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Abstract: This paper documents an epidemic model known as SIR (Susceptible – Infected – Removed units). We 
derive an approximated solution to the differential equations that define the SIR model. Unlike the exact 
SIR solution, the approximate solution is analytical and has a closed form expression. We use this 
approximate model as an inspiration to cyber defence. Such a model allows us to investigate the 
characteristics of the propagation of electronic viruses.  That is, we can determine the number of susceptible 
units, the number of infected units and the number of removed units as a function of time. This information 
will eventually permit the defence to find ways to eradicate a virus attack and to show how viruses affect the 
defence effectiveness. 

1 INTRODUCTION 

“Infectious diseases have been a part of the human 
condition since time immemorial” (Smith? 2008a). 
Note the “?” is part of the last name “Smith?”. 
Nowadays, we also encounter electronic viruses 
which can attack computers and networks. The 
nature of data communication allows electronic 
viruses to propagate data rates ranging from kilobits 
per second to gigabits per second. Hence a network 
could be infected in a matter of minutes. To prepare 
defence against viruses, we need to be able to model 
the process of infection. Our inspiration is owed to 
the modelling of epidemiology. 

“Mathematical epidemiology has its roots in 
1760, when Daniel Bernoulli formulated and solved 
a model for smallpox. In 1906, Hamer used a 
discrete-time model of measles to understand 
recurrent epidemics” (Smith? 2008b). Clearly, there 
is an available body of knowledge in the 
mathematics of infectious diseases. 

We encounter computer viruses every day and in 
every field of work. There are lots of speculations on 
the potential damages of a cyber-attack.  Below is a 
list of examples. 

a. A car’s accelerator can be disabled (Greenberg, 
2016a); 

b. A car can unintentionally accelerate, brake or 
steer (Greenberg, 2016b); 

c. A sniper rifle can be deactivated or change its 
target (Greenberg 2016c); 

d. The fact that North Korea’s missile launches 
were failing too often may be due to US cyber-
attacks (Sanger 2017). 

Some of the above examples may be real and 
some of them may not be accurate.  But whatever 
their veracities are, cyber defence is real. It was even 
mentioned in the presidential debate between Hilary 
Clinton and Donald Trump (Blake 2016). It is not 
hard to imagine what would happen if a defence 
system is infected. The impact could range from 
minor nuisances to catastrophic failures. For 
example, the defence system can fire in the wrong 
direction, at the wrong target and at the wrong time.   

The economic impact of crimes in cyberspace is 
also speculated.  Below are two examples. 

a. The cost of crimes in cyberspace is estimated 
to be 445 billion USD (World Economic 
Forum 2016) and 

b. US, China and Germany, three of the four 
largest economies in the world, lost more than 
200 billion USD (Centre for Strategic and 
International Studies 2016). 

In addition to the extent of a cyber-attack, it is 
common knowledge that such an attack does not 
necessarily require a lot of resources as cited from 
(Kesan and Hayes 2012) below: 
“Cyberattacks are not resource-intensive, which 
renders them even more dangerous because no 
practical requirement exists to limit the attackers to 
being members of organized and well-funded 
sources such as a nation’s military.”   
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This is also recognized officially by NATO as 
cited from (NATO fact sheet, 2016) below: 
“Cyber threats and attacks are becoming more 
common, sophisticated and damaging. The Alliance 
(NATO) is faced with an evolving complex threat 
environment. State and non-state actors can use 
cyber-attacks in the context of military operations.” 

Given the frequency and extent of cyberattacks, 
we investigate the infection of viruses on a network 
using an epidemic model. It is certainly not the first 
time that cybersecurity is modelled by epidemiology 
(Krishnan et al. 2013). There are several such 
models. To name a few: the SEIR model 
(Susceptible-Exposed-Infectious-Recovered), the 
SIR model (Susceptible-Infectious-Recovered), the 
SI model (Susceptible-Infectious) and the SIS model 
(Susceptible-Infectious-Susceptible) (Keeling and 
Rohani 2007). Each model is named after the 
sequence of phases an entity is in when infected by a 
virus.  

The difference between the first two, the SEIR 
model and the SIR model, is that the former 
simulates the exposed phase where an individual can 
be infected but is not infectious.  It is often possible 
to remove the exposed phase from the model which 
leads to the SIR model (Keeling and Rohani 2007) 
where an individual can be susceptible, infected or 
recovered. This can be done when the population 
scale is small meaning that every individual can be 
infected in a short time.  Susceptible units are those 
that can be infected. Infected units are those that can 
infect other units. And Removed units are those that 
are no longer infected (recovered units).  

In contrast to the SIR model, the SI model does 
not account for the recovered phase. The SI model is 
usually appropriate for plants. Once the plants are 
infectious, they will remain infectious and 
eventually die (Keeling and Rohani 2007). The 
remaining model i.e. the SIS model is appropriate 
for sexually transmitted diseases. Once an individual 
recovers, he/she is again susceptible to infection 
(Keeling and Rohani 2007). This could be applicable 
for computer viruses as well. However, for a short 
time scale, we assume that the defence will not be 
attacked by the same virus or that once the virus is 
known; the defence will recognize its signatures and 
will stop the known virus before any infections 
occur. 

Based on the nature of the cyber defence 
scenarios that we consider: suitability of the level of 
details, rapid dissemination of the infection (time 
scale is short) (Hethcote 2000) and the fact that a 
recovered unit is not susceptible to infection once 
the virus is known and there is a software that can 

neutralize the virus, we choose to examine the SIR 
model as a cyber defence model. 

Similar to most of the epidemic models, the SIR 
model does not have an analytical solution.  Hence, 
it only has numerical solutions which make it 
inconvenient (but not impossible) to analyze and to 
predict the extent of the infection.  However, we 
were able to find an approximate solution that is 
analytical.  And we will show in future work that the 
approximated SIR model is useful in planning 
against cyberattacks. (Morris-King and Cam 2015) 
also makes use of the SIR model to examine cyber 
vulnerabilities but from an agent based simulation 
perspective. 

Section 2 presents the SIR model. Section 3 
derives an approximated differential equation to the 
SIR model. Section 4 derives an approximated 
solution which is a solution to the approximated 
differential equation. Section 5 analyses the results.  
Section 6 provides the characteristics of the 
approximated solution. We conclude in Section 7. 

Before we delve into the details of the report, we 
state below the assumptions: 

a. It is possible for a red force to hack into the 
defence system and put a virus in the defence 
system; 

b. The defence is partially disabled if not 
completely during the infection; 

c. The nature of computer viruses can be 
simulated by biological epidemic models and  

d. Further studies/experiments can determine the 
parameters of the epidemic models.  

Note that the epidemic models described above are 
simple and deterministic. There are also stochastic 
models (Bailey 1975) but they are even more 
complicated mathematically and are not necessarily 
better for our purpose than the SIR model. In fact, 
there are a multitude of computer viruses such as 
benevolent viruses, file infectors, macro viruses, etc. 
(Horton and Seberry 1997). Each of them behaves 
differently. It would be impossible to model all of 
them. 

We ultimately aim to determine the effects of a 
cyber-attack on the effectiveness of the defence and 
not the details of the infection in the sense that we 
are looking for orders of magnitudes for the number 
of susceptible units, the number of infected units and 
the number of removed units as well as the duration 
of the infection.  In essence, if there is a virus in the 
system and if there is a remedy to that virus and both 
of them can be modelled or bound by the parameters 
in the SIR model then the solution to the SIR model 
can be useful to the planning of cyber defence.  This 
solution will enable the comparison of the efficiency 
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between cyber defence software against known 
viruses.  Knowing the magnitudes of the duration of 
the infection and the magnitudes of the number of 
components that are affected will help determine the 
changes in defence effectiveness.  This is critical 
especially against an astute enemy who could launch 
a missile attack at the same time as a cyber-attack.  
It is not hard to imagine how things can go wrong to 
a net centric defence when the command and control 
is infected even if for a short time.  Key measures of 
effectiveness in such a missile defence scenario will 
definitely be affected and will likely show losses in 
effectiveness. 

2 SIR MODEL OF EPIDEMICS 

The SIR model is well understood, (Smith? 2008c). 
It is assumed in the SIR model that there is 
homogeneous mixing within the population. This 
could happen if any unit is in contact with all other 
units. This interpretation can be seen when we 
consider a finite population for example four units in 
which one of them is infected.  If the infection rate is 
the same for all susceptible units then all units must 
be in contact with all other units. Otherwise, by 
changing the initial infected unit to another unit, we 
will not have the same infection rate. This 
corresponds to a complete graph (Bondy and Marty 
2008) which is a graph where every node is linked to 
all other nodes. In other words, this is a totally 
connected network. Clearly, the spread of a virus 
depends on the topology of the network (Ganesh et 
al. 2005 and Chakrabarti et al. 2008). That is, 
infections could occur only if an infected node is 
connected to another node. Therefore, we can 
consider the SIR model as the worst case scenario 
i.e. an infected node can infect any other nodes.  We 
could also think of the SIR model as an attack at the 
central node which is connected to all of the other 
nodes or any susceptible unit is in contact with other 
infected units in a way that each susceptible unit has 
an identical rate of infection. It is defined by a set of 
differential equations as shown below: 

 

'

'

'

S aSI

I aSI bI

R bI

= −

= −

=

  (1) 

where S  is the number of units that are susceptible 
to infections, I  is the number of units infected and 
R  is the number of units removed from infection 
i.e. they are no longer infected; a  is the rate of 

infection and b  is the rate of recovery. 
N S I R= + +  is a constant. That is, the total 
population is fixed. We scale 

/ , / /S S N I I N and R R N← ← ← . Hence, 

0 , , 1S I R≤ ≤  and 1S I R+ + = .  In the context of 

computer viruses, S  is the number of susceptible 
units, I   is the number of infected units and R   is 
the number of removed (recovered) units. 

 

Figure 1: An SIR model. 

In spite of the simplicity of Equations (1), there 
are no known analytical solutions.  However, we 
could infer from Equations (1) that there are two 
equilibrium points where the RHS of Equations (1) 
are equal to zeroes.  The first equilibrium point 

occurs when 0I I= = , S S N= ≤  and 

R R N S= = − .  The second equilibrium occurs 

when 0aS b− =  or /S S b a= =  which implies 

that ' 0I =  which makes I I N= ≤  but S  is 
decreasing due to /dS dt .  Therefore it is not a 
stable equilibrium. 

If 
0

S  is the initial value of S  at time zero and 

0
/S b a>  then there will be an epidemic as ' 0I > .   

The method of determining the equilibrium points 
for ordinary differential equations is well 
understood.  It makes use of the Jacobian matrix and 
its eigenvalues (Smith? 2008d). An equilibrium 
point is stable if all eigenvalues are negative (or 
zero). 

3 APPROXIMATED 
DIFFERENTIAL EQUATIONS 
TO THE SIR EPIDEMIC 
MODEL 

We note that from Equations (1), R  is uniquely 
determined by I .  So we focus on S  and I  because 
once we solve for S  and I , we can readily solve 
for R .  The first two equations of Equation (1) can 
be combined to give: 

 ' 'I S bI= − −  (2) 
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We define 

 ( ) ( )
0

0
t

f t I t dt= ≥  (3) 

Integrating Equation (2), we get: 

 S I b f C= − − ⋅ +  (4) 

where C  is a constant of integration.  Since 

 ( )'/ ln 'S S S aI= = −  (5) 

We get 

 ' afS f bf C Ae−= − − + =  (6) 

where A  is a constant parameter.  If we assume that 

there is 
0

I  infection at time zero and there are no 

removed units then these are the boundary 
conditions: 

 

( ) ( )

( )
( )

0

0

0

0

0 0

0

0 0

' 0

0

1

0

f I t dt

f I I

S S

S I

R

= =

= =

=

+ =

=



 (7) 

This means that 

 0

1

A S

C

=

=
 (8) 

Hence, 

 
0

' 1 aff bf S e−= − −  (9) 

There are two roots to the RHS of Equation (9): 

 

/0

1

/0

2

1 1
1,

1 1
0,

a b

a b

aS
f f W e

b a b
aS

f f W e
b a b

−

−

−
= = + −

−
= = +

 
 
 
 
 
 

 (10) 

where W  is the Lambert function. The Lambert 
function is shown in Figure 2.  For real x , there are 
two branches.  The first branch is shown in blue and 

corresponds to ( )0,W x  while the second branch is 

shown in yellow and corresponds to ( )1,W x− .    

Since the arguments of ( )W x  for 
1

f  and 
2

f  are 

negative, we can infer that the Ws   embedded in 
1

f  

and 
2

f  are also negative based on Figure 2.  Simple 

calculus dictates that 
0 0

/uS ue S e−− ≥ −  where 

/u a b= .  From Equations (1), there are two cases. 

First, if ( )1a b u< <  then the number of infected 

units will decrease right away.  That is, the infection 

will die out with time.  Second, if ( )1a b u≥ ≥  then 

the number of infected units will increase at least at 
time zero.  Therefore, we will focus on the second 
case because the virus will infect the system which 
is the scenario that we are interested in. Since 

0
1S ≤ , we reason that: 

 ( )0
0, 1uW S ue λ−− = − ≥ −  (11) 

Hence 

 

/0

2

1 1
0,

0

a baS
f f W e

b a b
a b u

ab bu

λ λ

−−
= = +

− −
= = ≥

 
 
 

 (12) 

From (Higham et al. 2015), the second order 

approximation of ( )1,W x−  is given by: 

 ( )2
1 /11, 1zW e z− −− − = − −  (13) 

Equating 

 
2

1 /1

0

z ue S ue− − −=  (14) 

We obtain: 

 ( )0
2 ln ln 1z S u u= − + − +  (15) 

If 
0

1S   then by using a Taylor expansion, we get 

 
( ) ( )( )

2

31
1 1

3

u
z u O u

−
= − + + −  (16) 

As a result 

 ( ) ( )
2 21 /1

1, 1 / 3
zW e u u− −− − − − −         (17) 

 

0 1 2 3 4

10

5

0 x

W
Lambert function

 

Figure 2: Lambert function. 
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Hence 

 
( )

/0

1

2

1 1
1,

1
0

3

a baS
f f W e

b a b

u

a

−−
= = + −

−
= − <

 
 
 

 (18) 

The above holds in general for 
0

0 1S< ≤ . We 

observe that the RHS of Equation (9) is concave.  
That is, 

 ( ) ( )( )1

2 2

x y
RHS RHS x RHS y

+
≥ + 

 
 

 (19) 

Equivalently, 

 

( ) ( )

( ) ( ){ }
( )

( )
( )

( )

2
0

?

0 0

?

2

?

2

2/ 2 / 2

1
2

1
1 1

2

1

2

1
0 2

2

0

x y
a

ax ay

x y
a

ax ay

x y
a

ax ay

ax ay

x y
b S e

bx S e by S e

e e e

e e e

e e

+
−

− −

+
−

− −

+
−

− −

− −

+
− −

≥ − − + − −

− ≥− +

≤ − +

≤ −

 
 
 

 (20) 

Because the RHS of Equation (9) is concave, we 
approximate it by a quadratic function.  That is, 

 ( )( )
1 2

1
afbf e c f f f f−− − − −  (21) 

where 
1

f  and 
2

f  are given by Equations (10).  

Additionally, we determine c  by minimizing the 
2χ  i.e. 

 
( ) ( )

( )
2

2

1 2

0

min
1

f

a fc

c f f f f
df

b f e− ⋅

⋅ − ⋅ − −
⋅

− ⋅ − +

 
 
 

  (22) 

which is the same as 

( )( )

( )
( )( )

( )
( )( )

2

2

2

1 2

0

1 2

1 2

0

1

0
1

0
f

af

o

f

af

o

c f f f fd
df

dc bf S e

c f f f f
df f f f f

bf S e

−

−

− −

− − − +

− −
− − =

− − − +

=
 
 
 

 
 
 





 

 

( ) ( )
( )( )

( )

2

2 2

1 2

1 2

0

0

1

f

af

o

c f f f f

df f f f f

bf S e−

− −

− − − =

− − +

 
 
 
 
 

  (23) 

This yields: 

 

( )( )
( )

( ) ( ){ }

2

2

1 2

0

2 2

1 2

0

1

f

af

o

f

f f f f
df

bf S e
c

df f f f f

−

− −

− − +
=

− −

 
 
 




 (24) 

There is actually a closed form expression for c .  
It can be obtained by performing the integrals in the 
numerator and in the denominator above.  However, 
it is not particularly illuminating so we keep 
Equation (24) the way it is.  Observe that the 
integrals in Equation (24) are integrated from 0f =  

to 
2

0f f= >  since we know that ( ) 0f t ≥  as 

shown in Equation (3).  By doing so, we discard all 
negative values of f  which are not physical values.  

That is, the value of c  is not affected by the value of 
f  when f  is negative.     

We plot the exact /df dt  in Equation (9) and the 

quadratic function in Equation (21) that 
approximates /df dt  in Figure 3.  It can be seen that 

the approximation is very similar to the exact 
/df dt .  Both of them are concave functions with a 

maximum between 
1

f  and 
2

f .  

 

Figure 3: Derivative of f . 

For illustration, we assume the following values in 
Figure 3: 

 
0

5

1 2

1 / 2, 1 / 3

0.99999

5.99991 10 1.74847,

a b

S

f f−

= =

=

= − ⋅ =

 (25) 
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4 APPROXIMATED SOLUTION 
TO THE SIR EPIDEMIC 
MODEL 

We now solve for ( )f t  using the quadratic 

approximation: 

 ( )( )
1 2

'f c f f f f− −=  (26) 

This is a simple differential equation that can be 
solved using: 

 
( )( )

1 2

df
dt

c f f f f
=

− −
 (27) 

(Gradshteyn and Ryzhik 1979) integrating: 

 1

2

1
ln

f f
t C

f f

−
= +

−Δ

 
 
 

 (28) 

where C  is a constant parameter and 

( )1 2
0c f fΔ = − >  assuming that 0c < , 

1
0f <   

and 
2

0f >  .  Raising Equation (28) as a power of an 

exponential, we get: 

 ( ) ( )
1 2

/ tf f f f A e Δ− − = ⋅  (29) 

where A  is a constant parameter.  Since ( )0 0f = , 

this yields: 

 1

2

f
A

f
= −  (30) 

Solving for f : 

 
( )2

2 1

1

/

t

t

f e
f

f f e

Δ

Δ

− +
=

− +
 (31) 

We can now obtain ( )I t : 

 ( ) ( ) ( )

( )
2

1 2 1 2

2

2 1

'
t

t

cf f e f f
I t f t

f f e

Δ

Δ

−
= =

−
 (32) 

From Equation (5) and the boundary conditions in 

Equations (7), we get an expression for ( )S t : 

 ( ) ( )
0

af tS t S e−=  (33) 

From Equation (1) and the boundary conditions in 

Equations (7), we get an expression for ( )R t : 

 ( ) ( )R t bf t=  (34) 

To investigate the long term effects of the system, 
we evaluate the SIR as time tends to infinity. 

 ( ) ( )

( )
2

1 2 1 2

2

2 1

lim lim 0
t

t t t

cf f e f f
I t

f f e

Δ

→∞ →∞ Δ

−
= =

−
 (35) 

 ( )
( )2

2 1 2

1

/

0 0
lim lim

t

t

f e
a

f f e af

t t
S t S e S e

Δ

Δ

− +
−

− + −

→∞ →∞
= =  (36) 

 ( )
( )2

2

2 1

1
lim lim

/

t

tt t

f e
R t b bf

f f e

Δ

Δ→∞ →∞

− +
= =

− +
 (37) 

 

5 RESULTS 

We plot I   as a function t  in Figure 4. I  increases 
as a function of time then reaches a maximum and 
then decreases as a function of time.  The blue curve 
corresponds to the exact solution obtained 
numerically while the red curve corresponds to the 
approximated solution.  The two have the same 
shape and the same asymptotic behaviours as time 
gets large.  In addition, the approximated solution is 
slightly shifted to the right.  The maximum number 
of infected units is about 6.2  percent of the 
population as I  is normalized. The input parameters 
are shown in Equation (25). Note that we did not 
give a unit for the time as we do not know the 
coupling parameters a   and b . Once we obtain the 
values for the coupling parameters, we will be able 
to extract the unit of time. This will be done in the 
future. 

 

Figure 4: Number of infected units as a function of time. 
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Similarly, we plot S  as a function of t  in Figure 5.  
It is a decreasing function of time. The blue curve 
corresponds to the exact solution while the red curve 
corresponds to the approximated solution.  The two 
have the same shape and the same asymptotic 
behaviours as time gets large.  That is, S  reaches a 
constant value that is non-zero for large time.  In 
addition, the approximated solution is slightly 
shifted to the right. 

 

Figure 5: Number of susceptible units as a function of 
time. 

The same behaviours occur when we plot R   as 
a function of t  as shown in Figure 6.  It is an 
increasing function of time and reaches a non-zero 
value as time gets large.  We plot the SIR units as a 
function of time for the exact model in Figure 7 and 
for the approximate model in Figure 8.  As time gets 
large, the SIR units in both cases reach steady 
values. 

 

Figure 6: Number of removed units as a function of time. 

 

Figure 7: Number of susceptible, infected and removed 
units as a function of time. 

6 CONCLUSIONS 

In this paper, we have derived an approximated SIR 
model and found the corresponding analytical 
solution. We could consider the approximated SIR 
model itself a SIR model.  After all, the exact SIR 
model is a man-made model where the couplings 
among the susceptible units, the infected units and 
the removed units are parts of the modelling. 

Unlike the exact SIR model and in spite of its 
simplicity, the analytical nature of the approximate 
solution allows one to determine the long term 
characteristics of the SIR units, the maximum 
number of infected units and the time when this 

occurs with only three parameters 
1 2

, ,c f f  and the 

boundary conditions.  
1 2

, ,c f f  are obtained from the 

couplings ,a b  of the exact SIR model and the 

boundary conditions. 

 

Figure 8: Number of susceptible, infected and removed 
units as a function of time. 

This allows us to plan for cyber-attacks.  

Knowing
1 2

, ,c f f , we can determine the extent of 

the damage i.e. the number of infected units, the 
number of susceptible units and the number of 
removed units as functions of time.  These numbers 
are illustrated in Figure 4, Figure 5 and Figure 6 
respectively.  They show how long the system takes 
to recover e.g. when the number of infected units 
reaches a minimum acceptable value after attaining a 
maximum value.  If it takes a long time relative to 
the time scale of a simultaneous missile attack then 
clearly the defence may not be effective especially if 
critical defence systems are infected and the defence 
loses its net centric capabilities for example. What is 
more, if the number of infected units keeps 
increasing with time then we know that our cyber 
defence is absolutely not effective.  These 
qualitative features and their orders of magnitudes 
will be useful to the defence planning. 
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A contribution to this paper is the simplicity of 
the approximated and analytical solution. We require 
only the three parameters of a quadratic 

function
1 2

, ,c f f to model a generic virus infection 

and its remedy.  
Our next step is to conduct experiments and/or 

investigations to determine these parameters that are 
specific to the scenario. To do that, we would also 
need to consider the number of platforms, the 
number of computers, the network topology, etc. 
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