruction (Message ID = 𝑋). We 

assume 𝑀 is the set of all the possible Message IDs 

and 𝐶 is the set of all the possible arguments in the 

payload. A message in 𝑀 is defined by 𝑚𝐼𝐷 where 𝐼𝐷 

is the actual Message ID value. Accordingly, we 

define 𝑐𝐼𝐷. We define size-of operator using |.|: 
 

𝑀 = {𝑚1, 𝑚2, 𝑚3, … , 𝑚|𝑀|}, |𝑀| =  2𝑤  

𝐶 =  {𝑐1, 𝑐2, 𝑐3, … , 𝑐|𝐶|}, |𝐶| =  2𝑑 

The set of all instructions is defined by 𝐼. Members of 

𝐼 are defined by tuple (𝑚𝐼𝐷, 𝑐𝐼𝐷 ). Command 

instructions are represented by (𝑚𝑋, 𝑐𝐼𝐷) and 

ordinary messages are defined by (𝑚𝐼𝐷,𝑛𝑢𝑙𝑙), 𝐼𝐷 ≠

𝑋. We assume 𝜎𝑀 is the set of all the possible 

permutations over 𝑀.Accordingly, we define 𝜎𝐶 the 

set of all the permutations over 𝐶. Since 𝜎𝐶 and 𝜎𝑀 

are independent, the set of all the possible instruction 

permutations (𝜎𝐼) is all the combinations of a 𝜎𝑀 

member and a 𝜎𝐶 member. 

𝑀𝑗  ∈ 𝜎𝑀, 1 ≤ 𝑗 ≤ |𝜎𝑀|  

𝐶𝑘  ∈ 𝜎𝐶 , 1 ≤ 𝑘 ≤ |𝜎𝐶|   

𝐼𝑗,𝑘 ∈ 𝜎𝐼 𝑠. 𝑡. 𝐼𝑗,𝑘 = (𝑀𝑗 , 𝐶𝑘)  

We define 𝜌 a strong permutation function that 

randomly picks an element in 𝐼𝑗,𝑘. The construction of 

𝜌 is purely off-line and is executed only once at the 

drone installation. Several well-known constructs can 

be used. For example, the Luby-Rackoff construction 

(Naor and Reingold, 1999) generates a pseudorandom 

permutation from a pseudorandom function; 

similarly, the methodology described in (Goldreich, 

et al., 1986) can be used to construct a pseudorandom 

function from a strong pseudorandom generator such 

as BBS (Blum et al., 1986). Even with small 𝑤 and 𝑑, 

𝜌 has large space |𝜎𝐼| to perform randomization: 

|𝜎𝑀| = |𝑀|! = 2𝑤! 
|𝜎𝐶| = |𝐶|! =2𝑑! 
|𝜎𝐼| = |𝜎𝑀| ∗ |𝜎𝐶|  = 2𝑤!  × 2𝑑! 

In practice, if |𝑀| is significantly smaller than |𝐶|, as 

it is for MAVLink version 1.0, attackers will first 

exploit (𝑚𝑖,𝑛𝑢𝑙𝑙) tuples for messages without 

argument. For this reason, the defense strength lies on 

the complexity of finding the random 𝐶𝑘. For 

implementation, we randomly change the instruction 

values using 𝜌 before compilation and since the 

instruction values will be used as identifiers, 

randomizing their value will not harm the application 

logic. Interoperability in a UAS is possible as long as 

drone’s  firmware  and  GCS  are  compiled  using the 
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same header file for instructions.  

MAVLink is a header-only message marshalling 

library (GitHub, 2017b). The messages are defined in 

one xml file. After applying 𝜌, its output must be fed 

to an xml file generator to produce the expected xml 

file by MAVLink. Next, to create the header file, the 

header generator script must run with the created xml 

file as the parameter(ARDUPILOT, 2017a). Later, 

both GCS and the firmware should be compiled using 

the same message header file. Finally, the firmware 

code should be flashed into the autopilot. Vendors can 

write a script that does the following: 

1. Generates a new instruction set for each user using 

𝜌 

2. Creates message definition XML file 

3. Generates the header file 

4. Compiles the code 

5. Updates the drone firmware and GCS 

It is very important for the vendor to provide this 

solution as an automatic update mechanism that users 

can regularly run. Since these steps are run before the 

flight and when the system is offline, the overhead of 

this solution is zero. This solution does not alter the 

execution paths, hence during flight time, the 

operation is the same; the only difference is matching 

commands with a different vector. Moreover, the 

additional space required for this solution is zero. 

Finally, this solution by default is resistant to script 

kiddies since the off-the-shelf exploits do not work 

anymore. This solution will work “off-the-shelf” for 

the current MAVLink implementations with little 

more than a header-file replacement in contrast to 

other proposed solutions that require changing the 

packet structure.  

5.2 Security Analysis 

Bruteforcing, which is trying all the possible 

combinations, is the first cyber-attack that adversaries 

may mount against our defense. In brute force, the 

attacker tries all the possible values for a command to 

retrieve the actual command value. In order to 

perform an attack, the attacker needs to know at least 

𝑟 instructions required for that type of attack. 𝑏 of 

these instructions belong to the set 𝑀 and the rest is 

from the set 𝐶. The attacker needs to perform BF 

number of trials to find 𝑟 commands: 

BF = ∑ (|𝑀| − 𝑖)𝑏− 1
𝑖=0 + ∑ (|𝐶| − 𝑗)𝑟− 𝑏

𝑗=0   

In case of stealthy takeover on MAVLink, 𝑏 is 10 and 

𝑟 is 16 (see Table 1). BF for this attack is 395716 

trials. Although 395716 operations in cryptography is 

totally breakable, in our scenario it is strong enough. 

The complexity of breaking this defense lies on the 

difficulty of verifying whether the command had the 

expected effect without human aid. For instance, if 

the attacker is searching for the command to throttle, 

she ca0nnot bruteforce all the possible commands in 

a loop because after transmission of each command 

she needs to observe physically the drone and see if it 

had the desired throttle effect.  

An alternative to brute force attack against these 

systems is eavesdroping. The attacker eavesdrops the 

communication between the drone and the GCS to 

extract the commands he needs for hijacking. The 

analysis of the eavesdropped traffic for command 

extraction can be performed automatically or 

manually. A combination of the two approaches 

would form a known plain-text attack. Mainly for 

automatic analysis the attacker has two choices: 

 Pattern matching 

 Commands frequency analysis 

Pattern matching is based on two examinations. The 

first examination is the length of the payload and the 

number of parameters. This method, though, is not 

really effective because any command with the same 

number of parameters has almost the same format in 

a communicated packet. This is because the traffic 

contains value also for empty parameters and 

autopilot ignores these values (Meier et al., 2011). 

The second examination is on the domain of the 

value. This check will also generate many false 

positives since two commands may have same 

parameter domains while doing different things. An 

example of such is MAV_CMD_NAV_LAND and. 

MAV_CMD_NAV_VTOL_TAKEOFF commands 

that both have the same number of parameters and 

domains but do exactly opposite things. 

Commands frequency analysis is not conclusive 

too. By measuring the frequency of some commands, 

the attacker may find the most common messages. 

This is possible mainly because the instruction space 

is limited. Moreover, not all of this space is used; 

Message IDs 180 – 240 and more than 99% of 

MAV_CMD commands are unused (Meier et al., 

2011). Additionally, some commands are transmitted 

more frequent than the others are. For example, 

HEARTBEAT message is transmitted based on an 

interval and analyzing that can give a hacker the 

insight about both the interval and the heartbeat 

command. Waypoint commands are other types of 

commands that can be detected; however, these 

commands are not enough for a stealthy takeover. As 

mentioned in section 2 if the attack is not stealthy, it 

is unlikely to be successful in a practical scenario.  

An alternative to the automatic traffic analysis is 

manual  behavioral  analysis.  A  computer  may  not 
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distinguish the behavior of a drone after a command; 

however, a human can do so. We call this approach 

behavioral analysis since it depends on the human 

intelligence to detect a command’s effect. The 

attacker may choose behavioral analysis by simply 

observing the drone behavior after capturing a 

command. This method can also be integrated by the 

previous method to simplify the attacker’s work. 

Nevertheless, some commands may be revealed by a 

very low probability essentially because they are not 

frequent at all. CHANGE_OPERATOR_CONTROL 

and MAV_CMD_SET_MESSAGE_INTERVAL are 

such commands that are essential for stealthy 

takeover of a Radio drone. As presented in Table 1, 

these commands allow the attacker to disconnect the 

legitimate user and mislead her. Additionally, if the 

attacker again chooses to perform an overt attack on 

a WIFI drone, disregarding these commands, he has 

to wait for the MAV_CMD_NAV_LAND command 

to be sent. After sending this command, the attacker 

has a very limited time to intercept the command and 

run the attack (less than 1 minute) because after that 

the drone lands and it will be disarmed. Even the 

attacker succeeds, the drone is few meters away from 

the legitimate user.  

A motivated attacker may crack the commands 

listening to airwaves for a long time. Then, the 

attacker may try to steal the drone during the next 

flight while disconnecting the owner. Regularly 

updating the drones’ firmware and the GCS mitigates 

the threat of leaking sensitive commands. 

Both in bruteforce attack and eavesdropping, 

issuing command, while the legitimate owner 

controls the drone, results in unexpected behavior. 

The unexpected behavior of the drone will violate the 

‘stealthy drone takeover’ requirements. The jig-

jagged erratic behavior of the drone is an indicator of 

compromise. Based on this, a proper incident 

response such as security emergency landing can be 

realized by adding a command that initiates return-to-

nest process and disables remote control.  

5.3 Enhancement 

A more robust solution to the aforementioned attacks 

would be including also the arguments of the 

MAVLink command in the random permutation. This 

would require a compiled bit-shift preprocessor that 

regenerates the original arguments. A fixed 

permutation of 𝑑 bits can be done with O(𝑑) 

instructions (Lee et al., 2001). This will increase the 

search space of a bruteforce attack to more than 256 

bits (Message ID + Payload), which renders a 

bruteforce search infeasible in practice. Known plain 

texts attacks will not be effective as well. A known 

plain text attack may only succeed based on two 

premises. Firstly, the attacker must recover the 

parameters of a command. This requires precision at 

bit level to identify target GPS coordinates for GPS-

oriented commands by looking at the drone position. 

Secondly, the attacker’s infrastructure must be 

capable of cracking the permutation in a small 

window of 20 minutes. The script kiddies and 

motivated attackers cannot fulfil these two premises. 

That said, the overhead and implementation cost of 

this solution is not zero. However, in comparison to 

AES (see Table 3), there is no network traffic 

overhead for this solution. Moreover, the instruction 

overhead of this solution is definitely less than SHA 

and AES; they require far more instructions for 

encryption than 256 ones that this solution needs to 

rebuild a payload. Compatibility, Performance and 

protection comparison of all the security solutions are 

shown in Table 4. 

6 CONCLUSIONS  

In this research, we discuss the security weaknesses 

of drones and how hackers have leveraged these 

weaknesses in recent years to take control over the 

drones. We, further, present the concept of stealthy 

takeover attacks as a practical evolution of state-of-

the-art attacks. Despite the current unavailability of 

security solutions, improvements based on the drone 

constraints are required; in particular, we argue how 

an encryption oriented security solution can generate 

significant overhead on the network and increase 

energy consumption. Taken into account the threats 

UAV systems face, we employ Moving Target 

Defence instruction diversity technique to secure 

drones. We show how our solution has better 

performance than existing solutions and offer 

acceptable defence against script kiddies and the 

motivated hackers. Even if attackers partially succeed 

in finding some commands, the incident response is 

possible because the attack would not be stealthy. 

A more robust solution would be Payload bit 

permutation that would be resilient against the threats 

we consider (script kiddies and the motivated 

attackers). Clearly, a powerful funded organization 

may afford the cost required to satisfy the premises of 

cracking bit permutation. However, this is out of the 

scope for a commercial solution addressing the 

commodity drones. 
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Table 4: Comparison of MAVLink security solutions. 

 GIDL sMavlink Packet Signing Diversity 

Compatibility 

Protocol alteration Severe Low Moderate Low 

Backward Compatibility No No Partly No 

Implementation complexity Extremely High High Moderate Low 

Performance 
Computational overhead Low Medium Low None 

Memory overhead Low Low Low Very Low 

Protection 

Confidentiality Yes Yes No Partly(*) 

Access control Yes Yes Yes Yes 

DOS defense No No No No 

- (*) requires coupling digital interception with physical observation and reverse kinematics. 
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