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Abstract: This work proposes fifth order Bernstein-Bézier (BB) curve segments to be used in path planning approaches.
The combined path consists of BB spline sections with continuous second derivative in connections which
means that the path curvature is continuous and feasible for wheeled robot to drive on. To further minimize the
travelling time on this path a velocity profile is optimized by considering acceleration and velocity constraints.

1 INTRODUCTION

Path planning in a known environment with obsta-
cles presented by its map is very common task in
mobile robot applications and has been widely stud-
ied in (Schwartz and Sharir, 1990), (Latombe, 1991),
(LaValle, 2006). Environment usually is decomposed
to cells by some algorithm like regular rectangular
grid, quad trees, random sampling-based methods
and the like (LaValle, 2006), (Choset et al., 2005),
(Klančar et al., 2017). Among those cells an optimal
collision-free path need to be find connecting current
robot position and the goal location. The most com-
monly used is A star algorithm which returns opti-
mal sequence of connected straight lines through the
cells centers towards the goal location. Such com-
bined path does not have continuous first and second
derivative (is not C1 and C2 continuous). C1 not con-
tinuous path means that the robot following this path
would have step changes of orientation while C2 dis-
continuous means that the robot angular velocity or
also path curvatureκ has step changes. Therefore the
calculated path need to be smoothed to become feasi-
ble for the robot to follow it. The first studies to obtain
the shortest smooth paths consisting of straight lines
and circular arc was performed by (Dubins, 1957).
His paths are only C1 continuous as they have dis-
continuous curvature.

Some possible smoothing approaches are as fol-
lows. A funnel algorithm is proposed in (Kallmann,
2005) to further optimize the path inside the corri-
dor defined by the cells contained on the optimal
path. For path optimization and smoothing inside
the corridor a Fast marching method (Sethian, 1999)
can be applied or smooth path generation using B-

splines as in (Berglund et al., 2011). Several path
smoothing ideas using local nonlinear optimization
and non-parametric optimization using conjugated-
gradient solution are described in (Dolgov et al.,
2008). Often sharp transitions on the path e.g.
corners are smoothed by inserting smooth paramet-
ric curves such as circular arcs (Yang and Wushan,
2015), Bezier curves (Choi et al., 2010), clothoids
or higher order polynomials (Brezak and Petrović,
2014), (Sencer et al., 2015) enabling C2 continuous
transitions.

Path smoothing is often not integrated in path
planning but is usually done after the optimal path
is found. This however requires additional collision
checks and can influence path optimality. Several lo-
cal path planners ware proposed to find smooth path
sections between initial and target pose in obstacles
free space as in (Chen et al., 2014) where four order
Bézier curves are applied to obtain continuous and
bounded curvature path. However finding collision
safe, smooth and optimal path in complex environ-
ments with obstacles remains a challenging task. To
cope with it a hybrid A star algorithm (Dolgov et al.,
2008) was proposed which can find drivable reference
path for wheeled robots. The path usually consists of
curves obtained by setting constant robot commands.

This work addresses continuous path planing
problem where we suggest the path to be composed of
Bernstein-Bézier curves with continuous velocity and
curvature transitions. The obtained path can there-
fore be directly driven by wheeled mobile robots. To
achieve the shortest travelling time a driving veloc-
ity optimization approach is performed by consider-
ing robot capabilities. The main idea is to drive with
maximal allowed accelerations and velocity to avoid
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wheel slipping. Several path and velocity planing ex-
amples are illustrated.

Main paper contributions are two. The first is the
definition of fifth order Bézier curve sections which
can easily be applied to compose a C2 continuous
path in some path planning applications. The second
contribution is optimal velocity profile calculation ap-
proach for a spline path consisting of more Bézier
curves.

2 PATH COMPOSITION IN
CONTINUOUS PATH PLANING

Resulting path in most path planing approaches is
composed of path sections which are continuously
joined. Usually the search is done in discrete space
by discretization of all possible robot poses (e.g. grid-
based presentation of environment) to a finite set.
Other very often used approach is to discretize input
commands while the pose remains continuously de-
fined as it is usually done in continuous path planing
approaches (e.g. hybrid A star). The former can be
applied to differential drive robot which commands
are linear velocityv(t) and angular velocityω(t). In
each node (robot pose) the path planing algorithm ex-
pands the search in a predefined number of travel-
ling curves obtained by setting some constant trans-
lational velocityv(t) = vCONST and angular velocity
ω(t) ∈ [ωMIN , · · · ,0, · · · ,ωMAX]. The path sections
therefore have circular shape and the final robot pose
(x(tF), y(tF), ϕ(tF)) at time tF = tS+∆t is obtained
by integration

x(tF) =
∫ tF

tS
v(t)cos(ϕ(t))dt+ x(tS)

y(tF) =
∫ tF
tS

v(t)sin(ϕ(t))dt+ y(tS)
ϕ(tF) =

∫ tF
tS

ω(t)dt+ϕ(tS)
(1)

which exact solution is

x(tF) = x(tS)+ ∆s
∆ϕ (sin(ϕ(tS)+∆ϕ)− sin(ϕ(tS))

y(tF) = y(tS)− ∆s
∆ϕ (cos(ϕ(tS)+∆ϕ)− cos(ϕ(tS))

ϕ(tF) = ϕ(tS)+∆ϕ
(2)

wheretS is starting time,tF is final time,∆t time
increment for the path section,∆s= v∆t is travelled
distance and∆ϕ = ω∆t change of robot orientation.

An example of search expansion using circular
paths (e.g. as in hybrid A star) expansion tree
(wherex(0) = y(0) = 0, ϕ(0) = π/4, v = 0.5, ω ∈
[−1,−0.5,0,0.5,1] and∆t = 1, ) is given in Fig. 1.

To follow the thick path in Fig. 1 robot controls
need to be as shown in Fig. 2 which obviously is not
C2 continuous becauseω(t) is discontinuous.
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Figure 1: Search expansion using circular paths.
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Figure 2: Differential drive robot control signal to follow
thick path in Fig. 1.

To have feasible planed path for the robot a C2
continuous Bernstein-Bézier (BB) curves are pro-
posed as follows. To achieve C2 continuous path a
proper spline of two connecting BB curves need to be
achieved.

To achieve this at least forth order BB curver(λ)
need to be selected. It is defined by five control points
Pi = [xi ,yi ]

T , i ∈= 0,1, · · · ,4 as follows

r(λ) = (1−λ)4 P0+4λ(1−λ)3P1

+6λ2(1−λ)2P2+4λ3(1−λ)P3+λ4P4
(3)

whereλ is a normalized time (0≤ λ ≤ 1). In this
section without loss of generality assumeλ = t. A C2
spline of two BB curvesr j and r j+1 is obtained by
setting the following conditions

limλ→1 r j(λ) = limλ→0 r j+1(λ)
limλ→1

dr j (λ)
dλ = limλ→0

dr j+1(λ)
dλ

limλ→1
d2r j (λ)

d2λ = limλ→0
d2r j+1(λ)

d2λ

(4)

saying that the end of the curvej and the start of
the curvej+1 as well as their first and second deriva-
tive need to coincide. From (4) the conditions for se-
lection of thej +1 BB curve control pointsPi, j+1 re-
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lated to control points ofj-th curve (Pi, j ) selection
reads

P0, j+1 = P4, j
P1, j+1 = 2P4, j −P3, j
P2, j+1 = 4P4, j −4P3, j +P2, j

(5)

To have similar spread of paths sections as in Fig.
1 the last control pointP4, j+1 of BB curves is cal-
culated using final positionx(tF), y(tF) calculated by
(2). While final curve orientation is achieved by set-
ting P3, j+1 according to the final orientationϕ(t)

P3, j+1 = P4, j+1+
1
4

v

[
cos(ϕ(tF)+π)
sin(ϕ(tF)+π)

]
(6)

Path expansion during path-planing using BB
curves is shown in Fig. 3. Initial points of the first
BB curve are

P0, j=1 = [x(0),y(0)]T

P1, j=1 = P0, j=1+0.25v[cosϕ(0),sinϕ(0)]T
P2, j=1 = 0.5P1, j=1+0.5P3, j=1

while P3, j=1 and P4, j=1 are defined considering
next curve segments and relations (5). The obtained
graph tree of paths has the same spread as in Fig. 1
but with continuous second derivative as seen in Figs.
3 and 4.
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Figure 3: Search expansion using C2 continuous BB paths.

However having a closer look of Figs. 3 and 4
one can observe some unnecessary winding of the re-
sulting paths. This is easily seen in the second path
section which start and end direction are the same but
the path between the start and end point is not straight
as it could be. To improve this behaviour BB curves
of the fifth order are used

r(λ) = (1−λ)5P0+5λ(1−λ)4P1

+10λ2(1−λ)3P2+10λ3(1−λ)2P3

+5λ4(1−λ)P4+λ5P5

(7)
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Figure 4: Differential drive robot control signal to follow
thick path in Fig. 3. Angular velocity is continuous while
translational velocity is similar to that in Fig. 2.

and additional conditions besides those in (4) is
defined to obtain zero angular velocity and zero tan-
gential acceleration at the curve end. This is defined

as follows limλ→1
dϕ j+1(λ)

dλ = 0 and limλ→1 at, j+1 = 0.
The resulting control points reads

P0, j+1 = P5, j
P1, j+1 = 2P5, j −P4, j
P2, j+1 = 4P5, j −4P4, j +P3, j
P3, j+1 = 2F−E
P4, j+1 = F
P5, j+1 = E

(8)

where E = [x(t),y(t)]T , F = E +

0.2v[cos(ϕ(t)+π),sin(ϕ(t)+π)]T and control
point P3, j+1 satisfies the additional two conditions.
Graph tree of the obtained paths is C2 continuous and
more smooth as seen in Figs. 5 and 6.
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Figure 5: Search expansion using C2 continuous BB paths
of fifth order.

The obtained combined path is therefore feasi-
ble for the robot to follow. It is smooth with con-
tinuous control velocities, continuous path curvature
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Figure 6: Differential drive robot control signal to follow
thick path in Fig. 5.

and therefore is appropriate for optimal path-planing
methods.

3 OPTIMAL PATH AND
OPTIMAL VELOCITY
PROFILE

The problem of finding shortest time optimal path
in the environment with obstacles considering robot
capabilities and obstacles is computationally intense.
Therefore it usually is decoupled to a problem of find-
ing a feasible collision safe path in discrete search
space (e.g. A star algorithm) and then followed by
some additional optimization.

Supposing the combined path from BB curves
given in section 2 is the output of some path find-
ing algorithm. The path is collision safe and close
to being spatially optimal (depending on path dis-
cretization, e.g. number of defined successor curve
segments). It additionally has continuous curvature
which allow optimization of its velocity profile to
achieve also shortest travelling time. Optimal velocity
profile can be calculated as follows.

The curve is defined spatially by a schedule pa-
rameteru as xp(u), yp(u), u ∈ [0,n] wheren is the
number of BB curves in the spline. The j-th curve
of the spline is defined by scheduling parameter val-
uesu ∈ ( j −1, j] and maps to the j-th BB curve nor-
malized timeλ j = u− j +1 (valid if j −1≤ u ≤ j).
To optimize the velocity profile of the given path one
need to consider robot capabilities such as maximum
velocity and acceleration which provide safe driving
without slip of the wheels. To obtain the trajectory
x(t), y(t) from the spatially given path one need to
define the scheduleu= u(t). The curve translational

velocitiesv, angular velocityω and curvatureκ are

v(t) =
√

x′
p(u(t))

2+ y′
p(u(t))

2u̇(t) = vp(u) u̇(t)
(9)

ω(t) = x
′
p(u(t))y

′′
p(u(t))−y

′
p(u(t))x

′′
p(u(t))

x′p(u(t))2+y′p(u(t))2
u̇(t)

= ωp (u) u̇(t)
(10)

κ(t) =
x
′
p(u(t))y

′′
p(u(t))− y

′
p(u(t))x

′′
p(u(t))(

x′
p(u(t))2+ y′

p(u(t))2
)3/2

= κp(u)

(11)
where primes stand for derivatives with respect tou,
while dots stand for derivatives with respect tot.

Main idea is to limit overall acceleration

a=

√
a2

t +a2
r (12)

which result is robot motion without wheel slip-
ping (Lepetič et al., 2003). Where translational ac-
celeration isat =

dv
dt and radial acceleration isar =

vω = v2κ. Maximal tangentialaMAXt and radial ac-
celerationaMAXr (can be different) define the overall
acceleration to be somewhere on the ellipse

a2
t

a2
MAXt

+
a2

r

a2
MAXr

= 1 (13)

for time-optimal planning.
Robot translational velocity need to be the slow-

est in the curve pointsu = uTPi (i = 1, · · · ,nTP, nTP
is number of TPs), called turn points (TP) where ab-
solute value of the curvature is locally maximal. For
all located TPs it holds:at(uTPi) = 0 andaruTPi =
aMAXr. Meaning that translational velocity in TP is
defined as follows

vp(uTPi) =

√
aMAXr

|κ(uTPi)|
(14)

and robot therefore need to decelerated before
each TP and accelerate after each TP considering ac-
celeration constraint (13). For each TP a candidate
maximum velocity profile is computed and the final
optimal velocity profile solution is obtained by min-
imizing all TPs candidate velocity profile. Because
v(t) andvp(u) are proportional dependant with time
derivative of the schedule ˙u(t) one can minimize the
derivative of the schedule ˙u(t) instead which is com-
puted as follows. From acceleration constraint (13)
considering

ar(t) = v2
p (u)κp(u) u̇2 (t) (15)

and

at(t) =
dvp(u)

du
u̇2 (t)+ vp(u) ü(t) (16)
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follows the optimal schedule differential equation

ü=±aMAXt

√
1
v2

p
−

v2
pκ2

pu̇4

a2
MAXr

− dvp

du
1
v2

p
u̇2 (17)

which solution is found numerically by integrating
backward and forward in time from the TPs. Minus
applies when deaccelerating (integrating backward in
time) and positive sign when accelerating (integrating
forward in time). Initial conditionsu(t) andu̇ are de-
fined by known position of TPsuTPi and from

u̇|TPi =

√
aMAXr

v2
p(uTPi)κp(uTPi)

(18)

knowing that radial acceleration in TP’s is maxi-
mal allowable (only positive solution of (15) is used
becauseu(t) is strictly increasing function). The dif-
ferential equations (17) are solved for each TP until
the acceleration constrained is valid. The solution of
the differential equation (17) therefore consists of the
segments of ˙u around each turning point

u̇l = u̇l (u) , u∈ [ul ,ul ] , l = 1, · · · ,nTP (19)

whereu̇l = u̇l (u(t)) is the derivative of the sched-
ule depending onu andul , ul are thel -th segment bor-
ders. Here the segments in (19) are given as a function
of u although the simulation of (17) is done with re-
spect to time. This is because time offset (time needed
to arrive in TP) is not jet known, what is known at this
point is relative time interval corresponding to each
segment solution ˙ul . Solution is possible if the union
of all TP’s solution intervals covers the whole inter-
val of interest[uSP,uEP]⊆

⋃nTP
l=1 [ul ,ul ] where start and

end point are defined byuSP= 0 anduEP= n, respec-
tively.

Final solution for ˙u minimizes all partial solutions

u̇= min
1≤l≤nTP

u̇l (u) (20)

and the time of the scheduleu(t) is obtained from
u̇(u(t)) = du

dt as follows

t =
∫ uEP

uSP

du
u̇(u)

= t(u) (21)

Note that for time-optimal solution the travelling
velocity as well as ˙u(u) always are higher than 0. If
u̇(u) = 0 the system would stop which can not be time
optimal solution.

To the velocity profile planning also requirements
for initial vSP, vp(uSP), and final velocitiesvEP,
vp(uEP) can be included. Starting point (SP) and
end point (EP) can simply be treated as other turn
points, their initial conditions reads ˙uSP = vSP

vp(uSP)
,

u̇EP = vEP
vp(uEP)

. Optimal solution only exist if these
initial u̇SP u̇EP are both larger or equal than the solu-
tion for u̇ obtained from TPs.

Additionally constraint on the maximum allow-
able velocityvMAX (v(t) <= vMAX) of the system
should also be imposed. Whenever (during integrat-
ing (17)) the velocity constraint is violated the system
need to stop accelerating and continue with velocity
v(t) = vMAX, meaning that schedule derivatives need
to be set as follows ¨u= 0 andu̇= vMAX

vp(u)
.

3.1 Examples of Optimal Velocity
Profile Calculation

Taking path example from Fig. 5 where its velocity
profile need to be optimized. Control points of the
three BB curves are given as follows. The first curve
is defined by

P0,1 = [0,0]T P1,1 = [0.0707,0.0707]T

P2,1 = [0.1414,0.1414]T P3,1 = [0.1776,0.2646]T

P4,1 = [0.1563,0.3623]T P5,1 = [0.1350,0.4600]T,

the second curve is defined by

P0,2 = [0.1350,0.4600]T P1,2 = [0.1137,0.5577]T

P2,2 = [0.0924,0.6554]T P3,2 = [0.0711,0.7532]T

P4,2 = [0.0498,0.8509]T P5,2 = [0.0285,0.9486]T

and the third curve is defined by

P0,3 = [0.0285,0.9486]T P1,3 = [0.0072,1.0463]T

P2,3 = [−0.0141,1.1440]T P3,3 = [0.0221,1.2672]T

P4,3 = [0.0928,1.3379]T P5,3 = [0.1635,1.4086]T

(all numbers are in meters). Additionally start and
end velocity requirements for the combined path are
vSP= 0.2 m/s, vEP = 0.1 m/s.
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Figure 7: Optimal schedule minimizes all local profiles ˙u in
the turn points (aMAXr = 3, aMAXt = 4, vMAX = ∞).
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Figure 8: Optimal scheduleu(t) for the combined path
(aMAXr = 3, aMAXt = 4, vMAX = ∞).
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Figure 9: Optimal velocity profilev(t) (aMAXr = 3,aMAXt=
4, vMAX = ∞).

The optimal velocity profile for the combined path
is first computed for acceleration constraintsaMAXr =
3m/s2 andaMAXt = 4m/s2 and no velocity constraint.

Calculated optimal time derivative of the schedule
parameteru along the path is shown by the thick line
in Fig. 7. Where it is seen that minimum off all local
turn points (TP) profiles and (SP) start and end point
(EP) is selected. The resulting optimal scheduleu(t)
is given in Fig. 8 and final velocity profile in Fig. 9

To simulate maximum driving velocity constraint
vMAX = 1.3m/s the resulting optimal velocity profile
changes as shown in Figs. 10- 11.

If translational acceleration is limited toaMAXt =
1.5m/s2 the optimal velocity profile considering ac-
celeration and velocity constraints does not exist as
the second turn point becomes unreachable as shown
in Fig. 12.

Therefore new feasible maximal velocity (initially
set by (18)) for the second TP need to be modified by
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Figure 10: Optimal schedule ˙u (aMAXr = 3m/s2, aMAXt =
4m/s2, vMAX = 1.3m/s).
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Figure 11: Optimal velocity profilev(t) for aMAXr = 3m/s2,
aMAXt = 4m/s2, vMAX = 1.3m/s.
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Figure 12: Unreachable optimal schedule. It is not possi-
ble to arrive in the second turn point with required sched-
ule velocity (u̇TP2 = 2.6 1/s at uTP2 = 1.5) by acceleration
aMAXt = 1.5m/s2 .
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Figure 13: Optimal schedule ˙u for aMAXr =3m/s2, aMAXt=
1.5m/s2, vMAX = 1.3m/s.
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Figure 14: Optimal velocity profilev(t) for aMAXr = 3m/s2,
aMAXt = 1.5m/s2, vMAX = 1.3m/s.

taking minimal off all local profiles at theuTP2 = 1.5
which reads ˙uTP2 = 2.5 1/s. The resulting optimal
profile is then feasible as shown in Figs. 13-14.

4 CONCLUSION

The use of the fifth-order Bernstein-Bézier are pro-
posed as the path sections comprising robot path in
a hybrid path planing approaches. To obtain evenly
spread of the path section candidates in each node end
points of the sections and their orientations are pre
computed assuming constant translational and angu-
lar velocity. From those final locations together with
smooth transition requirements between the sections
the Bernstein-Bézier polynomials are defined. For ob-
tained composed path also an optimal velocity profile
optimization approach is illustrated. The proposed
approaches can be applied to a continuous path plan-

ing algorithm to find continuous curvature path with
no additional smoothing required. Future issues will
deal with computational complexity where velocity
profile determination is integrated in the path planing.
To obtain more optimal trajectories with shorter trav-
elling time also variable final orientation of the path
section candidates will be considered.
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