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Abstract: This paper presents an approach towards implementing physical simulations, where the physical system 
consists of both fluids and movable rigid bodies. The approach is based on Physolator. Physolator is an 
object oriented Java based framework for physical simulation. This paper introduces a library of Java 
classes that are designed for building such simulations. The classes are designed to be used inside the 
Physolator framework. 

1 INTRODUCTION 

Physical simulation is used in different domains and 
there are various software tools tailored to the 
specific needs of such domains. Fluid simulations 
and rigid body simulations are such domains.  

Fluid simulations describe the flow of gases and 
liquids. A fluid simulation describes the actual 
location of the fluids for each point in time, the 
forces applied to the fluids and physical fields for 
the flow velocity and pressure. Particle models are 
frequently used for computer based physical 
simulations (Greenspan, 1997, 1985, 2004, 
Nijmeijer, 1992, Korlie, 1997, 1999, Pozrikidis, 
2017). Particle simulations are challenging. It takes a 
big number of particles to achieve a reasonable 
accuracy. Therefore, such simulations usually 
require big amounts of computing time. 
Programmers have to spend a lot of time for 
optimizations in order to achieve a reasonable 
simulation accuracy within a limited computation 
time. 

Rigid body mechanics is about physical bodies, 
that are not deformable. During the simulations, the 
rigid bodies move, the shape however remains 
unchanged. Different kinds of forces can apply to a 
rigid body during simulation: gravity, magnetic 
forces, sliding friction, static friction, rolling 
friction, etc.. These forces accelerate rigid bodies 
and change their translational and rotational 
velocity. Furthermore, there are collisions between 

rigid bodies. Collisions abruptly change the 
translational and rotational velocity of the bodies 
involved. Rigid body simulations are frequently used 
in computer games and animated films. Game 
engines usually contain a component named 
“physics engine”. This kind of physics engine is 
usually limited to rigid body physics. From a 
computational point of view, rigid body simulations 
are far less challenging than fluid simulations. 
Physics engines inside computer games are designed 
for real time execution. For a limited amount of 
components, they succeed computing frames within 
milliseconds. In a computer game, the accuracy of 
the physical computation has to be reasonable in a 
sense that the user of the computer game should get 
the impression, that the virtual world of the 
computer game behaves just like the real world. 
Simulations inside computer games need not 
necessarily produce results, that are precise in a 
scientific sense. 

This paper is about physical systems consisting 
of both fluids and rigid bodies. Concepts from both 
worlds, fluid simulation and rigid body simulation, 
are to be applied. The next section describes how 
such physical systems look like and gives an 
example. The following section explains the concept 
used to create models for such physical systems and 
it explains, how to run such simulations. Finally, 
there will be a section with algorithmic 
considerations. Whenever you deal with particle 
simulations, computing time matters. The final 
section describes the algorithms and the concurrency 
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concepts used inside the library in order to achieve a 
good performance. 

2 MIXED FLUID AND RIGID 
BODY SYSTEMS 

This section describes, how physical systems with 
fluids and rigid bodies look like. Using an example, 
it is explained, what kind of components are used to 
build up such systems and which physical effects 
have to be considered. 

Figure 1 shows a sequence of snapshots from a 
physical simulation with water and rigid bodies. In 
picture (I) you can see a basin filled with water. A 
water drop is about to fall into the basin. The floor 
of the basin and the wall on the left hand side are 
fixed. On the right hand side of the basin, there is a 
rectangular solid block. The block lies on the basin 
floor. In the beginning, the block does not move. 

 

 

Figure 1: Simulation with water and rigid bodies. 

The water inside the basin applies a force 
towards the block pushing the block rightwards. 
Static friction, however, hinders the block from 
moving. The static friction force is a counterforce to 
the force from the water with the same absolute 
value, but opposite direction. Static friction applies 
as long as the block is not in motion and as long as 
the force applied to the block does not exceed a 
certain maximum. The maximal static friction force 
is a constant. It depends on the force the block 
applies to the floor of the basin and a static friction 

coefficient. In the beginning, the absolute value of 
the force from the water is smaller than the maximal 
friction force. 

As soon as the water drop falls inside the basin, 
the force applied to the block increases. At a certain 
point in time (II), this force exceeds the maximal 
static friction force and the block starts moving 
rightwards. At this point in time, static friction is 
replaced by sliding friction. The sliding friction is 
smaller than the static friction. Sliding friction 
applies as long as the block is in motion. As soon as 
the block moves to the right, also the water starts 
moving rightwards (III). Since the water moves 
rightwards, the water level inside the basin is 
decreased. As a consequence, the force from the 
water applied to the block lessens. As soon as this 
force is smaller than the sliding friction, the total 
force applied to the block is directed to the left. The 
block is slowing down and finally stops (IV). As 
soon as the block stops, sliding friction is replaced 
by static friction and the block remains in this final 
position. 

Different kinds of physical effects have to be 
considered when performing this simulation: forces 
between the water particles, internal friction, forces 
between the liquid and the rigid bodies, static 
friction, sliding friction. Some of these effects are  
related to fluid physics and some to solid body 
physics.  

Basically, the relationship between the physical 
variables involved can be described via differential 
equations. However, also points of discontinuity 
have to be considered. At the point in time, when the 
block starts moving, the static friction abruptly 
vanishes and is replaced by sliding friction. At the 
point in time, when the block stops moving, it is the 
other way round: sliding friction is replaced by static 
friction. Physical simulations are an appropriate 
means for answering question like these: When will 
the block start moving? How far will it move? When 
will it stop moving? 

Figure 2 shows a function plot with some of the 
physical variables involved in this simulation. This 
diagram shows the forces applied to the block. The 
upper horizontal line represents a constant: the 
maximal static friction. In the beginning, there are 
two forces with the same absolute value: the force, 
that the water applies to the block and the static 
friction force. The value of this force is continuously 
changing due to the movement of the water. As soon 
as the force from the water reaches the maximal 
static friction force, the block starts moving. As long 
as the block is moving, there is still the force from 
the water, but the counterforce does not have the 
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same absolute value any more. The counterforce is 
the sliding friction force and this force is constant. 
The total force applied to the block is the difference 
between the force from the water and the dynamic 
friction force. This force accelerates the block. As 
the block moves rightwards, the water level is 
reduced and therefore also the force, that the water 
applies to the block, is reduced. As soon as the force 
from the water is less than the sliding friction, the 
total force is negative and the block is slowing 
down. At a certain point in time the block stops. 
Then sliding friction is replaced by static friction. 
Since the force from the water is less than the 
maximal static friction, the absolute value of the 
counterforce produced by static friction equals the 
force from water. The block stops and remains in its 
final position. 

 

 

Figure 2: Function plot. 

Such physical systems consist of three different 
kinds of physical components: fluid particles, fixed 
rigid bodies and movable rigid bodies (see figure 3). 
The basin with its floor and its wall on the left hand 
side are fixed rigid bodies. The block is a movable 
rigid body. There are attraction and repulsion forces 
between the fluid particles and between the fluid 
particles and the rigid bodies. The formulas from 
Greenspan (Eisenbiegler, 1997) are used to describe 
these forces. Various different forces could be 
applied to rigid bodies, such as gravitation forces, 
forces due to magnetic or electrical fields, static 
friction, dynamic friction, forces due to springs 
connected with the rigid body, Coriolis forces and 
centrifugal forces. Besides, rigid bodies may also 
collide in an elastic or inelastic manner. Appropriate 
physical formulas have to be used to describe such 
physical events. 

In this example, there are no collisions. The only 
movable component is a block. Earth gravitation 
presses the block to the basin floor and the force 

from the water particles pushes the block rightwards. 
There is always friction between the block and the 
basin floor. As long as the block stands still, there is 
static friction and as long as the block is in motion, 
there is sliding friction.  
 

 

Figure 3: Physical effects. 

3 CONCEPT 

The physical systems from this paper have all been 
created using a certain library of Java classes. This 
library for mixed fluid and rigid body simulations is 
to be referred as FRB library. The FRB library has 
been created by Waldemar Rose and is based on the 
pure fluid simulation library from Dirk Eisenbiegler 
(Eisenbiegler, 2016b). The classes of the FRB 
library provide building blocks for physical models 
consisting of fluids and rigid bodies. It provides 
physical components and it provides a generic 
graphics component. Physical simulations with 
fluids and rigid bodies are constructed by composing 
these building blocks. 

The physical systems presented in this paper are 
all run inside the Physolator (Eisenbiegler, 2016a). 
Physolator is a physical simulation framework. The 
Physolator framework is implemented in Java and 
also all the program code run inside this framework 
is pure Java code. In order to simulate a physical 
system, one first has to implement the physical 
model using the Java programming language. Then 
one loads the physical system to the Physolator 
framework. Finally the physical simulation is started 
from inside the Physolator (see figure 4). The FRB 
library has been designed to be used inside the 
Physolator. 

The Physolator framework supports an object 
oriented programming style. Physical systems, 
graphical components and numerical procedures can 
be developed independently and are linked by the 
Physolator framework during run time. Physical  
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Figure 4: Physolator. 

systems are implemented in a modular style, where a 
physical system is built from components such as 
point masses, springs, liquids etc.. Such components 
are called physical components. They are defined as 
Java classes. Each physical component represents a 
part of a physical system with some physical 
variables and formulas. Once you have defined such 
components, you can reuse them in different 
physical systems. In many cases, building a physical 
system means just composing physical components: 
build instances of the classes representing the 
physical components, assign the variables of the 
physical components appropriate values and link the 
physical components together. Example: First create 
some point masses, springs and pivot points. Then 
assign appropriate constants to the physical 
components: initial positions, masses, spring rates. 
Finally, connect each end of a spring either with a 
point mass or a pivot point. 

Every physical system may have one or more 
graphics components. Graphics components linked 
to a physical system are automatically loaded 
whenever the physical system is loaded. Graphics 
components are used to visually represent the 
current state of a physical system. During the 
physical simulation, the variables of the physical 

system change their values. A graphical 
representation is easier to receive than a big number 
of physical variable values. Therefore, graphics 
components can be used to visually represent the 
state of the physical system. 

Graphics components are Java classes. For every 
physical system one can implement a specific 
graphics component tailored to this specific physical 
system. The Physolator provides a means for 
constructing generic graphical components. Generic 
graphics components are tailored not to a single 
physical system, but to a variety of physical systems 
from a certain domain. They are reusable. Whenever 
you implement a physical system for the specific 
domain, you can simply use the generic graphics 
component and you do not have to implement your 
own graphics component. 

4 THE FRB CLASS LIBRARY 

The FRB library provides a set of physical 
components plus some graphics components. Figure 
5 shows the program code for the physical system 
from section 2. Loading this piece of program to the 
Physolator and starting the simulation results in the
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1 public class SquareFriction extends MRBParticleSystem { 
2  
3     private final double sigma0 = 50e-5; 
4     private final double rMax = 5 * sigma0; 
5     private final Vector2D g = new Vector2D(0, -9.81); 
6     private Line line =  
7         new Line(new Vector2D(0.06, 0), new Vector2D(-0.03, 0)); 
8     public FrictionSquare square =  
9         new FrictionSquare(0.00025, 0, 0.03, 0.02,line,0.6, 0.2); 

10  
11     public SquareFriction() { 
12         beginStructure(rMax); 
13  
14         setParticleSchema(water, sigma0, g); 
15         setMRBSchema(movableRigid, sigma0, g, square); 
16         setRBSchema(rigid, sigma0); 
17  
18         line.schema = actualRBSchema; 
19         addLine(-0.03, -0.001325, -0.03, 0.03); 
20         addLine(line); 
21         addMovableRigidBody(square); 
22          
23         fillRectangle(-0.02975,0.00025, 0, 0.015); 
24         fillCircle(-0.015, 0.035, 0.01); 
25          
26         endStrukture(); 
27     } 
28      
29     public void initPlotterDescriptors(PlotterParameters r) { 
30         r.add("square.acceleration.x, square.velocity.x",0.4, -1, 2); 
31         r.add("square.F, square.friction",0.4, -1e-4, 10e-4); 
32     } 
33 } 
 

Figure 5: Java program code. 

simulation as shown in figure 1, figure 2 and figure 
4. 

The program code from figure 5 defines a new 
physical system named SquareFriction. 
SquareFriction inherits from class 
MRBParticleSystem. MRBParticleSystem is part of 
the FRB library. It provides some features and 
presets that make developing physical systems with 
fluids and rigid bodies easier. Due to this inheritance 
relationship, the physical system SquareFriction is 
automatically equipped with appropriate default 
values simulation parameters and it is automatically 
equipped with a generic visualization component 
tailored to the needs of fluid and rigid body 
simulations. Figure 1 shows snapshots of this 
component during the simulation.  

The program code from figure 5 defines a 
physical system by combining physical components 
and by providing them with the right parameters and 
settings. Lines 3 and 4 define the core parameters for 
the particle model: sigma0 is used to specify the 
particles equilibrium distance and rMax is a 
constant, that defines a maximal distance. Forces 
between two particles are neglected, if the distance 
between the particles is greater than rMax (see 

section 5 for details). Line 5 defines the earth 
gravitation acceleration. Lines 6 through 9 define a 
squared rigid body resting on a horizontal line. First, 
the horizontal line is defined and then the squared 
rigid body. Line 9 creates the squared rigid body. 
The first four parameters define its location, width 
and height. The fifth parameter is the previously 
defined horizontal line. The squared rigid body has 
an internal link to the horizontal line. Parameters six 
and seven define the friction coefficients for static 
friction and dry sliding friction, respectively. 

The constructor of the class (lines 11 through 27) 
defines the physical system. The commands that 
build up the physical system are located between the 
commands beginStructure and endStructure. Lines 
14 through 16 initialize some data structures that are 
used as containers for fluid bodies and rigid bodies, 
respectively. See (Eisenbiegler, 2016b) for details. 
Line 18 defines the standard behaviour of fluids, that 
are in touch with rigid bodies. Lines 19 through 21 
define three rigid bodies: two lines representing the 
floor and the wall at the left hand side and a squared 
block. The lines representing the floor and the wall 
on the left hand side are rigid bodies, that are not 
movable. The block is a movable rigid body. Lines 

SIMULTECH 2017 - 7th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

40



23 and 24 define amounts of water. Initially, the 
basin is filled with a rectangular amount of water 
and there is a circular amount of water located above 
the basin. 

Lines 30 and 31 define, that there shall be two 
plots: one plot with the acceleration and the velocity 
of the block and one plot with the force applied to  
the block and the actual total friction. For every plot, 
one has to define the names of the variables that are 
to be displayed, the range of time and the minimal 
and maximal values (y range). 

To summarize, the program code of figure 5 
defines a physical system by creating components 
from given classes from the FRB library. The 
program code creates some of these components, 
provides them with the right parameters and 
interconnects them. There are no physical formulas 
in this program code. As a user of the FRB library, 
you can just combine the components and you do 
not have to think about the underlying physics. The 
formulas representing the underlying physics are 
located inside the physical components of the FRB 
library. 

5 EXAMPLES 

The approach presented in the previous section can 
be used to define different kinds of physical systems. 
Figures 6 through 9 give some examples. All these 
simulations have been implemented with the help of 
the FRB library in the same style as program code in 
figure 5. 

I   II  

III   IV  

V   VI  

VII   VIII  

Figure 6: Example A. 

Figure 6 shows a physical system, that is similar 
to the initial example from the previous section: a 
basin with a block on one side and a fixed wall on 
the opposite side. For a certain time, the block is 
moved from left to right with a constant speed. Then 
the block is stopped. As a result, the water inside the 
basin starts moving. A wave moves from left to 
right. When reaching the fixed wall on the right, the 
wave is reflected and finally moves leftwards. 

Figure 7 shows a ball, that is dropped into a 
basin of water. As soon as the ball touches the water, 
the water is pushed sideways and starts moving. 
 

I              II  

III              IV  

V              VI  

Figure 7: Example B. 

The physical system from figure 8 consists of 
two basins of water. Due to a small hole in floor of 
the upper basin, water drops from the upper basin to 
the lower basin. The water drops falling into the 
lower basin produce waves. In the lower basin, there 
is a ball floating on the water. The waves move this 
ball. 

The physical system in figure 9 is similar to the 
one from figure 7: a ball drops into a basin filled 
with water. In figure 9, however, there are some 
barriers. On its way down to the water, the ball hits 
these barriers several time and rolls on them until it 
finally plops into the water. 
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    I     II  

III        IV  

V       VI  

VII       VIII  

Figure 8: Example C. 

6 ALGORITHMIC 
CONSIDERATIONS 

The fluid simulation library from (Eisenbiegler, 
2016b) provides a core infrastructure for modelling 
pieces of fluid using particles. In a particle based 
fluid simulation, the number of particles is crucial. 
Theoretically, every particle interacts with every 
other particle. For sake of simulation speed, a 
maximum distance  is defined. Forces between 
particles are neglected if their distance is greater 
than 	 .  A  grid  of  boxes is used in order to effi- 

I          II           III   

IV        V        VI  

 VII      VIII          IX  

   X        XI        XII  

Figure 9: Example D. 

ciently find particles, that are in the neighbourhood 
of some particle. The grid spacing is . Every 
box inside this grid is quadratic with the width and 
height being . All particles are assigned to 
boxes in this grid. A hash map data structure is used 
to efficiently find the neighbouring boxes. After 
every movement of the particles, this data structure 
is computed anew and all particles are assigned to 
the boxes. 

The FRB has been build on top of the fluid 
simulation library (Eisenbiegler, 2016b). It provides 
extra data structures for internally representing rigid 
bodies. To achieve good results as to performance, 
the algorithm for determining the particle-particle 
forces has been enhanced using multi-threading. 
Besides, an algorithm has been implemented for 
efficiently determining the forces between particles 
and rigid bodies. 

In the fluid simulation library (Eisenbiegler, 
2016b), a single threaded approach has been used to 
determine the forces between the particles. When 

SIMULTECH 2017 - 7th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

42



working with several threads, one has to make sure, 
that not more than one thread works with a particle 
at the same time. To compute the forces for one 
particle, one has to consider all particles from the 
same box plus all the particles from the 
neighbouring boxes. If two work with one particle at 
the same time (reentrancy), this could lead to false 
results. Synchronized methods would solve this 
problem. However, they use locking and locking 
could produce deadlocks. To synchronize the threads 
and to avoid deadlocks, a specifically developed 
synchronization strategy is to be used.  

At a certain point in time every thread shall 
determine the actual forces for all particles of some 
box. To compute the forces of the particles in one 
box, the thread also has to work with the particles 
from the boxes in the direct neighbourhood. When 
working with one box, no other thread shall work 
with this box or its neighbours. If two threads are 
determining the forces for two boxes, there must be 
at least two boxes between these boxes. 

 

 

Figure 10: Boxes used to avoid reentrancy. 

Figure 10 explains the multi threading and 
synchronization concept. In this figure, there are 
several amounts of water. Each amount of water is 
represented by a set of particles. During simulation, 
an orthogonal grid of quadratic boxes is used and 
each particle is assigned to one of the boxes. In 
Figure 10, one can see vertical columns. Each 
column represents a vertical sequence of boxes. The 
width of the columns is . At a point in time, one 
thread shall compute the forces for all particles of 
one column plus the forces applied from these 
particles to the particles that are in the columns next 
to the actual column. One has to make sure, that at 
no time there are two threads working with columns 
with less than two columns in between. Figure 10 
shows a snapshot during computation. The grey 
columns represent columns, where a thread is 
currently computing the forces.  

Threads are synchronized using the wait/notify 
mechanism from Java to make sure, that at any time 
there are at least two columns in between two active 
threads. Figure 11 shows the pattern, that is used for 

this synchronization. Each number represents one 
column and each arrow represents a wait-notify-
relationship. The thread actually executing the 
column at the starting point of the arrow has to 
finish its work, unless the computation of the 
column, that the arrow points to, cannot be started. 
A thread at the end point of an arrow has to invoke 
wait(). It is blocked unless the thread from the 
starting point of the arrow sends him a notify() 
signal. 

 

 

Figure 11: Synchronization. 

Rigid bodies are either represented by lines or by 
circle segments. The algorithm shall compute all 
forces, that particles apply to rigid bodies, and all 
forces, that rigid bodies apply to particles. 
Theoretically, one would have to consider all 
combinations of rigid bodies and particles. To save 
computing time, forces shall be neglected if the 
distance is greater than . 

The algorithms used for computing the forces 
between rigid bodies and particles use the grid of 
boxes. One has to find all combinations of boxes and 
rigid bodies, where the box is not more than  
apart from the rigid body. More precisely: There is 
at least one point inside the box, that is not more 
than  apart from the rigid body. For every such 
pair of rigid body and box, one has to iterate through 
all particles and compute the actual distance to the 
rigid body. If the distance between the particle and 
the rigid body is not greater than , then the force 
between this particle and the rigid body is computed 
and this force is added to the rigid body and to the 
particle – with opposite signs. 

But how to efficiently determine all 
combinations of boxes and rigid bodies, that are not 
more than 

 
apart? There are two different 

approaches, that are to be called algorithm A and 
algorithm B. Algorithm A iterates through all boxes. 
For every box, the algorithm determines the distance 
to all rigid bodies. Algorithm B works the other way 
round: It iterates through all rigid bodies. For every 
rigid body, the algorithm walks along the rigid body 
from the beginning point to the end point of the line 
and computes the position of the boxes in the 
neighbourhood of the line. For every such position, 
it checks, if there is such a box with particles. 
Determining the position of all box positions is easy 
for lines. Beginning at the starting point of the line, 
one simply has to add a small piece of the direction 
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vector to iterate through all the boxes, that are in the 
neighbourhood of the line. Things are a little trickier 
with circle segments. To solve this problem, the 
algorithm uses the Bresenham algorithm 
(Bresenham, 1965). This algorithm has initially been 
invented to draw circular lines using a plotter.  

The user of the FRB library can choose between 
algorithm A and algorithm B. The result is always 
the same, but the computing efficiency is different. 
It depends on the physical system, which of them is 
faster. Algorithm A performs well for a smaller 
number of particles and boxes and for a reasonable 
number of rigid bodies. For a big number of 
particles and a small number of rigid bodies with a 
small total line length, algorithm B is faster.  

7 CONCLUSIONS AND 
OUTLOOK 

This paper has presented a modular approach 
towards mixed fluid and rigid body systems. So far, 
there are still some limitations. First of all, the 
approach is based on the fluid library presented in 
(Eisenbiegler, 2016b) and this fluid library is limited 
to two dimensional simulations. Three dimensional 
fluid simulations are challenging. It takes far bigger 
numbers of particles to achieve the same precision 
with a three dimensional model. This results in a far 
bigger amount of computing time. 

The rigid body physics used in the examples is 
limited to some physical effects: static friction, 
dynamic friction, and collision. The library is so far 
restricted to these effects. More physical effects 
could be added and should be added.  

So far, there has been a focus on optimizing the 
fluid simulations. The data structures and algorithms 
are optimized to handle as many fluid particles as 
possible. However, the FRB library is not yet 
designed for big numbers of rigid bodies.  
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