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Abstract: After the initial development and deployment, keeping software applications and their execution environments
up to date comes with some challenges. System administrators have no insight into the internals of the applica-
tions running on their infrastructure, thus if an update is available for the interpreter or for a library packaged
separately on which an application depends, they do not know if the new release will bring some changes
that will break parts of the application. It is up to the development team to assess the changes and to support
the new version. Such tasks take time to accomplish. In this paper we propose an approach consisting of
automatic analysis of the applications and automatic verification if the changes in a new version of a software
dependency affect them. With this solution, system administrators will have an insight and will not depend on
the developers of the applications in such situations, and the latter will be able to find out faster which is the
impact of the new release on their applications.

1 INTRODUCTION

The increasing adoption of cloud computing services
changed the way how software is developed, how it is
deployed and executed, and how we use and interact
with it (as developers or as simple users). We now
have applications that do not need to be locally in-
stalled, are accessible from everywhere using the In-
ternet, and are provided as a service (SaaS – Software
as a Service). These applications are usually com-
posed of multiple services that run ”in the cloud”, in
various environments. They can also be monolithic
applications of different sizes. Even mobile applica-
tions that are installed locally use backend services
hosted on servers. All these are executed in some
pre-configured environments. After the initial de-
velopment and deployment, some challenges appear
regarding the maintenance of the execution environ-
ment and of the application. For example, system ad-
ministrators face a dilemma when an update is avail-
able for the interpreter of a certain language (PHP,
Python, etc.), especially if it is a major one. Typically,
they are not the developers of the hosted applications
or services that rely on the interpreter, thus they do not
know if the update will bring changes that will break
some parts of the software. It is also not in their re-
sponsibility to know any details about the internals of
the applications. If the developers are faced with the

task to support a new version of the interpreter, they
must make an assessment of the changes brought by
the update and the changes to be made in the appli-
cation. The same problem appears when updating a
library on which the software depends. These tasks
require some effort and time.

In this paper we propose a novel approach that
gives the administrators an insight for the mentioned
problem, and the developers information about the
changes to be made, all that in an automatic manner,
improving their efficiency for such kind of tasks. Our
solution uses machine learning and natural language
processing techniques. It is independent on the lan-
guage in which the software was developed.

The closest approaches in similarity that verify
the differences between various versions of code are
those that treat the backward compatbility problem. A
lot of research is conducted on automating the assess-
ment of backward compatibility of software compo-
nents, but the solutions do not offer the same function-
ality as our proposal, they provide a complementary
one (Ponomarenko and Rubanov, 2012; Welsch and
Poetzsch-Heffter, 2012; Ahmed et al., 2016; Tsan-
tilis, 2009). Their source of information are soft-
ware repositories, which they monitor and analyze.
The approaches are based on different techniques that
evaluate the differences between the old source code
and the new one (entire code or only the interfaces).
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The focus is on assessing if a new version of a soft-
ware component is compatible with its old version,
from a functional point of view. They do not mention
anything about the capability to provide information
about the change of support status of functionalities
in different versions of the libraries/interpreters.

There are some approaches that address this com-
patibility problem with the same purpose as our pro-
posal, but they are not that general and require a lot of
manual work for creating their source of knowledge.
For example, for PHP, there is a tool, PHP CodeSnif-
fer (Sherwood, 2017), that tokenizes the source code
and detects and fixes violations of code formatting
standards. This is used by another tool, PHPCompat-
ibility (Godden, 2017), that contains a set of sniffs for
the former and is able to check for PHP version com-
patibility. Various similar custom tools were devel-
oped for different scopes and languages and libraries.
The major disadvantages with this kind of tools is
that they require a tremendous manual effort to cre-
ate their knowledge base and that they are developed
specifically for a certain language. To the best of our
knowledge, a system similar with our approach does
not exist.

Our proposal has also a contribution regarding the
possibility to identify and extract entities in the pro-
gramming domain. Known solutions that are capable
of identifying various terms, like AlchemyAPI, Open-
Calais, TextRazor, MeaningCloud, recognize entities
from categories like people, places, dates, not enti-
ties in the programming context. To the best of our
knowledge, a similar system does not exist.

In the next section we present our approach and
give details about how it solves the presented prob-
lem. In section 3 we describe a prototype platform
that implements our ideas. Section 4 presents some
experimental results. Our approach may also be ap-
plicable in other fields, use cases which are briefly
described in section 5. Finally, section 6 contains fu-
ture development and research ideas for the evolution
of the technology.

2 OUR PROPOSAL

In this vast landscape of software applications of dif-
ferent sizes that run in execution environments con-
figured directly on barebone servers, on virtual ma-
chines, or in containers, the management of the appli-
cations and the environments after the initial devel-
opment and deployment is a challenge. Our proposal
addresses a specific management problem, regarding
keeping the software up to date.

System administrators maintain the infrastructure

for running different applications. One of their major
tasks is to maintain the systems up to date and this
generates some difficulties. When they are faced with
the situation of updating the execution environment
for the deployed applications, for example updating
an interpreter (for PHP, Python, Perl, etc.) to a new
version, they have to answer questions like: will the
existing applications run on the new version of the
interpreter? Are there any parts of the applications
that will not run because of the changes?

These are not questions that can be answered eas-
ily, because the administrator is usually not the de-
veloper of the application(s). The same thing applies
in case of libraries which are packaged and installed
independently and on which the applications depend.
Given the fact that the sysadmin does not have any
knowledge about the application (except the neces-
sary versions of the interpreter/libraries when the ap-
plication was developed and deployed), he/she can
only base its decision on assumptions to make the up-
date. One intuitive assumption is that if there is a mi-
nor version update for the interpreter or library, ev-
erything should be fine, as no major changes in func-
tionality occurred. In the majority of cases, this holds
true, but it is still an assumption, not a certainty. The
problem arises when there is a major update and the
development team does not plan to update the appli-
cation to support the new release. The problem is very
serious in the case of interpreted languages, because
errors appear at run-time, only when certain blocks
of code get executed, not initially when everything
gets compiled, as is the case with compiled languages.
Thus, some parts of the application may work, while
other parts may not. The system administrator simply
will not know if there will be parts of the applica-
tion that will not execute, he/she is not the developer,
he/she is not the tester. This problem scales, because
a single administrator can have multiple applications
running on his/her infrastructure. Our proposal offers
a solution for this situation, by automatically analyz-
ing and providing information about whether the new
version will bring some changes that will break the
application or not.

Nowadays there is also a shift regarding the man-
agement of the execution environment, from the ded-
icated system administrators to the teams develop-
ing the applications, by using containers like Docker.
This does not solve the problem, only shifts it to the
developers, although it does not mean that adminis-
trators do not care about the situation of the environ-
ments of the containers running on their infrastruc-
ture. Thus, when the development team wants to up-
date the interpreter or some libraries used, it faces the
same problem described above. Even though the team
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knows the application, it does not know exactly which
blocks of code will execute and which will not. The
solution is to analyze the changelog/migration guide
and to assess the changes that need to be done. This
manual procedure is time consuming. Our solution
helps reduce this time.

The approach that we propose towards solving this
problem is a technology that is able to automatically
scan the code and verify if the used functionalities
are still supported in a targeted version of the inter-
preter/library. This technology is independent of the
used programming language. As we have stated ear-
lier, the focus is on interpreted languages. This tech-
nology is comprised of three parts:

1. A tool that automatically analyzes the code, ex-
tracts the used functionalities, and queries a
knowledge base that helps to answer the follow-
ing questions: is the functionality X supported in
the new version N? If not, what are the changes
that were made?

2. A knowledge base (Noy et al., 2001) created au-
tomatically that contains information about the
functionalities supported in every version of the
interpreter/library;

3. A platform that extracts specific entities from on-
line or offline manuals, independently of the pro-
gramming language, and populates the knowledge
base.

The tool is the part that must have access to the
code and which uses the (remote) knowledge base to
verify if there are functionalities used that are not sup-
ported anymore (or are marked to be removed in the
future) in the targeted version. It generates a report
based on the findings. The key enabler of our tech-
nology is the knowledge base. The most important
aspect is the contained information and the way it is
obtained. For the current version of the platform that
populates the knowledge base, which is presented in
section 3, the functionalities taken into consideration
are the supported functions in all versions of the inter-
preter/library (the provided APIs). Thus, the analysis
tool is a pretty basic component, all that it needs to
do is to extract all the functions in the code, eliminate
those declared locally, and query the knowledge base
to check for support in the targeted version. The only
functionality that is more complex is the filtering of
the functions provided by a certain used library or by
the interpreter.

In this paper, the focus of our work is on the
platform that creates the knowledge base. As we
have mentioned, the data contained consists of de-
tails regarding all the supported functions in the in-
terpreter/library. For each function, we have different

attributes, like its signature’s components (the func-
tion’s name, the number of arguments, the types of ar-
guments, the order of the arguments), the return type,
its short description, its availability (supported, dep-
recated, obsolete), and the version number of the in-
terpreter/library in which it is supported. All the in-
formation is extracted from online manuals available
on the Web or offline ones. The platform described
in section 3 is capable to automatically extract the de-
sired data, independently of the content (certain man-
uals for certain languages/libraries) or the structure of
the web pages. The extraction technology does not
have implemented any adapters for specific manuals.
It supports any manual for any language. The only
restriction is regarding the syntax used for writing the
functions in the manual. This capability is achieved
using machine learning algorithms and different nat-
ural language processing (NLP) techniques.

By having such kind of knowledge and being able
to automatically analyze the code and obtain a status
report regarding the unsupported changes offers some
major advantages. The administrators can now have
an insight into what will happen with the execution
of the application if the update is made. All this can
be done without him/her knowing any details about
the implementation of the application. For the devel-
opment team, although it knows the internals of the
application, it does not know exactly which blocks of
code will execute and which will not, in case of exist-
ing changes of some functions. The solution for this
is to read the changelog/migration guide, to extract all
the functions that were modified and to search for all
occurrences of the functions that need to be modified
in the application. Another approach is to do a thor-
ough test of the application and check if everything
works or not, and if there are problems, the changelog
must be consulted. This manual procedure requires
a lot of time. By having the tool that is capable of
scanning the code, interrogating our knowledge base
and reporting what functions are not supported any-
more or suffered some changes, pointing the develop-
ers exactly to the blocks of code that need to be mod-
ified, a lot of time is earned, by eliminating the man-
ual steps described above. The report also provides
details about the differences between the old and the
new function(s), easing the job of the developers to
make the changes, by not requiring them to manually
search for that information. All these aspects will im-
prove the delivery time for the updates. Such a report
that can be created automatically, containing all the
changes that need to be done, is also very useful in
case of project estimation. It can be used by all the
persons involved in estimating a project (e.g. project
managers, business analysts, etc.) to find out from
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the start what are the implications of making a cer-
tain update (in the context described above), without
requiring some developers to make an assessment of
the changes that need to be done. It eliminates all that
manual labor.

By employing our solution which needs access to
the source code, the developing teams and the owners
of the applications can have some real privacy con-
cerns. Privacy is a very important issue nowadays,
and there are many legal and technological aspects
regarding this (Pearson, 2009; Alboaie et al., 2015).
Our approach and design is in line with principles like
Privacy by Design and Privacy by Default (Ferretti,
2015). The functionality of the analysis tool that runs
on the users’ machines and scans the code is trans-
parent, and is easily verifiable by the user. This tool
extracts only the functions used in the code, which
represent public information, they are provided by
the interpreter/library, ignoring everything else in the
source code. Further, only those functions are trans-
mitted into the requests made to the knowledge base.
Thus, effectively no proprietary code is extracted and
transmitted.

3 SYSTEM ARCHITECTURE
AND DESIGN

In this section we present the architecture of a proto-
type platform that is capable of automatically access-
ing the manuals of interpreters/libraries available on
the Web or offline, identifying and extracting the spe-
cific entities, and populating the knowledge base. Its
components are designed to be context independent
and decoupled. Each component offers its function-
ality as an independent service. The designed archi-
tecture is based on SOA (Service Oriented Architec-
ture) principles. The platform is fully implemented
in Python. Figure 1 depicts the system’s architecture.
The platform has four main components, CorpusTrain
SigDetection, CorpusTrain VerDetection, WebMiner,
OntoManager, and its functionality is split into two
phases.

First one, the training phase, uses a machine learn-
ing algorithm to generate two models used for the de-
tection of function signatures and version numbers of
the interpreter/library in which the function is sup-
ported. The training data contains manually anno-
tated information downloaded from PHP and Python
online manuals. The components involved in this
step are CorpusDownloader, CorpusReader, Corpus-
Reader TrainingData, CorpusTrain SigDetection and
CorpusTrain VerDetection. Classifier SigDetection
and Classifier VerDetection are the classifiers that re-

sult from this step.
The second step, the extraction phase, consists

of accessing the manuals, analyzing them, and ex-
tracting specific knowledge. The main orchestrator
of all these operations is WebMiner component. The
other components used are CorpusDownloader, Cor-
pusReader, SigContext, NER Version Number, NER
SigComponents, NER SigDescription. The identified
data is then saved in the knowledge base, operation
managed by OntoManger. Further we present imple-
mentation details about each component.

3.1 CorpusDownloader

This module is a specialized Web crawler that ac-
cesses online manuals. It accomplishes this through
the use of lxml library (lxml, 2017). For navigating
through the links of the manual we use XPath expres-
sions, which are custom built for each site, guiding
the crawler to the desired web pages. The content of
each page is then downloaded and saved to a local
storage using Lynx (Dickey, 2017). This is a text web
browser, but we use it as a headless browser, without
requiring any user input, to save the rendered content,
exactly like an user sees it. This is an important op-
timization that improves the extraction process. Li-
braries like lxml or BeatifulSoup are able to download
web pages, but they download them with the HTML
code included, and when we want to clean the tags
and extract only the content, there are situations when
a sentence (e.g. a function signature) is split into mul-
tiple rows, thus is way harder to detect it. This de-
pends on how the developers wrote the HTML code.
By using a headless browser, the advantages are that
our component is independent of the structure of the
page, of its stylization, thus it is not affected from fu-
ture layout changes. It gives us the content exactly
like a human being is seeing it. The only dependency
is towards reaching the desired pages.

3.2 CorpusReader

This component loads downloaded content, splits it
into a list of sentences, then each sentence is split into
a list of words. The order of sentences and words
is maintained. The sentence segmentation is done
using Punkt sentence segmenter from NLTK plat-
form (NLTK, 2017). It contains an already trained
model for English language. For word segmentation,
Penn Treebank Tokenizer is used, which uses regular
expressions to tokenize text. After that, all punctua-
tion signs are removed, because, in the current version
of implementation, they do not bring any value to our
extraction process, thus saving some memory.
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Figure 1: System Architecture.

3.3 CorpusReader TrainingData

This module loads the training data that is used for
generating classifiers that can identify signatures and
version numbers. It uses all the functionalities pro-
vided by CorpusReader and, additionally, categorizes
each instance based on its label, which can be one of
the following two: pos or neg.

3.4 CorpusTrain SigDetection

The purpose of this component is to train a binary
classifier to detect signatures. The assigned labels are
pos and neg. CorpusReader TrainingData provides
the labeled data, from which the feature sets are ob-
tained. For a signature, we use the following features:
if the character before last is parenthesis, if it contains
an equal sign before first occurrence of ’(’ char, if it
contains special keywords (like if, for, foreach, while,
etc.) before first ’(’ char, the number of colons before
first ’(’ char, if there are more than three words before
first ’(’ char, if there are letters before first ’(’ char, if
it contains unusual words (like ones that do not con-
tain letters or contain only one character) before first
’(’ char, if the last char is in a predefined list of chars
(like !, @, &, *, etc.), if after last ’)’ char there are
more than one characters, if there is a single pair of
top level brackets, if there are more than one top level

bracket pairs.
The training data contains examples from PHP

and Python manuals. The generated feature sets are
used to train a Naive Bayes classifier. Although it is
one of the simplest models, we have chosen Naive
Bayes because it is known to give good results for
various use cases and because it does not need a large
amount of training instances. The generated classifier
is used further by Classifier SigDetection component,
which offers a single service: it receives a sentence
and establishes if it represents a signature or not.

3.5 CorpusTrain VerDetection

This module trains a Naive Bayes binary classifier
for detecting version numbers. The assigned labels
are also pos and neg. The feature sets are obtained
from the data provided by CorpusReader Training-
Data. We analyze each word from each sentence, tak-
ing also into consideration the word’s context. We use
for learning the following features: if the first charac-
ter is ’v’, the number of dots, if most frequent chars
are digits, the word before, if the word before is in a
gazetteer list (which contains names of programming
languages).

The training data contains examples from PHP,
Python and jQuery manuals. The generated classifier
is used by Classifier VerDetection component, which
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offers a single service: it receives a sentence and a
word in that sentence, and establishes if the word rep-
resents a version number.

3.6 SigContext

This component receives all the sentences of the en-
tire document, identifies the signature(s) using Classi-
fier SigDetection and established the descriptive con-
text of each signature. The algorithm for identifying
the context is intuitive and models the way humans
analyze this: usually all the descriptive details are af-
ter the line containing the signature or there are situ-
ations when there is a line containing only the func-
tion’s name (as is the case with PHP manual). This
marks the beginning. The context ends when a line
containing another signature is identified or the end
of document is reached. SigContext builds a model of
the document containing indexes that represents the
positions of the signatures, the start, and the end of
their contexts.

3.7 NER Version Number

This component receives the signatures and their de-
scriptive contexts and searches for the version num-
bers of the interpreter or library in which the function
is supported/unsupported. First it checks if there is
a version number outside the context, usually mean-
ing that the version applies to all the signatures. After
that, it extracts the number(s) detected inside the con-
text (which have higher priority over the one outside
the context). It uses Penn Treebank Tokenizer from
NLTK for tokenizing each sentence into words, and
our trained classifier provided by Classifier VerDetec-
tion for detecting version numbers. Beside the ver-
sion, it verifies its context for identifying the func-
tion’s availability state: supported, deprecated, re-
moved. For that, we have built a dictionary containing
stems of different keywords (like changed (in), added
(in), removed (from), etc.) that denote the state. Then
each word in the context of the version is stemmed
and compared with the entries in the dictionary in or-
der to detect the state. Stemming is the technique that
removes affixes from a word. We use it as an op-
timization, allowing us not to store all the forms of
words in the dictionary. For this procedure, the Porter
stemming algorithm from NLTK is used.

3.8 NER SigComponents

This module receives a sentence representing a sig-
nature and identifies its components (e.g. function’s

name, return type, parameters, etc.).We defined sev-
eral regular expression rules for this extraction.

3.9 NER SigDescription

This component is capable to identify the short de-
scription of a signature, which contains details about
its functionality. It searches for it in the signature’s
descriptive context. We are using a dependency parser
provided by spaCy library (ExplosionAI, 2017) to an-
alyze the grammatical structure of each sentence. The
textacy library (DeWilde, 2017) is used for manipu-
lating SVO triples (subject-verb-object) identified by
spaCy. The detected lexical items and their gram-
matical functions represent the source of information
for our identification algorithm. This algorithm im-
plements some observed patterns commonly used to
express the description and selects the first sentence
that meets its rules. This represents a good choice
because the description is usually near the signature.
We first look at the subject linked to the root verb. If
it contains the function’s name, then the sentence is
very probable to be the description. If the root verb
does not have a subject, we look at its tense. If it is
labeled as VB (base form) or VBZ (3rd person sin-
gular present), then it is very likely to be the descrip-
tion, this being a very common way used to express it.
Also large sentences are split and each part analyzed
individually, because of the errors of the dependency
parser in such situations, in identifying the root verb,
its subject, etc.

3.10 WebMiner

This is the orchestrator of the entire information ex-
traction process. Through CorpusReader it obtains
the content of the page(s) that contain the signatures.
Then it provides this list of sentences to SigContext,
which returns a model containing indexes that repre-
sent which sentence is a signature and which one is
the start or the end of the sentence’s description con-
text. After that, it sends the signature to NER Sig-
Components to obtain its components. NER SigDe-
scription receives the context and returns the signa-
ture’s description. NER Version Number receives the
signature’s context and also the general context, as we
named it, and returns the version numbers. All data is
put together and is provided to OntoManager.

3.11 OntoManager

This component receives the extracted information
and generates instances for the knowledge base. The
data is expressed using RDF (Resource Description
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Framework) model. We use RDFLib (RDFLib, 2017)
to work with the RDF triples. These triples contain in-
formation structured according to concepts illustrated
by our software ontology. This ontology was created
using Protege. The existing ontologies that are spe-
cific to this domain, SEON Code Ontology (Würsch
et al., 2012), Core Ontology of Programs and Soft-
ware (COPS) (Lando et al., 2007) and Core Software
Ontology (CSO), with its extension, Core Ontology of
Software Components (COSC) (Oberle et al., 2009),
do not contain all the conceptual descriptions that are
needed in our case. Thus, we have extended them
with some new concepts, attributes and relations that
model accurately the extracted information.

4 EXPERIMENTAL RESULTS

The performance of the platform for the current tar-
geted use cases is given by the capability of the clas-
sifiers used to detect the signatures and the version
numbers. For the classifier that detects signatures,
the training set contains 280 positive examples and
290 negative ones, and was created from PHP and
Python manuals. The first 70% of the labeled in-
stances for each label are used for training, and the
rest for testing. The trained model has an accuracy
of around 98%. For the classifier that detects version
numbers, the training instances are created from ex-
amples from PHP, Python, and jQuery manuals. The
positive set contains 48 rows with 201 words in total,
within which there are 62 words representing a ver-
sion number. The negative set contains 43 rows with
341 words in total. The feature sets are split, the first
70% of the labeled instances for each label is used for
training, and the rest for testing. The model has an ac-
curacy of around 95%. We say that the models have
an accuracy value around a certain percent because at
train time we randomize the instances, thus the value
is slightly different on different executions.

As for validation test, we have pointed the plat-
form to extract data from various pages selected ran-
domly from Node.JS (version 7.7.0) (Node.JS, 2017),
Ruby (Ruby, 2017), PHP (PHP, 2017), Python (ver-
sion 3.6.0) (Python, 2017), and Laravel (Laravel,
2017) online manuals.

Table 1 summarizes the performance of the plat-
form in detecting the signatures for each case. The
second column contains the total number of functions
that exist in each page, and the last column the per-
centage of the detected signatures. For Node.JS, PHP,
and Python, it extracted all the functions. In case of
Laravel, it missed one function who’s name contains
only one character. In case of Ruby, it detected only

Table 1: Signature detection performance.

Man page No. of functions Detection rate
Node.JS 26 100%

Ruby 59 64.4%
PHP 1 100%

Python 30 100%
Laravel 80 98.75%

38 functions from a total of 59. This result is not very
good because in the page there are many functions
which are not written using parenthesis, this being
a very important feature when searching for the pat-
tern. In case of PHP, the platform identified 5 more
functions (false positives), because there are a lot of
comments with code examples in the page, being un-
successful in filtering all of the functions mentioned
there. In the rest of the cases we did not have any
false positives or negatives.

Regarding the identified versions, we obtained the
following results:

• for Node.JS: the page contains 26 functions, 5 of
them having specified a single version represent-
ing when it was added, the rest containing two
versions (when it was added and since when it is
deprecated). The platform correctly identified all
of them, with their status. We do not have any
false positives or negatives;

• for Ruby: the page does not contain any version
numbers, thus the system correctly did not iden-
tify any;

• for PHP: the page contains a single function with
3 version numbers mentioned. The platform suc-
cessfully identified all of them;

• for Python: the page contains 30 functions, 4 of
them having specified two versions, 1of them hav-
ing specified 3 versions, and the rest only 1 ver-
sion. The system correctly identified all of them,
without any false positives or negatives;

• for Laravel: the page does not mention any details
about versions inside the context of the functions,
thus the system correctly did not identify any.

Regarding the additional information extracted,
for each of the identified functions, the component
NER SigComponents successfully extracted all of its
parameters and its return type. For the detection of
the functions’ descriptions, the system obtained the
results presented in Table 2.

The second column represents the total number of
signatures that were detected (each having a single de-
scription), and the last one the percentage of the de-
tected descriptions. In case of Node.JS, it failed to

ICSOFT 2017 - 12th International Conference on Software Technologies

226



Table 2: Description detection performance.

Man page No. of det. functions Detection rate
Node.JS 26 76.9%

Ruby 38 68.4%
PHP 6 100%

Python 30 93.3%
Laravel 79 96.2%

identify 6 descriptions. For Ruby, it missed 12 de-
scriptions. Regarding PHP, it successfully identified
the description of the single function. For the other 5
false positives, it did not detect anything because they
are examples of code, thus they do not have descrip-
tions. In case of Python, it did not identify the de-
scriptions of 2 functions. Finally, for Laravel, it failed
to extract 3 descriptions.

5 ADDITIONAL APPLICABILITY

Our solution directly targets the persons involved in
assuring software administration and software main-
tenance, for the use cases described previously. The
features offered by the platform can also be used in
the context of the Semantic Web. The purpose of Se-
mantic Web is to make the content available on the
Web understandable not only by humans, but also
by computers, without using artificial intelligence.
This is mainly done by enriching the Web documents
with semantic markup in order to add meaning to
the content. Thus, a machine will be able to pro-
cess knowledge about text. There are many seman-
tic annotation formats that can be used in HTML
documents, like Microformats, RDFa, and Micro-
data. In order to facilitate the annotation process,
many systems were developed (Reeve and Han, 2005;
Uren et al., 2006; Laclavik et al., 2012; Sánchez
et al., 2011; Charton et al., 2011). Considering the
annotation process, there are tools that allow users
to manually create annotations, and tools that cre-
ate them semi-automatically or automatically. In lat-
ter case, considering the methods used, they can be
classified in two categories, pattern-based and ma-
chine learning-based (using supervised or unsuper-
vised learning techniques). The tools that are based
on supervised learning require training in order to
identify our specific types of entities. Also the major-
ity of them require the existence of an ontology that
defines the semantics of the domain. To the best of
our knowledge, an ontology for the kind of informa-
tion we deal with does not exist. Also, the existing ap-
proaches typically cover real world entities. Our plat-
form provides such an ontology and also the informa-

tion extraction techniques needed to identify and ex-
tract the entities that must be annotated (e.g. the func-
tion, return type, parameters, parameters type, etc.).
Thus, the capabilities of the platform can enable auto-
matic generation of semantic markup for specific Web
documents. A special tool must be developed that is
able to match each entity extracted by our platform
with the information on a page, adding the appropri-
ate annotations.

Another use case is more advanced and represents
a vision. It refers to assisting developers in the pro-
cess of building new applications, especially for the
Internet of Things (IoT). In the context of the IoT,
there is the need for a single software application to
have support for different devices from different man-
ufacturers. This capability is obtained usually through
the implementation of adapters, which are dedicated
software modules for each device. Each module uses
the specific API (Application Programming Interface)
of the vendor to interact with its device. In the case
of supporting devices from different manufacturers
that have the same functionality (e.g. smart plugs,
air quality monitors, dimmer switches, thermostats,
smoke detectors, etc.), each API is learned and sim-
ilar adapters are built, because the functions that in-
teract with the devices are mostly the same, like set-
ting a certain value for a threshold or getting a cer-
tain value. The differences are in their name and pos-
sibly parameters, but their functionality is the same.
Our idea implies the development of a single adapter
and the use of a special built tool that is able to an-
alyze the functions used in that adapter and propose
the equivalent functions in the APIs of other similar
devices for which adapters must be developed. Our
knowledge base, that can contain all the functions in
each API, is the source of information. Based on
that information, we envision the development of a
new technology that is able to suggest similar func-
tions in the targeted APIs, by analyzing a function’s
signature, and most importantly, the meaning of its
description and, eventually, each parameter’s descrip-
tion. This capability can be achieved with our plat-
form by using NLP resources, like WordNet, a se-
mantically oriented dictionary of English, and tech-
niques for analyzing the structure of a sentence (by
using context free grammars, dependency grammars,
feature based grammars, etc.) and its meaning (by
using first order logic, λ calculus, etc.) (Bird et al.,
2017). To accomplish semantic analysis is very hard.
It represents the most complex phase of natural lan-
guage processing. There is a lot of ongoing research
towards this goal and on the task of computing sen-
tence similarity (Atoum et al., 2016; Dao and Simp-
son, 2005; Crockett et al., 2006; Miura and Takagi,
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2015; He et al., 2015; Liu and Wang, 2013; Sanborn
and Skryzalin, 2015; Erk, 2012). There are also many
tools available capable of comparing the meaning of
two sentences, with different success rates (SEMI-
LAR, 2017; DKPro, 2017; RxNLP, 2017; Pilehvar
et al., 2013; Linguatools, 2017; Cortical.io, 2017).
At the moment, we think that existing solutions can
provide acceptable results, but still much further re-
search must be done to accomplish our vision. To the
best of our knowledge, there is no available system
that is using this kind of techniques and is capable of
generating code in this context.

6 CONCLUSIONS AND FURTHER
WORK

The proposed solution is based on many components,
each with varying degrees of complexity. Refine-
ments can be made to any of them for further im-
proving the platform (e.g., using an improved head-
less browser that is aligned with the latest Web stan-
dards, improving the classifiers, implementation of
new patters for the detection of signatures’ descrip-
tions, etc.). Regarding the system’s architecture, we
plan on adding a REST API to each of the compo-
nents, thus making the platform easily deployable and
accessible in cloud environments and highly scalable.
It could also be easily integrated in environments
that make use of Enterprise Service Buses (Chappell,
2004), or newer approaches like Swarm Communica-
tion (Alboaie et al., 2014; Alboaie et al., 2013). Be-
sides the improvements that will be made to the plat-
form, much work will also be directed towards the
development of the tools that enable the use cases.
First, there is the tool that is able to scan code written
in different languages, extract all the used functions,
eliminate those that were locally defined, interrogate
our knowledge base, and build the report regarding
support status for the targeted version of the inter-
preter/library. Then, we have the semantic annotator
tool, that is able to mark up HTML code referencing
the specific entities.

In this paper we have addressed the problem of
keeping software applications and their execution en-
vironments up to date. As we have seen, this task
comes with some difficulties. System administrators
have no insight about the internals of the applications
that run on their infrastructure, so if they are faced
with updating the execution environment, they do not
know if the applications will be fully functional after
the update. It is up to the development team to do
the necessary verifications and eventual changes. The
same applies in case of software libraries on which

the applications depend. The tests require a lot of
manual work and take time to accomplish. We have
proposed a novel approach that improves productiv-
ity in accomplishing such tasks, by automating the
assessment of the changes that were made in a new
version and their impact on the functionality of the
application. Our solution is based on one major com-
ponent, the platform that is able to automatically cre-
ate a knowledge base containing details about sup-
ported functionalities in each version of the targeted
interpreter/library, independent of the programming
language used. It has applicability in many fields,
like software administration, software maintenance,
and even project management. In this paper we pre-
sented the prototype of the platform. To the best of
our knowledge, similar solutions do not exist. The ex-
isting tools that are used require manual specification
of the changes that were made and are also language
dependent.
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